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It is important that plasma composition is calculated in a manner consistent with
statistical mechanics, particularly since the Boltzmann equation is the basis from
which transport coefficients and the fluid-dynamic equations are derived. It is
shown from statistical mechanical considerations based on the Boltzmann equation
and the H-theorem that it is (i) not possible for a plasma to have more than one
temperature in equilibrium in the absence of external forces and gradients, and (ii)
not possible to draw conclusions about the change in entropy of a plasma in the
presence of external forces and gradients. Derivations of the two-temperature Saha
equation, and more generally calculations of the composition of a multi-tempera-
ture plasma, that are based on entropy maximization are therefore invalid. A ther-
modynamic derivation of the composition of a multi-temperature plasma that is
consistent with the statistical mechanical results is presented. The derivation shows
that the equilibrium composition of a plasma can be correctly calculated by mini-
mization of the internal or free energy.

KEY WORDS: Multi-temperature plasmas; composition; calculations; thermo-
dynamics.

1. INTRODUCTION

Knowledge of the composition of thermal plasmas is important in many
applications. In particular, it is the starting point for the calculation of the
thermodynamic properties and transport coefficients of the plasma, which
are required for computational fluid-dynamic modeling of the plasma. For
plasmas that can be described by a single temperature 7, the method of
calculation of the composition is well understood. For example, for a plasma
composed of atoms A of a monatomic gas, and ions A" and electrons e~
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resulting from ionization of the atoms, the composition is given by the Saha
equation:

nen;  2Q(T) (ZmnekBT) v exp(_ E; ) W
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where n,, n;, and n, are number densities of the electrons, atoms, and ions,
respectively, O; and Q, are the internal partition functions of the ions and
atoms, respectively, E/is the effective gas ionization energy, m, is the electron
mass, kg is Boltzmann’s constant, and # is Planck’s constant.

In many types of thermal plasmas, such as dc and microwave jets and dc
arcs, and in other high-temperature flows, a single temperature description is
inadequate, either throughout the plasma (as in microwave jets'®) or at least
in some regions (such as those close to electrodes in dc arcs®® or in the fringes
of dc jets™). In such cases, it is necessary to consider at least two distinct
temperatures, the electron temperature and the heavy-particle temperature,
and sometimes more. For example, if molecular species are present, their
vibrational and rotational temperatures may differ from the translational
temperatures.

The correct method. of calculation of composition of such multi-tem-
perature plasmas has long been a subject of debate. For the case equivalent
to Eq. (1), with atoms and ions at heavy-particle temperature T}, and elec-
trons at temperature T, two particular forms of the Saha equation have been

obtained:
N T/ T ) 3/2
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Equation (2) was first derived by Prigogine® based on the thermodynamic
criterion that the Helmholtz free energy would assume its minimum value at
equilibrium in a process with constant temperatures and constant volumes.
A more detailed derivation, based on a similar thermodynamic approach,
was given by Potapov.©®

Equation (3) differs from Eq. (2) in that there is no exponent 7},/T, on
the left-hand side. It was first derived’ from kinetic theory by assuming
that, since that average thermal speed of the electrons is much greater
than that of the heavy particles, electrons will dominate in ionization and
recombination reactions. The equilibrium constant K= n.n;/n, will then
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depend only on T, which can be used to replace T on the right-hand side of
Eq. (1).

Morro and Romeo,"? van de Sanden ez al.™” and, most recently, Chen
and Han,’? have presented derivations of Eq. (3) using thermodynamic
methods. The derivations of van de Sanden e? al. and Chen and Han require
the assumption that energy transfer between electrons and heavy particles
can be neglected. Instead of minimization of Helmholtz free energy (or,
equivalently, Gibbs free energy or internal energy, depending on the ther-
modynamic variables used), van de Sanden ef al. and Chen and Han use the
maximization of entropy to obtain their result.

