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Abstract: For the optimal operation of power-intensive
plants, a challenge which is addressed in this work is to
simultaneously determine the optimal production sched-
ule and the optimal day-ahead electricity commitment. In
order to ensure stability of the power grid, the electricity
suppliers impose a daily electricity commitment to large
consumers. The consumers have to commit one day in ad-
vance to the amount of energy they are going to purchase
and use for a horizon of 24 hours (with an hourly dis-
cretization) and in case the actual electricity consumption
differs significantly from the committed profile, the con-
sumer is obliged to pay penalties. Since the consumers
have to commit to the electricity suppliers before the ac-
tual electricity demand is known, uncertainty needs to
be taken into account. A stochastic mixed-integer linear
programming model is developed to consider two critical
sources of uncertainty: equipment breakdowns and devi-
ation prices. Equipment breakdowns can reduce the pro-
duction capacity andmake the actual electricity consump-
tion deviate from the day-ahead electricity commitment.
The application of the proposed approach to a continuous
power-intensive plant shows the benefit gained from the
solution of the stochastic model instead of the determinis-
tic counterpart in terms of reduction of the cost of the en-
ergy.

Keywords: production scheduling, stochastic program-
ming, demand side management, load deviations

Zusammenfassung: Dieser Beitrag behandelt die
simultane Produktionsplanung und day-ahead-
Strombeschaffung für energieintensive Produktionspro-
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zesse. Umdie Stabilität des Stromnetzes zu gewährleisten,
fragen die Versorger bei großen Verbrauchern einen Tag
im voraus den stündlichen Energiebezug ab und wenn
sich der geplante Verlauf und der reale Verbrauch unter-
scheiden, fallen für den Verbraucher Zusatzkosten an. Bei
der Planung müssen Unsicherheiten über den tatsächli-
chen Produktionsablauf und die Höhe der Zusatzkosten
berücksichtigewerden. Eswird eine gemischt-ganzzahlige
Problemformulierung vorgestellt, bei der Anlagenausfälle
und variierende Zusatzkosten berücksichtigt werden. Die
Anwendung des vorgeschlagenenModells auf ein Beispiel
zeigt, dass sich erhebliche Vorteile aus der Lösung des
stochastischen Modells anstelle einer deterministischen
Formulierung ergeben.

Schlagwörter: Produktionsplanung, stochastische Opti-
mierung, Energie-Abweichungen

1 Introduction
IndustrialDemand-SideManagement (iDSM)hasbeen rec-
ognized as an important means to support the integra-
tion of renewable energy sources into the electricity grid
([23]). The official target of the energy sector in Germany
for the year 2020, as well in other European countries, is
to provide more than 30% of electric power from renew-
ables ([8]). The difficulties of relying on renewable energy
sources are related to the volatile power feed due to the na-
ture of the sources, e. g., wind energy, that are not linked
to the power needs. This effects drastically the electric-
ity price in the spot market and generates supply-demand
mismatches compromising the stability of the power grid.
iDSM is expected to play a crucial role to operate the power
grid in a more efficient way and to cope with the possible
drawbacks of the integration of renewable energy sources.
At the same time, iDSM can create additional profit for
the electricity consumers ([20, 28, 32]). In fact, iDSM can
be viewed from two distinct perspectives: the grid opera-
tor’s perspective and the electricity consumer’s perspec-
tive. The main objective of the grid operator is to increase
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efficiency and ensure stability of the power grid, reducing
electricity demand peaks and quickly reacting to supply-
demandmismatches in the grid. To this aim, the grid oper-
ator defines iDSM programs with financial incentives. On
the other hand, the main objective of the electricity con-
sumer is cost reduction. Therefore, iDSM is a means to ex-
ploit the financial incentives set up by the grid operator
and to adapt the production levels to dynamic market or
supply conditions, e. g., the time-varying electricity prices
coming from the spot market. An overview of advances
and challenges in the area of iDSM can be found in [32].

In this work, we take the standpoint of large electric-
ity consumers whose main objective is to reduce the en-
ergy cost by integrating production scheduling and en-
ergy management. For large consumers of electric power,
the electricity purchase options include different types
of power contracts (Base load, Time-of-Use (TOU)) and
different spot markets (day-ahead market, intra-day mar-
ket, futures market, Over-the-Counter market). Regarding
the day-ahead spot market, one key aspect is the hourly-
varying electricity price due to the varying availability
of renewable energy sources. Therefore, the capability to
adapt the production level to the time-varying price sig-
nals coming from the day-ahead spot market is important
for the energy-intensive industries to reduce the energy
cost. Anumber of contributions on schedulingmodels that
take into account the time-varying electricity price can be
found in the literature ([5, 6, 21]). While the volatility of
the electricity prices constitutes a potential saving for the
electricity consumers, for the grid operator it leads to in-
creased effort to match demand and supply. Therefore, to
ensure the stability of the power grid, the grid operator im-
poses to large consumers adaily day-aheadhourly electric-
ity commitment and in case the actual consumption devi-
ates by more than a small margin from the pre-agreed val-
ues, financial penalties which are often in the same range
as the net electricity cost are incurred. This is known in lit-
erature as the load-deviation problem. In [22], a schedul-
ing solution for electrical load tracking of a steel plant is
proposed. The schedule is defined such that the total elec-
tricity consumption tracks the load curve as closely as pos-
sible while respecting all production constraints. In [13],
the authors take into account multiple electricity sources
(Base load and Time-Of-Use power contracts, day-ahead
market, on-site generation) and the load deviation prob-
lem to determine the optimal production schedule.

