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ABSTRACT

The importance of automatic drum transcription lies in

the potential to extract useful information from a musical

track; however, the low reliability of the models for this

task represents a limiting factor. Indeed, even though in

the recent literature the quality of the generated transcrip-

tion has improved thanks to the curation of large training

datasets via crowdsourcing, there is still a large margin of

improvement for this task to be considered solved. Aiming

to steer the development of future models, we identify the

most common errors from training and testing on the afore-

mentioned crowdsourced datasets. We perform this study

in three steps: First, we detail the quality of the transcrip-

tion for each class of interest; second, we employ a new

metric and a pseudo confusion matrix to quantify different

mistakes in the estimations; last, we compute the agree-

ment between different annotators of the same track to es-

timate the accuracy of the ground-truth. Our findings are

twofold: On the one hand, we observe that the previously

reported issue that less represented instruments (e.g., toms)

are less reliably transcribed is mostly solved now. On the

other hand, cymbal instruments have unprecedented rel-

ative low performance. We provide intuitive explanations

as to why cymbal instruments are difficult to transcribe and

we identify that they represent the main source of disagree-

ment among annotators.

1. INTRODUCTION

Automatic Music Transcription (AMT) is a particularly

important task in music information retrieval because it

provides access to many high-level features of a musical

track, such as its structure, melody, and rhythm. A subtask

of AMT is automatic drum transcription in the presence of

melodic instruments (DTM), which focuses on the estima-

tion of the onsets of drum sounds and the identification of

what drum instruments play them. In this article, we focus

on DTM and specifically on the transcription of drum and

cymbal sounds.
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Recently, Zehren et al. presented a DTM algorithm,

which we refer to as “ADTOF-based” algorithm, based on

supervised learning from abundant crowdsourced annota-

tions [1]. Thanks to the size and diversity of the datasets,

the algorithm surpasses the accuracy of the previous state-

of-the-art [2]. However, the resulting models are still not

perfect, as their estimations contain mistakes. In this work,

we carefully investigate these state-of-the-art algorithms,

aiming to identify the most common sources of errors.

We evaluated the models in two distinct conditions: (i)

when the training and the testing take place on different

datasets (out-of-domain), and (ii) when they take place on

the same dataset (on-domain). In the first case, the model

is not expected to achieve perfect accuracy because of gen-

eralization errors that can be attributed to differences be-

tween testing and training data. In the second case, testing

on-domain, the errors are more concerning as they suggest

flaws in the algorithm; in fact, if the dataset were large

enough, the model would be expected to learn the data

distribution and therefore achieve nearly perfect accuracy.

Thus, in this study we focus specifically on the most com-

mon errors that arise in the latter case. This was done in

three steps, as described in the following.

First, in order to identify the most difficult instruments

to transcribe, we independently evaluated the performance

of the models on the different instrument classes. When

trained and evaluated on (a different split of) the crowd-

sourced datasets, we observed that the models can reliably

transcribe those instruments that play less often, some-

thing that in previous studies was arguably problematic to

achieve. On the flip side, we also observed that the models

do not transcribe cymbals as precisely as drums.

Second, to understand why cymbals are problematic,

we employed both a new metric, which we named "octave

F-measure", and a pseudo confusion matrix. Through the

new metric, we identified that the models often mistook the

beat subdivision at which cymbals are played. Specifically,

the rhythm estimated is often half or double the speed of

the ground truth (e.g., eighth notes are estimated instead of

quarter notes). Through the pseudo confusion matrix, we

showed that different kinds of cymbals are hard to discern.

Finally, we assessed how much the quality of crowd-

sourced annotations affected the evaluated performance of

the models. Due to discrepancies in the labels, some of

the correct estimations from the models could have been

mistakenly reported as errors. To estimate the accuracy of

the ground truth itself, we quantified the agreement among
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different annotators of the same tracks. Any difference in

the annotations of two or more annotators indicates that at

least one of them made a mistake; this, in turn, leads to a

harsher evaluation of the models than needed.

The remainder of this article is organized as follows:

Previous works on the evaluation of DTM algorithms is

presented in Sec. 2; in Sec. 3 the transcription accuracy

of each class is evaluated, and in Sec. 4 different sources

of errors are quantified; finally, the accuracy of the anno-

tations is estimated in Sec. 5, conclusions are drawn in

Sec. 6.

2. RELATED WORKS

Automatic drum transcription has evolved from a single,

complex task into a series of intermediary steps of in-

creasing difficulty. This evolution facilitated the devel-

opment of new and more efficient algorithms [3]. Pre-

viously, the transcription was limited to simplified audio

tracks or constrained vocabulary sizes. However, recent

progress made through approaches based on supervised

deep learning (DL) has been so significant that it becomes

realistic to tackle such a complex task as the non-simplified

DTM. The development of DL algorithms focused on two

aspects: First, better and more complex architectures are

exploited to improve the capabilities of the models, most

recently with the introduction of the self-attention mech-

anism by Vaswani et al. [4] which has been adapted for

DTM (e.g., [1, 5]). Second, better training procedures are

employed to tune the models, e.g., with the creation of new

datasets [1, 2, 6–9].