Giordano™ and Giordano and Capitelli®*' have argued that the
formulation that should be employed in determining the composition of a
multi-temperature plasma depends on the constraints (pressure, tempera-
tures, entropy, etc.) imposed on the system. They showed that, depending
on the constraints used, both Egs. (2) and (3), and indeed other forms of
the two-temperature Saha equation, can be derived using thermodynamic
methods. For example, Eq. (2) was obtained from internal or free energy
minimization by allowing redistribution between the translational entropies
of the atoms and ions, and between the translational entropies of the
electrons and electronic-excitation entropies of the atoms and ions, but
preventing entropy exchange between these two groups. Equation (3) was
obtained from entropy maximization by allowing redistribution between
the translational internal energies of the atoms and ions, and between the
translational internal energies of the electrons and electronic-excitation
internal energies of the atoms and ioms, but preventing internal energy’
exchange between these two groups.(”’]s)

Giordano and Capitelli’ expressed reservations about the assumption
that the transfer of energy between the electrons and heavy particles (or more
specifically, between the groups (i) the translational internal energies of the
atoms and ions, and (ii) the translational internal energies of the electrons
and electronic-excitation internal energies of the atoms and ions) can be
neglected. Chen and Han'® justified their neglect of this energy transfer
on the basis that the energy transfer is proportional to the ratio of masses
m,/my, and is therefore small.

We would argue that energy transfer between electrons and heavy par-
ticles cannot be neglected. In most thermal plasmas, the plasma is heated via
the interaction of the electrons with an external field (dc, rf or microwave).
The electrons then transfer their energy to the heavy particles, which typi-
cally reach temperatures that are close to, or at least a significant fraction of,
the electron temperature. Hence, while energy transfer between electrons and
heavy particles is less efficient than that between species of similar mass, it
cannot be neglected in determining the energy balance between the different
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species, and therefore the composition of the plasma. Giordano and Capi-
telli"” present further arguments, in particular noting that electron-impact
ionization (whose rate is determined by the electron temperature) does not
necessarily dominate over atom-impact ionization (whose rate is determined
by the heavy particle temperature).

The distribution functions that describe the behavior of gaseous mix-
tures are solutions of the set of Boltzmann’s equations, with one such
equation fully describing the behavior of each species. The H-theorem
can be used to calculate the equilibrium form of these distribution func-
tions. It is interesting to investigate the ramifications of the H-theorem for
a multi-temperature plasma for two reasons. Firstly, several authors have
used the Second Law of Thermodynamics as a starting point to examine
the equilibrium composition of a multi-temperature plasma.*%? Since the
H-function is a generalization of the entropy, it is instructive to examine
the validity of this approach when considered in the light of the H-theorem.
Secondly, Boltzmann’s equation is the starting point for the fluid-dynamic
description of the plasma. The fluid-dynamic equations of change are de-
rived from Boltzmann’s equation, and the transport coefficients are obtained
from approximate solutions of Boltzmann’s equation. It is important that
the composition. of the plasma, which is used in calculating the transport
coefficient and the thermodynamic properties, which are in turn required
in the fluid-dynamic equations, is consistent with statistical mechanical
considerations.

In Section 2, we use the H-theorem, applied to a thermal plasma, to
show that it is not possible for the species in a spatially-uniform thermal
plasma to have more than one temperature if there are no external forces. We
then consider the influence of external forces and spatial gradients, finding
that it is not possible to draw conclusions about changes in the plasma en-
tropy in the presence of external forces or gradients. We use these two results
to indicate ‘the shortcomings of derivations of the two-temperature Saha
equation, and more generally descriptions of the equilibrium composition of
a multi-temperature plasma, that are based on entropy maximization. In
Section 3, we develop a model from classical thermodynamics that is con-
sistent with the results obtained from statistical mechanics, and that allows
the determination of the plasma composition. Conclusions are presented in
Section 4.

2. THE H-THEOREM FOR A THERMAL PLASMA

The H-theorem, or Boltzmann’s H-theorem, is a demonstration of the
tendency of the particles of an isolated system to approach their equilibrium
distribution. The H-function for a mixture of species i with distribution
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functions fi(7, ¥, £), where 7 is the position, ; is the velocity of species i,
and ¢ is the time, is defined as

H()= zﬂf,-(a 5, ) L7, 5,, )] 45, dF @

i

The distribution function f;(7,7;,f) must satisfy the Boltzmann
equation:!%!17
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where X; is an external force applied on the particle of the ith species, b is the
impact parameter, g is the initial relative velocity, and € is the angle over
which integration takes place. The dash notation denotes the value of a
quantity after a collision.