However, in these contributions the load commitment
decisions are assumed as given and are not optimized. In
this work, we address the challenge of determining simul-
taneously the optimal day-ahead electricity commitment

and the optimal production schedule. Since decisions re-
garding the electricity commitment have to be made be-
fore the actual electricity demand is known for the time
horizon of interest, it is crucial to account for uncertain-
ties. To this end we adopt our recently proposed approach
([18, 19]), where a stochastic programming formulation [3]
is applied to model uncertainty about the equipment fail-
ures. In this contribution, we extend the results of the pro-
posed approach to a power-intensive plant equipped with
a power plant that can be used to generate electricity and
therefore to reduce the electricity commitment. Moreover
we account for uncertain deviation prices (also called im-
balance prices). In fact the deviation prices are determined
only after the actual electricity consumption occurs, since
only then the electricity grid operator is able to quantify
the cost of reacting to a supply-demand mismatch in the
power grid. It is important to note that usually there is
a correlation between the deviation prices and the day-
ahead market prices: an over/under-consumption during
a demand peak interval is penalized more than during an
off-peak interval.

In the stochastic programming approach, the decision
process is divided in decision stages and the decision vari-
ables are divided into sets that belong to the stages (see
Section 2). In the proposed formulation the first-stage vari-
ables represent the day-ahead electricity commitment de-
cisions and whether the power plant generates electric-
ity. First-stage decisions have to be made at the beginning
of the time horizon and cannot be modified. The second
stage decisions react to the realization of the uncertainty.
Second-stage variables are the plant operating decisions
(production levels, inventories…) and the electricity con-
sumption deviations from the day-ahead commitment.

The remainder of this paper is organized as follows:
in Section 2 the two-stage programming formulation is de-
scribed. In Section 3 the problem statement is presented,
before highlighting the uncertaintymodeling strategy and
the proposed two-stage stochastic MILP in Section 4. The
main results are discussed in Section 5. The results are
presented in terms of the Value of the Stochastic Solution
(VSS) in Section 6 before drawing some conclusions in Sec-
tion 7.

2 Stochastic programming

A stochastic program is a mathematical program (opti-
mization model) where some of the data is uncertain and
can be described by a probability distribution. It is as-
sumed that the random variables have a countable num-

Unauthenticated
Download Date | 11/8/18 6:14 PM



952 | E. Leo and S. Engell, Integrated day-ahead energy procurement

Figure 1:Multi-stage (a) and two-stage (b) stochastic optimization problems represented by scenario trees.

ber of realizations that aremodeled by a discrete set of sce-
narios s = 1, ..., S. In a stochastic program with recourse,
corrective decisions or recourse actions can be taken after
the uncertainty has realized. Each point in time at which a
decision ismade is called a stage. Stochastic programming
was introduced by [3] with a two-stage stochastic formula-
tion. In the two-stage stochastic formulation the decision
maker takes some actions in the first stage, after which un-
certainties affect the outcome of the first-stage decisions.
Recourse decisions can then be made in the second stage
to adapt to the realization of the uncertainty. A typical ex-
ample is the planning of a production or distribution fa-
cility under uncertainty of the future market, and the later
operation according to the real demand. The first stage de-
cisions are optimized under the assumption that recourse
decisions will optimally be adapted in the second stage af-
ter new information has become available. Thus the total
set of n decisions is divided into two groups:
– Decisions that have to be taken before the uncertainty

is realized. These are calledfirst-stage orhere-and-now
decisions and they have to be made at the beginning
and cannot be changed over the decision horizon;

– Decisions that have to be taken after the uncertainty
has been disclosed. These are called second-stage or
wait-and-see decisions and they are a means to react
after the realization of the uncertainty.

In [2] the authors extended the two-stage formulation to
themore generalmulti-stage stochastic formulationwhere
the uncertainty ismodeled by a scenario treewithN stages
that branches at each stage. The decision process pro-
gresses along this scenario tree. In stage i, the decision

is based on the information on the realization of a path
in the tree up to this node whereas the future evolution
is only known probabilistically. The decisions at stage i
are optimized under the assumption that the later deci-
sions are optimally adapted to the information which be-
comes available after the realization of the uncertainty [9].
Figure 1 shows the scenario-tree representation for multi-
stage (1a) and two-stage (1b) stochastic problems. To solve
multi-stage problems, at stage i the reaction of the al-
gorithm to the information obtained at later stages must
be taken into account, leading to large-scale optimization
problems. A large-scale linear or convex non-linear multi-
stage programwith continuous variables can be efficiently
solved by applying decomposition algorithms such as La-
grange decomposition ([12]), Progressive hedging ([26]),
Benders decomposition also called L-shaped method ([2])
and Generalized Benders decomposition ([11]).