The de facto method to measure the accuracy of these

DTM algorithms, as suggested by the Music Informa-

tion Retrieval Evaluation eXchange (Mirex) [10], is the F-

measure (also known as F1 score). This metric is computed

with the harmonic mean between precision and recall of

the drum onsets: An onset is considered correct when its

estimation is within a small distance from the ground truth.

A distance between 20 ms to 50 ms is what is generally

used, but it can be tuned depending on the precision of

the ground truth [1, 11]. Moreover, the F-measure can be

computed at different levels of granularity: from a single

class and track to the overall result for a whole dataset. To

average multiple tracks and classes, the F-measure can be

either computed as the mean value (mean F-measure) or

by joining tracks and classes as if they were part of the

same file and instrument (sum F-measure). In this study,

we rely on the latter because it is more robust to rare edge

cases (e.g., a track or class with very few onsets) [12, p.23].

However, since the F-measure gives the same importance

to all onsets regardless of their position (i.e., strong or

weak beats) or dynamics (loudness), this metric does not

necessarily capture the opinion of human listeners [6].

Besides the F-measure, other tools are also used to as-

sess a transcription. For example, Callender et al. used lis-

tening tests “where raters compared synthesized transcrip-

tions to original recordings” to estimate the perceived qual-

ity of the transcriptions [6]. Vogl et al. relied on confusion

matrices adapted to multi-label classification to identify the

errors performed by their model [2]. Ishizuka et al. pro-

posed a “tatum-level error rate based on the Levenshtein

distance” [5].

Besides questions related to metric issues, the results

of an evaluation are also heavily impacted by the datasets

used for testing. There are a handful of datasets suitable

for DTM which we group into the following three cate-

gories. A thorough description of the datasets is provided

by Zehren et al. [13].

• Small but accurate datasets, which have been

mostly annotated by hand by their creators, such as

RBMA [14], ENST [15], or MDB [16].

• Large but synthetic datasets, synthesized from MIDI

files to generate the input audio, such as TMIDT [2].

• Large but inaccurate datasets, which have been an-

notated by a crowd of people and refined algorithmi-

cally, such as ADTOF-RGW [17], ADTOF-YT [1],

or A2MD [9].

To choose which datasets to use for testing, we singled

out two criteria: First, the characteristics of the datasets

(their data distribution) constitute the distribution in which

the model is evaluated and should ideally be representative

of a real-world situation. For example, testing can be done

on different musical genres [1,2], real-world or synthesized

audio [5], or different mixtures of instruments (e.g., audio

containing four or five sound sources) [18,19]. Second, the

test dataset may be part of the training dataset or be a new

one, never used during training. The latter is known as an

out-of-domain evaluation and, although more challenging,

gives a better approximation of the true performances of

the model (i.e., its generalization capabilities) [1, 20].

3. CLASS-SPECIFIC RESULTS

In this section, we compare the F-measures for different

classes (set of instruments), to identify the most difficult

instruments to transcribe for a model when trained in dif-

ferent ways. For this purpose, we selected the “Frame

self-att” deep-learning architecture, as it has been recently

employed for drum transcription [1], and compared three

existing training procedures: 1) training on TMIDT with

refinement on ENST, MDB, and RBMA [2]; 2) training on

ADTOF-RGW [17]; and 3) training on ADTOF-RGW and

ADTOF-YT [1]. 1

We evaluated the resulting models on a set of

five datasets (RBMA, ENST, MDB, ADTOF-RGW, and

ADTOF-YT), to be representative of a real-world situ-

ation and to include both on-domain and out-of-domain

evaluations. These datasets were carefully mapped to a

common vocabulary containing five classes: bass drum

(BD), snare drum (SD), toms (TT), open and closed hi-

hat (HH), and other cymbals (CY). For the sake of brevity,

in Fig. 1 we only present the results of the tests on ENST

and ADTOF-YT, as these are representative of the tests on

all five datasets.

1 The models are available at github.com/MZehren/ADTOF
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SUM BD SD TT HH CY
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0.8
1.0

F

Test on ENST

SUM BD SD TT HH CY
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0.2
0.4
0.6
0.8
1.0

F
Test on ADTOF-YT

Trained on TMIDT and refinement on ENST, MDB, and RBMA
Trained on ADTOF-RGW
Trained on ADTOF-RGW and ADTOF-YT

Octave F
Previous work

Figure 1: F-measure for the individual classes when testing on ENST (top) and ADTOF-YT (bottom).