It can be shown (e.g. Ref. 18) that H = — S, /kg, where S, is the entropy
per unit volume, and kg is Boltzmann’s constant. The H-function can be
viewed as generalization of the entropy, since, unlike entropy defined on
a strictly thermodynamic basis, it is defined in non-equilibrium situations.
The H-theorem states that dH/dt =0 for an isolated system, and is hence
a statement of the second law of thermodynamics.

Using the H-function, it can be shown that the equilibrium distribution
function for an adiabatically-isolated spatially-uniform gas with no ex-
ternal forces is Maxwellian.*'” Here we follow the derivation as given
by Hirschfelder, Curtiss and Bird®® and examine the consequences for a
thermal plasma.

2.1. Uniform Plasma without External Forces under Uniform Conditions

‘We assume in this section the plasma to be spatially uniform, so there is
no dependence on 7. The H-function, H(?), is then given by

HO= ¥ [£6. 915G 015 ©)

In the absence of external forces and under uniform conditions, the time rate
of change of the distribution function f; has to satisfy the following relation:

g/: Zﬂj(ﬁ'ﬁ'_ﬁﬁ)gijbdbdedﬁj Q)

J
Differentiating H(f) and making use of Eq. (7), it can be shown that

dH(t)___Zm” (J}f};)](m —fif)gsbdbdednds,  (8)
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The integrand of each of the integrals of the right hand of this equation is
always positive or zero.(!® dH/dT is thus negative or zero, so that H(f) can
never increase. (This is a proof of the H-theorem under these conditions.)
From the definition of H(¢) (Eq. (6)), it can be shownU® that H(¢) is bounded
and approaches a limit for large values of ¢. In this limit, the distribution
functions are such that the integrands of each of the integrals of Eq. (8) are
zero. Hence, at equilibrium,

Infi+ Inf; = Infy + Inf/ )

i.e., the sum of the logarithms of the distribution functions of two molecules
is invariant in a collision. It can be shown that the only such summational
invariants are linear combinations of the mass #;, the momentum m;7;, and
the kinetic energy %mivi. Therefore, at equilibrium, the most general expres-
sion for the logarithm of the distribution function is

infi=am+ 6, (D) + (ot 10)

where a;, 5,-, and c; are constants. .
Chapman and Cowling®"” have shown that a; = n,27/m;c)*2, b; = Hoc,
where ¥y = Zin,-miﬁ,-/ p is the mass’ average velocity, and ¢;=1/kT;
From these expressions/, the usual form of Maxwell’s velocity-distribution
\3/2 -
function, f;=n; (ﬁ%) exp(—m;V}?/2kpT;), is obtained, where V; is the
peculiar velocity, defined as V=13 -1,.
We obtain from Eq. (9)

- - . 1 1
am; + am; + b,‘ . )7’1,'1—)',‘ + bj - m;v; + ciim,-v,? + cjimjvf

- . - . 1 2 1 >
=am; + ajmj + bi . miv,-' + bj . mjvj' + C,'”Z—m,‘l),', + cjimjvj' (1 1)

Using the above expression for l;;, we obtain

- = - 1 2 1 2
v - (cimy¥; + c;myt;) + CizMiv; +¢ 5 MY
12
. -, -, 1 2 1 2 (12)
=7y - (eim¥ + ¢;m;ty) + Ci MY, + €5 M
Conservation of momentum
mv; + mv; = miy’ + myvy) (13)
and conservation of energy
1 l 1 2, 1
S} + =my? = Emiv,f' + ~myf (14)

2 2 2
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can only be satisfied for all collisions if ¢;=c;, ie., if T;= T;. We conclude
that, in the absence of external forces, a spatially-uniform plasma has only a
unique temperature when equilibrium is reached.

2.2. Inclusion of External Forces and Gradients

Differentiating the H-function in the presence of gradients, given by
Eq. (4), with respect to time gives

dH t - = i ﬁy -‘iy —+ 3=
aH@) _ ZH{I + L@, 0 L850 4 g7 (15)
dt 7 ot
which, taking into account the Boltzmann equation (5), and retaining the
gradient and external force terms, becomes

@ - z” [{1 + In[£GF 5, t)]}{;, m (fif} ~fif)gybdbd e dv;