2.1 Two-stage stochastic integer
programming

When integrality requirements are present, a stochastic
program is called Stochastic Mixed-Integer Program (SIP).
For linear models and a scenario-based representation of
uncertainties, a deterministic equivalent of a two-stage
stochastic integer program (2-SSIP) canbe stated as the fol-
lowing mixed-integer linear program (MILP) (1):

min
x,ys f (x, ys) = c

Tx +
S
∑
s=1ϕsq

T
s ys (1a)

s. t. Ax ≤ b (1b)
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Tsx +Wsys ≤ hs (1c)
x ∈ X, ys ∈ Y , s = 1, ..., S (1d)

The objective of a two-stage stochastic mixed-integer
linear program Eq. (1a) consists of the first-stage cost and
of the expected value of the second-stage cost. The first-
stage cost and the second-stage costs are calculated as
linear combination of the first-stage variables x and the
second-stage variables ys with cost parameters c and qs.
The expected value of the second-stage costs is calculated
by the sum over all the scenarios of the second-stage costs
weighted by the corresponding probabilities ϕs. The con-
straints are divided into two groups: the constraints of the
first stage Eq. (1b) are related only to the first-stage deci-
sions, the constraints of the second-stage Eq. (1c) include
variables of the first-stage and of the second-stage. A and
b describe the first-stage parameters and Ts,Ws, hs repre-
sent the parameters of each scenario s of the second-stage.
When a solution of the first stage x is always feasible in
the second-stage, the stochastic problem has complete re-
course. The first-stage variables x and the second-stage
variables ys belong to the polyhedral setsX andY . Both the
setsX andY canpresent integer requirements. In case only
the polyhedral set X of the first-stage variables x presents
integer requirements, the 2-SSIPs can be efficiently solved
applying the decomposition algorithms mentioned above
([17, 14]). This class of problems are called stochastic prob-
lems with continuous recourses. When the polyhedral set
Y of the second-stage variables y presents integer require-
ments, the problems are called stochastic problems with
integer recourses and the solution becomes harder since
decomposition approaches such as Benders decomposi-
tion cannot be directly applied. More sophisticated algo-
rithms were developed to derive valid and tight cuts for
Benders-like approaches ([27, 31]) or to close the duality
gap of Lagrangean relaxation for Lagrange-like algorithms
([4, 15]). Recent advances on the solution of stochastic in-
teger problems can be found in ([16]).

2.2 Risk-averse optimization

Considering the expected value of the second-stage cost
implies that the realizations of the random parameters
have no qualitatively different effect. This however is not
always true: even a low probability of large losses may
not be acceptable. A remedy is to integrate the concept of
risk into the optimization problem.Different riskmeasures
have been presented in the literature: Value-at-Risk (VaR),
downside risk, Conditional Value-at-Risk (CVaR) [24]. We
adopt here the CVaR, since it is a coherent risk measure

(it preserves convexity). Since the definition of CVaR relies
on the concept of VaR, it is worth to first introduce the def-
inition of VaR. Let us consider that X is a random variable
with themeaning of loss. VaRα is defined as themaximum
loss that will not be exceeded at a given confidence level α
(with α ∈ (0, 1)) [29]. An equivalent interpretation of VaRα
is the α-quantile of the distribution of the random variable
X. Eq. (2) shows the mathematical definition of VaRα

VaRα(X) := min{c : P(X ≤ c) ≥ α} (2)

Although VaR is a very popular measure of risk (for in-
stance in financial applications), it has undesirable prop-
erties such as non-convexity. CVaR is an alternative mea-
sure of risk, with more attractive mathematical properties
[30]. CVaR is defined as the expected loss, conditional on
the fact that the loss exceeds the VaR at the given confi-
dence levelα. Themathematical definitionof CVaR is given
by Eq. (3).

CVaRα(X) := E[X | X ≥ VARα(X)] (3)

CVaR is a coherent risk measure and it is more conserva-
tive than VaR. Most importantly, CVaR can be expressed
by a minimization formula proposed in [25] and shown by
Eqs. (4)–(5).

CVaRα(X) = min
ψ

Fα(X,ψ) (4)

Fα(X,ψ) = ψ +
1

1 − α
E[(X − ψ)+] (5)

where E[⋅] is the expectation and (X −ψ)+ = max{0;X −ψ}.
ψ takes the value of VaRα when the CVaRα is computed by
the above formula. Eqs. (4)–(5) can be formulated as linear
constraints in an optimization problemand this provides a
computationally efficient way of integrating the CVaR into
optimization problems as shown in Section 4.2.8.

2.3 The value of the stochastic solution

The value of the stochastic solution (VSS)measures the ad-
vantage of using a two-stage stochastic program over us-
ing the deterministic counterpart where the stochastic pa-
rameters havebeen replacedby theirmeanvalues. In other
words, it measures the advantage of accounting for the un-
certainty and taking into account the recourse decisions.
The VSS and the relative VSS are defined by Eqs. (6)–(7).

VSS = z∗EEV − z∗2SSIP (6)

VSS =
z∗EEV − z∗2SSIP

z∗EEV (7)
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where z∗2SSIP is the optimal solution of the multistage
stochastic problem and z∗EEV is the optimal solution of the
stochastic problem with first-stage variables obtained by
the optimal solution of the deterministic problem where
the stochastic parameters have been replaced by their
mean values.

In risk-averse optimization, the objective is to mini-
mize a weighted sum of the expected cost and a measure
of risk, e. g., the CVaR. Then the VSS and the relative VSS
are defined by Eqs. (8)–(9).