First, we analyzed the results on ENST (top) to assess

if and to what extent our results are close to those of the

original authors of the three existing training procedures.

Notably, our reproduction of pre-training on TMIDT with

refinement on the non-crowdsourced datasets by Vogl et

al. (blue bars) is slightly ahead when compared to their

original work (whose results are indicated by the dotted

lines inside the blue bars) [2, p.6]. Due to the fact that

the evaluation was performed on a vocabulary larger than

what we used in our test, a comparison for all instruments

was not possible. The little improvement of our model in

transcribing the instruments that can be directly compared

(BD, SD, TT, and HH) is an indication that we were suc-

cessful in reproducing the original algorithm. The repro-

duction of training on only ADTOF-RGW (orange bars) is

also slightly better than the results reported [17, p.823] (in-

dicated by the dotted lines inside the orange bars). We at-

tribute this improvement to adopting a more random sam-

pling procedure, something that helped train the models;

indeed, compared to the previous work where consecu-

tive (back to back) sequences were drawn between mul-

tiple occurrences of the same track, we sampled randomly

the datasets (i.e., random track and position, without re-

placement), thus creating a more homogeneous training.

Finally, although the reproduction of training on ADTOF-

RGW and ADTOF-YT (green bars) cannot be compared

on the class-specific results since they were not previ-

ously reported, our model achieved virtually the same sum

F-Measure. Namely, when testing on ENST, the model

trained on the two ADTOF datasets matches the perfor-

mance of the model trained on ENST. Thus, ADTOF-based

training, as it allows generalization towards ENST, does

not overfit models.

Second, we analyzed the results achieved on ADTOF-

YT (bottom) to highlight the potential of this dataset. The

model achieved a very high F-measure on ADTOF-YT

when training on both ADTOF datasets [1] (green bars),

and almost a perfect score for BD, which is surprising

considering that this dataset includes the fastest tempi and

the densest sequences of onsets, which intuitively are fea-

tures that hinder transcription. However, we noted that

such a high performance is achieved only when ADTOF-

YT is part of the training data, which means that the other

datasets generalize poorly to it. The fact that only ADTOF-

YT attains such a high accuracy both on-domain and out-

of-domain may be explained by its large size and the ho-

mogeneity of its acoustic and drum patterns (due to the bias

toward the metal music genre).

Third, although training and testing on ADTOF-YT

yields the highest on-domain performance, we observed

that the model has an atypical distribution of performance.

In contrast to the usual result where the less represented in-

struments are less reliably transcribed (e.g., TT when train-

ing and testing on ENST), which is due to a lack of training

examples, here, the model performs worse on frequently

playing instruments. In fact, most of the mistakes of the

model concern the transcription of cymbals (HH and CY).

4. ERRORS IN THE ESTIMATIONS

To identify why the transcription of cymbals is prone to

mistakes, we quantified the errors made by the model when

training and testing on ADTOF-YT. Note that this part of

the study is not interested in the generalization capabili-

ties of the model, but in assessing how well it can learn

the target data distribution when training on it. We analyze

the errors of the model with two tools: First, we approxi-

mated the number of errors due to quiet notes, also known

as ghost notes, in the dataset with the octave F-measure.

Second, we quantified the confusion between the instru-

ments with a pseudo confusion matrix.
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4.1 Octave F-measure

We attribute the low performance for cymbals, after con-

ducting a preliminary inspection of the estimations, to both

a specific characteristic of their timbre —long sustain that

may mask the next onset and the presence of many quiet

notes. 2 Both features make cymbals very challenging to

transcribe and their transcription suffers from false nega-

tives and false positives.

As a first step toward solving this problem, we created

a new metric meant to quantify how often the presence of

quiet notes leads to transcription mistakes. Unfortunately,

because ADTOF-YT does not contain reliable velocity in-

formation in the annotations, we could not estimate the

presence of quiet notes through velocity. Therefore, we

started with an assumption from the expert knowledge ac-

cording to which, in many music genres, cymbals are com-

monly played in alternation between loud (accentuated)

and quiet notes. 3 This insight is in agreement with our

observation that errors in the estimations are often rhythms

that are half or double the speed of the ground truth, so that

the algorithm would transcribe a sequence of quarter notes

where it should be an eighth note or vice versa. Assum-

ing that this mismatch is due to quiet notes, we created the

octave F-measure to allow rhythms that are exactly half or

double the speed of the annotations (white bars in Fig. 1).

A parallel can be drawn with tempo estimation that uses

the “accuracy2” metric which is defined to accept estima-

tions that have a double or triple relationship with ground

truth, disregarding ipso facto the so-called octave tempo er-

rors [21]. The octave F-measure gives us an upper bound

of the performance of the models if these mistakes were not

present in the estimation and the ground truth, and helps us

quantify the issues yet to be solved in the algorithms.