This reduces to Eq. (8) in the absence of external forces and gradients.
However, in the presence of the terms describing external forces and gra-
dients, the distribution function is no longer Maxwellian, and furthermore
the sign of the evolution of H(f) cannot be determined. Nevertheless, when
equilibrium is reached, the functions f; no longer vary with time (if we con-
sider a time scale larger than the duration of a collision), and thus

i _
3 0 17
which implies, from Eq. (15), that
dH(t) _
e 0 (18)

Since the entropy is directly related to the H-function, we can write as a
consequence of Eq. (16) that

5= 3 (st + 57 09

H

where S is the entropy of the whole system, S™ is the entropy related to the
distribution function and exchanges between the different species during
collisions, and S§** is the entropy related to the external forces and gradients.
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From Eq. (18) we obtain:

as

=z =0 20
7 (20)
In equilibrium, therefore, the entropy of the total system, taking into account
external forces and gradients, is stable in time. However, it is not possible to
draw any conclusions about the eyolution of SI™ or ) S in the presence
of external forces or gradients.

2.3. Consequences for the Calculation of Plasma Composition

In the preceding parts of Section 2, we have considered some of the
consequences of statistical mechanics, including Boltzmann’s H-theorem,
for multi-temperature plasma composition calculations. We showed in Sec-
tion 2.1 that it is not possible for plasma species to be at more than one
temperature in an isolated, spatially-uniform system, i.e., in the absence of
external forces or gradients. Further, we demonstrated in Section 2.2 that
when external forces or gradients are taken into account, it is not possible to
draw any conclusions regarding changes in the 1nterna1 entropy SIt of any
species i, or changes in the total internal entropy Z Sint of any plasma.

It follows logically from these two points that it is not possible to draw
conclusions about changes in the internal entropy for any multi-temperature
plasma.

We noted in Section 1 that the two-temperature Saha equation (3)
is obtained using derivations based on maximization of the internal
entropy.%4!® In particular, the derivations of van de Sanden et al.®V and
Chen and Peng,"'® and those of Giordano and Capitelli"!? that give
Eq. (3), are based explicitly on the consideration of a two-temperature
plasma under the condition that dS}**/dt=0. Such derivations are clearly
inconsistent with our conclusions derived from statistical mechanics.

In the following section, we investigate the determination of the plasma
composition using a classical thermodynamic approach that is consistent
with the consequences of the H-theorem.

3. THERMODYNAMIC CALCULATION OF PLASMA
COMPOSITION

In a plasma, the electrons (which we will denote in this section as particle
system 1) gain energy in the electric field, since their mass and consequently
their mobility is higher than those of the heavy particles (which we will de-
note as particle system 2). We can thus say that the plasma system as a whole
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receives energy 6/, mainly through the electrons. For simplicity, we neglect
energy received through the heavy particles; note that including this term
would not affect the results. The electrons subsequently transfer their trans-
lational energy through collisions to the heavy particles, either by exchange
of translational energy (an elastic collision) or through a chemical reaction
such as electron-impact ionization (an inelastic collision). The energy lost
by the electrons through collisions with heavy particles is denoted by 80;.
Since the number of electrons, dN;, varies in chemical reactions, the work,
OL,, due the chemical reactions has to be taken into account. The same types
of energy exchange occur between the heavy particles and the electrons, and
are characterized by 60, and OL,, respectively. Further, the interactions
of the electrons with the heavy particles leads to the emission of energy
80!, to the outside by, for example, bremsstrahlung and other radiative
emission. Similarly, the heavy particles lose energy 60%, by monatomic and
diatomic line radiation, thermal conduction to walls, etc. In addition, the
systems of electrons and heavy particles can exchange work with the outside,
denoted by W™ and SW5™, respectively. Figure 1 shows all the energy
exchanges.

The first law of thermodynamics applied to particle systems 1 and 2
results in:

dU1=5Q1+5L1+5Qim+ 6WFXt+6Wel (2]-)
and
AU, =50, + 6L, + §Q2 + SW (22)

respectively, where U; and U, are respectively the internal energies of particle
systems 1 and 2. It follows that

AU =801+ 80, + 6Ly + 6Ly + 5QL + 8Q% + SW + SW + §Wy

(23)
where dU = dU, + dUs,.
Q% 50;,,
1
7 T

Wy — P 50, 8L, > 00,1,

Fig. 1. Schematic diagram showing the energy ex-
changes between electrons (particle system 1), heavy
species (particle system 2), and the exterior. W oWy