VSS = η(z∗EEV − z∗2SSIP) + (1 − η)(CV∗EEV − CV∗2SSIP) (8)

VSS =
η(z∗EEV − z∗2SSIP) + (1 − η)(CV∗EEV − CV∗2SSIP)

ηz∗EEV + (1 − η)CV∗EEV (9)

where η is a scalar coefficient that the decision maker can
tune to assign priorities to the expected cost and to the risk
measure.

3 Problem statement

We consider a continuous power-intensive plant that can
produce a given set of products with a known and fixed
demand. Inventory capacities are considered andproducts
can be purchased on themarket at given costs. The operat-
ing cost consists of the electricity cost and the cost of pur-
chasing additional products.

Electricity can be purchased from the day-ahead mar-
ket at an hourly-varying electricity price or can be pro-
duced internally at a constant generation cost and a start-
up cost. To purchase electricity from the day-aheadmarket
the plant has to commit a day in advance to the amount of
electricity that will be used for a period of 24 hours.

The goal is to optimize simultaneously the production
scheduling and the electricity commitment. Uncertainty
in equipment breakdowns and deviation prices is consid-
ered. In the proposed approach, the here-and-now deci-
sions in each time period of the scheduling horizon are:
– the mode of operation of the production plant,
– the mode of operation of the power plant,
– the day-ahead electricity commitment.

The wait-and-see decisions are:
– the plant operating conditions: production rates,
– the amount of product purchased,
– the resulting inventory levels,
– the load deviations from the day-ahead electricity

commitment.

4 The 2-SSIP formulation

4.1 Modeling of the uncertainty

To integrate day-ahead electricity commitment and pro-
duction scheduling, we propose a two-stage stochas-
tic programming approach [3]. We model two crucial
sources of uncertainty: equipment breakdowns and devi-
ation prices. Three different levels of uncertainty – low,
medium, and high – are considered for each source of un-
certainty. For the equipment breakdown uncertainty, the
low, medium and high levels represent 10, 30 and 50 per-
cent reduction of the maximum plant production capac-
ity. The production capacity reduction is modeled by 8
breakdown scenarios: in scenario 1 no breakdown occurs,
whereas in scenarios 2–8 a breakdown occurs in periods
1–4,...,22–24. The probabilities are 50% for scenario 1 and
(50/7)% for scenarios 2–8. So there is a set of breakdown
scenarios, SB, with probabilities ϕB and cardinality equal
to 8 (|SB| = 8). Similarly, we define a set of equiprobable
deviation price scenarios, SP, with probability ϕP and car-
dinality |SP |. For the deviation prices uncertainty, we con-
sider three levels of uncertainty – low, medium, and high,
that represent variations of 10, 30 and 50 percent around
the expected values. Each pair of breakdown scenario and
penalty price scenario represents a general scenario swith
probability equal to ϕs = ϕB ∗ ϕP.

When deviation price uncertainty is considered, each
scenario corresponds to a time series of devation prices
for each time period of the scheduling horizon. The devia-
tion price is assumed to be proportional to the day-ahead
electricity price. Monte Carlo simulation was applied to
generate 1000 scenarios. The large number of scenarios is
required to accurately characterize the uncertainty, since
the uncertain parameter (deviation price) can change over
time. However the large number of scenarios may render
the optimization problem computationally intractable. To
reduce the number of scenarios and, at the same time, pre-
serving the main features of the uncertainty, we applied
the scenario reduction technique proposed in [7]. The re-
duction algorithms defines a probability distance to trade
off scenario probabilities and distances of scenario val-
ues. Deletionwill occur if scenarios are close or have small
probabilities. In this work, we applied the forward reduc-
tion method implemented in the scenario reduction func-
tion SCENRED in GAMS [10]. We reduced the number of
scenarios to 40 (|SP | = 40). As an example, the deviation
price profiles and the expected deviation price profile for
the medium uncertainty level are shown in Figure 2. Fu-
ture works will adopt more complicated price prediction
models, e. g., ARIMA models. We refer the reader to [1] for
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Figure 2: Random deviation price profiles associated with the
medium uncertainty level.

a reviewof tools of price forecasting,which is not the focus
of this work.

4.2 MILP formulation

To demonstrate the potential of the proposed approach,
we apply it to a continuous production plant. The plant is
the same as in [33]. In the proposed mathematical formu-
lation, here-and-now decisions have no scenario subscript
and wait-and-see decisions have the scenario subscript s.
The indices, sets, parameters, and variables used in the
MILP formulation are listed in the Nomenclature section.

Nomenclature

Indices

i products
t, t耠 time periods
m,m耠 operating modes
s scenarios
j vertices of the plant operating region

Sets

I products
T time periods
M operating modes
S scenarios

Parameters

vmjis amount of product i produced at vertex j
of modem in scenario s [kg]

θm,m�,t minimum stay time in mode m after
switching from modem耠 [h]

δm constant electricity consumption in mode
m [kWh]

γmi electricity consumption coefficient for
production of product i in mode m
[kWh/kg]

IVmax
it , IVmin

it upper and lower bounds of the inventory
level of product i at time period t [kg]

IV initial
i , IV final

i initial and final inventory level of product
i [kg]

ym,initial active operating mode at the beginning of
the time horizon

Dit demand of product i at time period t [kg]
EPPmax upper bound of the electricity generation

[kWh]
cg electricity generation cost [e/kWh]
cs start-up cost of the electricity generation

plant [e]
ky reduction coefficient of electricity genera-

tion during start-up
rmin, dmin minimum runtime and minimum down-

time of the electricity generation plant [h]
pday−aheadt day-ahead electricity price for time period

t [e/kWh]
ϕs probability of scenario s
p+st , p−st deviation price for over- and under-

electricity consumption at time period t
in scenario s [e/kWh]

pi purchasing price of product i [kg]
α quantile for the definition of the risk mea-

sure CV
η scalar parameter to define objectives pri-

orities

Continuous variables

PDits amount of product i produced at time t in
scenario s

PDmits amount of product i produced at time t in
modem in scenario s

λmits coefficients for vertex j of the operating re-
gion inmodem at timeperiod t in scenario
s

EUts total electricity consumption at time t in
scenario s
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IVits inventory levels of product i at time t in
scenario s

SLits amount of product i sold at time t in sce-
nario s

PWits amount of product i wasted at time t in
scenario s

PCits amount of product i purchased at time t in
scenario s

EPPts electricity generated at time t in scenario
s

yPPt 1 if the electricity generation plant is
started-up at time t (pseudo-continuous
variable)

ESt day-ahead electricity commitment at time
t

δe+ts, δe−ts electricity over-consumption and under-
consumption at time t in scenario s

z total expected cost
z weighted sum of the total expected cost

and the CVaR
CVaR conditional value at risk
ψ, ζs continuous variables to define CVaR

Binary variables

ymt 1 if the operating modem is active in time
period t

zm,m�,t 1 if transition frommodem to modem耠 oc-
curs at time t

xPPt 1 if the electricity generation plant is oper-
ating at time t

4.2.1 Plant model

The plant produces two products i (P1 and P2) and it can
operate in three different modes m: off, startup, and on.
The amount of product i produced in time period t of sce-
nario s is denoted by PDits and it is defined by Eq. (10) as
the sum over all the operatingmodes of the variable PDmits
that denotes the amount of product i produced in time pe-
riod t for mode m of scenario s. For each mode, the oper-
ating conditions are expressed as a convex combination
of the extreme points vmjis of the feasible region of oper-
ation (Eq. (11)). The vertices of the polyhedral feasible re-
gions of eachmode are listed in Table 1 and Figure 3 shows
the polyhedral feasible region of mode on for the nomi-
nal case without equipment breakdown and for different
breakdown levels. The binary variable ymt is 1 if mode m
is selected in time period t of the horizon T. Eq. (12) forces

Table 1: Vertices associated with each operating mode of the plant
in the nominal case with no breakdown.

Mode Vertex P1 [kg] P2 [kg]

Off 1 0 0
Startup 1 5 5
On 1 10 10
On 2 50 10
On 3 30 40
On 4 70 40

Figure 3: Polyhedral operating region of mode on with different
uncertainty levels (the low, medium and high levels represent 10,
30 and 50 percent reductions of the maximum plant production
capacity).

the sum of the coefficients of the convex combination of
the extreme points vmjis to be equal to 1 if the related mode
m is active in time period t or equal to 0 in case it is not
active in time period t. Eq. (13) ensures that only onemode
is active for each time period t. The possible mode transi-
tions are off to startup, startup to on, and on to off and they
canhappenonly after fixedperiods of time, θmm�, that have
been spent in themodes (off : 8 h, startup: 2 h, on: 6 h). The
binary variable zmm�,t takes valueof 1 if andonly if theplant
switches frommodem to modem耠 in time period t. This is
enforced by Eq. (14). Eq. (15) restricts the plant to remain
in a certain mode m耠 for an amount of time equal to θmm�
after the transition from mode m. Eq. (16) defines the to-
tal amount of electricity consumed in time period t and
scenario s, EUts, as the sum over the operating modes of a
fixed term δm (if themodem is active) and a linear function
of the hourly production PDmits. The electricity consump-
tion coefficients for each mode of operation are shown in
Table 2.

PDits =∑
m
PDmits ∀i, t ∈ T , s (10)
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Table 2: Electricity consumption coefficients for each operating
mode.

Mode δm [kWh] γP1 [kWh/kg] γP2 [kWh/kg]

Off 0 0 0
Startup 500 0 0
On 800 20 30

PDmits =∑
j
λmjts ∗ vmjis ∀i, t ∈ T , s,m ∈ M (11)

∑
j
λmjts = ymt ∀t ∈ T , s (12)

∑
m
ymt = 1 ∀t ∈ T (13)

∑
m� zm�m,t−1 −∑m� zmm�,t−1 = ymt − ym,t−1 ∀m, t ∈ T (14)

θmm�
∑
k=1 zmm�,t−k ≤ ym�t ∀(m,m耠) ∈ M, t ∈ T (15)

EUts =∑
m
(δm ∗ ymt +∑

i
γmi ∗ PDmits)

∀t ∈ T , s (16)

Note the binary variables ymt , zmm�,t are here-and-now deci-
sions, while the production levels PDmits,PDits and the en-
ergy consumption EUts arewait-and-see decisions that can
be optimally adapted to information that becomes avail-
able.