<+
<—
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When the system is stable in time, it can be assumed that the energy
gains are equal to the energy losses so that:

SWa= - 805 - SO - SWP - SW3™ (24)

We then introduce the relations 60; = T} dSf*°" and 6Q, = T, dS5*", where
dSE*" is the entropy change associated with the energy exchanges from the
electrons to the heavy species, and dS$*°" is the entropy change associated
with the energy exchanges from the heavy species to the electrons. The work
performed on the external system is given by W= —p,dV and
SW5*' = —p, dV, where p; and p, are respectively the partial pressure of the
electrons and the heavy species. The chemical work performed on the elec-
tron and heavy particle systems is given by 6L; = 4; dN, and 8L, = i, dN,,
where 1 and 1, are respectively the chemical potentials of the electrons and
heavy particles. Substituting these relations into Eq. (23), and using Eq. (24),
dU can be written as:

dU =T, dS?® + T, dST" + p, dN, + p, dN, (25)
The Helmholtz free energy is given by:
dF = ST 4T\ + ST dT, + p, AN, + i, dN, (26)
Taking Dalton’s law into account, the Gibbs free energy can be written as:
dG = S™" dT + SFM dT, + pu, dN| + l, AN, ~ V dp, - V dp, 27
Immediately we see that, when the system is stable in time:
dU )Sj“",S;“",N,- =(dF) 1, 1,5, = d& g, 1, pn, =0 (28)

This relation is similar to that proposed by Giordano and Capitelli’'*~'? in
their derivation of Eq. (2). It can be shown to lead to the two-temperature
Saha equation in the form of Eq. (2).&'%!9

Taking into account the energy exchanges with the external system at
temperature Ty, and applying Eq. (20), results in:

dsoen = 0 9O | SO | 09" _p

29
Tl TZ Tout Tom ( )

where %Q:E + iTQ:é,“" corresponds to the term ) S, and %% + %921 corre-
sponds to the term Y. SM, in Eq. (19). As we showed in Section 2.2, no
conclusion can be drawn about ¢y, Si"; in particular it cannot be stated
that d )., Si™ = 0, which is the relation used by van de Sanden et al.Mand

Chen and Han'? to derive the two-temperature Saha equation in the form
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of Eq. (3). Potapov'® also erroneously used a similar relation, although he
nevertheless obtained the two-temperature Saha equation in the form of

Eq. (2).

4. CONCLUSIONS

The transport coefficients and the fluid-dynamic equations, which de-
scribe change in thermal plasmas, are derived from the Boltzmann equation.
Tt is therefore particularly important that the composition of the plasma,
which is used in calculating the transport coefficients and the thermodynamic
properties, which are in turn required in the fluid-dynamic equations, is
calculated in a manner consistent with statistical mechanics.

We have shown from a statistical mechanical viewpoint, using an
argument based on the consequences of Boltzmann’s H-theorem, that it is
not possible for multiple temperatures to exist in a plasma in equilibrium in
the absence of external forces or gradients. Using further statistical mechan-
ical arguments, we have shown that when gradients or external forces are
present, the entropy is the sum of the entropy of the plasma system, and
the entropy exchanged with the surrounding external system. It is then not
possible to draw any conclusions about the evolution of plasma system,
only that the entropy of the total system is stable in time when the plasma
is in equilibrium. Such results mean that the assumption that the entropy
of the plasma system reaches a maximum value, which is made by some
authors®!'? in characterizing the equilibrium composition in multi-
temperature plasmas, is inconsistent with statistical mechanics and therefore
invalid. This problem does not affect the derivation of the two-temperature
Saha equation of the form of Eq. (2) given by Prigogine,® or the formula-
tion given by Giordano and Capitelli*'> in their derivation of Eq. (2).

We have further presented a thermodynamic calculation that includes
the exchange of energy between electrons and heavy species, and between
the plasma system and the external system. The calculation shows that
minimization of free energy or internal energy is an appropriate method for
calculating the composition of a multi-temperature plasma that is stable
in time. This result is in accordance with that of Prigogine,” and of the
Giordano and Capitelli®*" derivation of Eq. (2). In a plasma that is not
stable in time, such as that in a sulfur hexafiuoride circuit breaker arc,
chemical equilibrium is not reached, and a kinetic calculation is more likely
to be accurate.
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