4.2.2 Inventory balance

The products that are produced by the plant can be stored
and Eq. (17) defines for each scenario s the inventory level
IVits of product i at time t as the sum of the inventory level
of product i at time period t − 1 and the production level
of product i at time t, PDits, minus the amount of product
i sold, SLits, and the amount of product i wasted, PWits, at
time period t. Note that all these variables arewait-and-see
variables and they are defined for each scenario s. Eq. (18)
sets upper and lower bounds of the inventory levels and
Eq. (19) ensures that the demand of product i, defined as
the sum of the amount of product i sold, SLits, and the
amount of product i purchased from other sources, PCits,
is satisfied. Lower and upper bounds for the inventory lev-
els and the product demand values are listed in Table 3.

IVits = IVi,t−1,s + PDits − SLits − PWits ∀i, t ∈ T , s (17)

IVmin
it ≤ IVits ≤ IV

max
it ∀i, t ∈ T , s (18)

SLits + PCits = Dit ∀i, t ∈ T , s (19)

Table 3: Upper bounds and lower bounds of the inventory levels.

IVmin/IVmax [kg] IVinit/IVfin [kg] Dt

P1 600/6000 1000/1000 60
P2 300/3000 500/500 35

4.2.3 Initial and final conditions

Eqs. (20)–(21) provide the initial condition of the plant
in terms of inventory levels and active operating mode.
Eq. (22) imposes a terminal constraint for the inventory lev-
els of product i. Eq. (23) provides information regarding
the mode switching before the time of horizon of interest.

IVi,0,s = IV initial
i ∀i, s (20)

ym,0 = ym,initial ∀m (21)

IVi,tfinal ,s ≥ IV final
i ∀i, s (22)

zmm�,t = zinitialmm�t ∀(m,m耠) ∈ M,−θmax + 1 ≤ t ≤ −1 (23)

4.2.4 On-site generation

The production plant is equipped with a power plant for
the on-site generation of electric power. The binary vari-
able xPPt takes the value of 1 at time period t if and only if
the power plant generates electricity at time period t. An
auxiliary pseudo-continuous variable yPPt indicates start-
up of generation: the pseudo-continuous variable yPPt is
equal to 1 at time period t if the power plant is started up at
time period t. This is enforced by Eqs. (24–25). Eqs. (26–27)
define a minimum runtime rmin and a minimum down-
time dmin. The amount of electricity generated by the
power plant at time period t in scenario s is defined by the
continuous variable EPPts . Eq. (28) defines the upper bound
of the electricity generation levels and reduces the electric-
ity generation levels by a factor ky for time period t when
start-up occurs. Eq. (29) defines the total electricity gener-
ation cost cPPts at time period t in scenario s as a linear func-
tion of the generation level at time period t in scenario s,
EPPts , with an additional constant cost c

s for the time period
t when the power plant is started up. The parameters re-
lated to the electricity generation are listed in Table 4. The
efficiency of a conventional power plant usually depends
nonlinearly on the generation level. However, to avoid a
mixed-integer nonlinear formulation, it is common prac-
tice to linearize the power plant efficiency within the plant
operating region.

xPPt − x
PP
t−1 ≤ yPPt ≤ xPPt ∀t ∈ T (24)
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Table 4: On-site generation parameters.

cg [e/MWh] 50
rmin [h] 2
dmin [h] 2
cstartup [e] 50
ky [%] 20

0 ≤ yPPt ≤ 1 − x
PP
t−1 ∀t ∈ T (25)

t+rmin−1
∑
t�=t xPPt� ≥ rmin ∗ (xPPt − xPPt−1) ∀t < |T| − rmin (26)

t+dmin−1
∑
t�=t xPPt� ≤ dmin ∗ (1 + xPPt − xPPt−1) ∀t < |T| − dmin (27)

EPPts ≤ E
PP
max ∗ x

PP
t − ky ∗ E

PP
max ∗ y

PP
t ∀t ∈ T , s (28)

cPPts = c
g ∗ EPPts + c

s ∗ yPPt ∀t ∈ T , s (29)

4.2.5 Day-ahead electricity commitment

The plant can purchase electricity from the day-ahead
market. The day-ahead electricity commitment at each
time period t is defined by the continuous variable ESt .
Eq. (30)–(31)–(32) define for each time period t the day-
ahead electricity commitment ESt, the electricity over-
consumption δe+ts and the electricity under-consumptions
δe−ts. Electricity over-consumption and electricity under-
consumption are the load deviations respect to the day-
ahead electricity commitment and therefore defined as
the difference between the actual consumption of elec-
tric power, EUts, the day-ahead commitment ESt and the
amount of electricity generated on-site EPPts . No upper and
lower bounds are set for the over-consumption and under-
consumption of electric power. Since the plant has to com-
mit itself to the amount of energy to be purchased for a pe-
riod of 24 hours one day before the actual electricity con-
sumption is realized, electricity commitment decisions are
first-stage variables and load deviations are second stage
variables.

EUts − ESt − E
PP
ts = δe

+
ts − δe

−
ts ∀t ∈ T , s (30)

δe+ts ≥ 0 ∀t ∈ T , s (31)
δe−ts ≥ 0 ∀t ∈ T , s (32)

4.2.6 Objective function

The expression of the objective function differs for the case
of risk-neutral and risk-averse optimization. In the case of

risk-neutral optimization themodelminimizes the total ex-
pected operating cost; in the case of risk-averse optimiza-
tion the objective function is the weighted sum of the total
expected operating cost and the riskmeasure adopted, the
CVaR in our formulation.

4.2.7 Risk-neutral optimization

The model minimizes the total expected operating cost, z,
defined by Eq. (33) as the sum of the first-stage cost and
the expected second-stage cost. The first-stage cost is the
cost of purchasing electricity from the day-ahead market
at the hourly-varying day-ahead electricity price. For each
scenario s the second-stage cost consists of the sum of the
cost of loaddeviation, the cost of on-site electricity genera-
tion and the cost of purchasing of products on the market.

z =∑
t
(pday−aheadt ∗ ESt +∑

s
ϕs ∗ (p

+
st ∗ δe

+
ts+

+ p−st ∗ δe−ts + cPPts +∑
i
pi ∗ PCits)) (33)

where pday−aheadt , p+st , p−st , pi represent the day-ahead elec-
tricity price, the penalty cost for over consumption and
under consumption and the product purchasing prices;ϕs
denotes the probability of scenario s.

4.2.8 Risk-averse optimization

For risk-averse optimization, the model minimizes the
weighted sum of the total expected cost and the CVaR, z,
defined by Eq. (37). The scalar parameter η ∈ [0, ..., 1] al-
lows the decision maker to prioritize the two objectives.
According to [25], the CVaR for the quantile α can be de-
fined by the linear constraints in Eqs. (34)–(35)–(36).

CVaR = min
ψ,ζs {ψ + (1 − α)−1∑s ϕs ∗ ζs} (34)

∑
t
(pday−aheadt ∗ ESt + p

+
st ∗ δe

+
ts + p

−
st ∗ δe

−
ts + c

PP
ts

+∑
i
pi ∗ PCits) − ψ ≤ ζs∀s (35)

ζs ≥ 0 (36)
z = η ∗ z + (1 − η) ∗ CVaR (37)

where ψ, ζs are continuous variables and ϕs denotes the
probability of scenario s. Eqs. (35)–(36) impose that for
each scenario s in which the total cost is greater than ψ,
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Figure 4: Illustrative example.

the variable ζs takes the value of the difference between
the total cost and ψ; otherwise ζs takes the value of zero.
Note that the variable ψ takes the value of VaRα when the
CVaR is minimized.

5 Discussion
Before presenting the results of the proposed case-study,
it is worth to analyze the simplified situation depicted
in Figure 4. Here a constant electricity commitment of
100 kWh for 6 time periods is shown by a blue line. The ac-
tual electricity consumption occurring after the realization
of the equipment breakdown is represented by a dashed
black line. The difference between the electricity commit-
ment and the electricity consumption defines the load
deviations. In particular the red block shows the under-
consumption of electric power due to the reduction of the
plant production capacity and the orange block shows the
over-consumption of electric power which is necessary to
restore the inventory level or to fulfill demand satisfaction
constraints. The green dashed line shows how the load
deviation costs can be reduced. It represents an electric-
ity commitment profile that decreases the electricity de-
viations in the case the decision maker was aware of the
breakdown realization: the electricity commitment (and
therefore the production level) is lowered to reduce the
under-consumption and after the breakdown realization it
is increased to reduce the over-consumption. Clearly, the
larger the area of the red block that is cut off by the elec-
tricity commitment profile, the larger is the reduction of
the electricity deviation cost. The stochastic approach fol-
lows this idea by defining an optimal electricity commit-

Figure 5: Electricity purchase profiles obtained from solving the
deterministic model with medium uncertainty level. Black line: day-
ahead price of electric power.

Figure 6: Electricity purchase profiles obtained solving the risk-
neutral stochastic model with medium uncertainty level.

ment (first-stage variable) under the assumption that load
deviations are optimally adapted to the realization of the
uncertainty and that the realization of the uncertainty is
only known probabilistically.

The same explanation is valid for the results of the
case-study shown in Figures 5–6. Here the electricity pur-
chase profiles and the on-site electricity generation pro-
files that were obtained solving the deterministic model
and the risk-neutral stochastic model with medium uncer-
tainty level are depicted. TOU and base load profiles repre-
sent the amount of energy purchased from the power con-
tracts. TOUand base load profiles are supposed to be given
and therefore not optimized since contract related deci-
sions have to bemade before the time horizon of interest (1
week before for the TOU contract and 1 year before for the
base load contract). Note that start-up/shut-downdecision
regarding the power plant are first-stage decisions, but the
hourly electricity generation levels are second-stage deci-
sions. The generation profiles shown are the expected val-
ues computed over all the scenarios.
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Figure 7: Expected under-consumption obtained solving the deter-
ministic model and the risk-neutral stochastic model with medium
uncertainty level.

The comparison between the stochastic and determin-
istic solutions shows the impact on the day-head electric-
ity commitment and on the on-site generation strategy
(first-stage variables) of accounting for the other scenar-
ios besides the expected one. In the deterministic solution
(Figure 5) the electricity is purchased from the day-ahead
market exclusively according to the day-ahead electricity
price and the on-site generation plant produces electricity
when the on-site generation cost is lower than the electric-
ity price: during off-peak periods (e. g., 3–6 h) the amount
of electricity purchased (red bars) is increased in order to
increase the production level and to reduce the electricity
purchase during periods of peak prices (at 9–10 h and 20–
21 h). During these price-peak intervals the power plant is
started up to provide electricity to the production plant
(green bars). The energy consumption and therefore the
production are shifted to time intervals when the electric-
ity price is lower. The stochastic solution defines the elec-
tricity commitment not only according to the electricity
price and the on-site generation cost but also accounting
for possible breakdown scenarios. The stochastic solution
(Figure 6) reduces the electricity over-consumption by in-
creasing the amount of electricity purchased during the
time intervals when production capacity is still available
and the deviation price is convenient. On the other hand,
the stochastic solution minimizes the under-consumption
due to the equipment breakdown reducing the energy
commitment and increasing the on-site electricity gener-
ation (e. g., at 18 and 22 h). In fact, in the stochastic solu-
tion the power plant operates longer in order to accom-
modate for the breakdown scenarios. Figures 7–8 show
the expected under-consumption and the expected over-
consumption obtained by solving the deterministic model
and the risk-neutral stochasticmodel. Note that the under-
consumption and the over-consumption are second-stage
variables and therefore different for each scenario.

Figure 8: Expected over-consumption obtained solving the deter-
ministic model and the risk-neutral stochastic model with medium
uncertainty level.

Figure 9: Electricity purchase profiles obtained solving the risk-
averse stochastic model with medium uncertainty level.

Figure 9 shows the electricity purchase profiles and
the on-site electricity generation profiles obtained by solv-
ing the risk-averse stochastic model with medium uncer-
tainty level. The risk-averse solution, compared to the risk-
neutral solution (Figure 6), increases the on-site electric-
ity generation level, even when the electricity price de-
creases (e. g., 4–5 h), in order to avoid high cost scenar-
ios.

6 Results
Tomeasure the improvement that can be achieved by solv-
ing the stochasticmodel instead of the deterministic coun-
terpart, we compute the value of the stochastic solution
(VSS). Table 5 shows the VSS for different levels of uncer-
tainty obtained when solving the risk-neutral and the risk-
averse optimization. Here, |SB| and |SP | denote the number
of breakdown scenarios and deviation price scenarios. As
described in Section 4.1, the number of breakdown scenar-

Unauthenticated
Download Date | 11/8/18 6:14 PM



E. Leo and S. Engell, Integrated day-ahead energy procurement | 961

Table 5: Value of the stochastic solution for different levels of uncertainty.

|SB| σB |SP | σP VSS [e] VSS [%] VSS [e] (risk-averse) VSS [%] (risk-averse)

40 Low 13 0.4 35 1.0
8 Low 40 Medium 23 0.8 76 2.3

40 High 30 0.9 98 2.7
40 Low 38 1.1 131 3.6

8 Medium 40 Medium 93 2.7 278 7.5
40 High 125 3.5 351 9.1
40 Low 79 2.2 272 7.13

8 High 40 Medium 210 5.7 570 13.8
40 High 265 7.0 671 15.5

ios is equal to 8 (|SB| = 8) and the number of penalty price
scenarios is equal to 40 (|SP | = 40). Note that since both
the uncertainty sources are considered, the total number
of scenarios is equal to |SP | ∗ |SB| = 320.

It can be seen from Table 5 that the VSS can be quite
significant and that it grows with the level of uncertainty.
There is benefit from accounting for uncertainty for a con-
tinuous plant equipped with a power plant. In the case
of low breakdown rate, the plant is able to compensate
the reduction of production capacity with the product in-
ventory. Therefore the VSS is small. For the case of high
breakdown level scenarios the plant might have to pur-
chase the products from other sources in order to fulfill
the demand satisfaction constraints. Note that because of
the possibility to purchase products from other sources
(and because of the absence of upper bounds for the elec-
tricity deviation variables), the problem is a stochastic
problem with complete recourse, since for any choice of
the first-stage variables (even for no electricity commit-
ment) the second-stage constraints can always be satis-
fied.

Table 5 compares the VSS obtained considering the
risk-neutral objective function and the risk-averse objec-
tive function. We choose η equal to 0.5 (Eq. (37)) to assign
equal weights to the total expected profit and the CVaR.
The confidence level α at which the CVaR is defined is
equal to 0.9 (Eq. (34)). It is evident that accounting for risk
can lead to a significant added value.

Each model has approximately 255.000 continuous
variables, 233 binary variables, and 163.000 constraints.
All models were solved to zero integrality gap in less than
60 s on an Intel(R) Core(TM) i7-4790 machine at 3.60GHz
with eight processors and 16GB RAM. All models were im-
plemented in GAMS 24.7.4 (GAMS Development Corpora-
tion, 2015), and the MILPs were solved applying the com-
mercial solver CPLEX 12.6.3.0.

7 Conclusion
This work addresses the integrated day-ahead electric-
ity commitment and production scheduling for power-
intensive processes. A two-stage stochastic programming
approach has been proposed to face the uncertainty in the
decision process since the electricity consumers have to
commit to the amount of energy they are going to pur-
chase from the power grid before the actual electricity de-
mand is known. AMILP formulation has been proposed to
model a continuousproductionplant andanon-site power
plant. Theapplicationof theproposedapproach shows the
benefit from accounting for uncertainty to solve the inte-
grated day-ahead electricity commitment and production
scheduling problems. Different sources of uncertainty and
different levels of uncertainty have been analyzed. Future
workswill apply theproposedapproach tobatchprocesses
what renders the optimization problemmuch harder since
the solution of a batch scheduling problem is needed to
evaluate the second-stage cost for each scenario. To this
aim the design of advanced decomposition strategies able
to exploit the problem structure will be investigated.
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