When looking at the octave F-measure on ADTOF-YT,

we confirm the presence of undetected annotations exactly

at the middle point between two estimations, and the pres-

ence of extra estimations exactly at the middle point be-

tween two annotations. This phenomenon is more com-

mon in cymbals than in any other instrument of the drum

kit and it is observed in most of the datasets. In other

words, the models are mistaking the beat subdivision at

which cymbals occur, a problem we attribute to their spe-

cific timbre and alternation between loud and quiet notes.

4.2 Confusion Between Classes

To identify typical errors made by the model on ADTOF-

YT, we employed the pseudo confusion matrix represented

in Fig. 2. Compared to a standard confusion matrix, ours

differs in two aspects: First, since in AMT any time po-

sition may contain multiple labels—different instruments

play simultaneously—the possible sets of labels, instead

of each single class, are uniquely listed in the rows and

2 SD also contains many quiet notes, but not to the same extent as HH
and CY in this dataset.

3 An illustration of this phenomenon can be viewed in the ENST
dataset: Notice how every second HH onsets sounds quieter in
the example video "Drummer 3, Angle 1" https://perso.

telecom-paristech.fr/grichard/ENST-drums/
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HH

BD
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TT
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, 
CY

SD
, 
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SD
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SD
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, 
SD
, 
CY

Estimations

BD
SD
HH
TT
CY

BD, SD
BD, HH
BD, TT
BD, CY
SD, HH
SD, CY

BD, SD, HH
BD, SD, CY
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ou
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 T
ru
th

15 23 20 19 9

87

25 63

32 58

13 78
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28 47 9

14 55 21

29 57

15 6 71

75 10

6 10 71

7 54 20

8 74

Figure 2: Pseudo confusion matrix on ADTOF-YT. The

numbers represent a percentage of the ground truth.

columns of the matrix. 4 As uniquely identifying sets of

labels leads to a large matrix (25 columns and rows with

five classes), we truncated the figure for readability to show

only the most frequent columns and rows. Second, to re-

move the imbalance between classes, we normalized the

rows (i.e., the rows sum up to 100%). Thus, rather than

displaying the count of each set of labels, we represented

their proportion relative to the number of occurrences of

the ground truth.

We categorize the errors (i.e., the cells outside of the

diagonal) in three types following Vogl’s approach [2]: i)

confusion, when the onset is detected but the label is wrong

(false positives with false negatives); ii) masking, when

an onset is missing, presumably because of another one,

correctly detected, hides it (false negatives with true posi-

tives); iii) excitement where an extra onset is detected, pre-

sumably because another one, correctly detected, generates

excitement (false positives with true positives). Addition-

ally, another cause of mistakes, which we do not consider

in this study, might be related to the low number of occur-

rences of some combinations of labels (e.g., BD and SD

played at the same time), which makes them more difficult

to estimate for the model. In Fig. 2, we identified three

trends.

First, the left-most column shows that CY, HH, and SD

are missing ≈ 30% of the time when they play alone; at the

same time, the bottom row highlights that they are incor-

rectly estimated 10 − 20% of the time when there should

be no instrument playing. Surprisingly, this common is-

sue cannot be categorized as due to confusion, masking, or

4 In practice, since onsets that slightly deviate from the correct position
are considered simultaneous, the confusion matrix was created by using
an agglomerative clustering that group onsets with a tolerance of 50 ms.
As a side effect, we do not count the true negatives (i.e., positions without
onsets: ∅ in the ground truth and estimation).
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excitement. Instead, we attribute these two phenomena to

the presence of quiet notes for those three instruments, as

already commented in Section 4.1.

Second, when looking at the intersection of the rows

containing HH with the equivalent columns containing

CY, such as the cell in the row “BD, HH” and column

“BD, CY”, we notice that HH is often confused with CY.

Similarly for the intersection of the rows containing CY

with the equivalent columns containing HH, we observe

that CY is often confused with HH. Again, this highlights

that similar-sounding instruments are misinterpreted, as al-

ready identified by Vogl [2]. However, looking specifically

at the rows “CY” and “HH”, we notice that CY and HH are

less often confused with each other when they occur in iso-

lation. Thus, we conclude that confusion is exacerbated by

the presence of other instruments, likely because of their

masking effects.

Lastly, the second column highlights that TT and SD

are both missed ≈ 30% of the time when they appear with

BD. Presumably because BD’s wide spectral range masks

the other instruments’ spectra, this illustrates that masking

seems to be very prevalent on ADTOF-YT. Excitation, on

the other hand, is not a common issue compared to mask-

ing or confusion. We only notice the presence of an extra

CY onset 9% of the times that “BD, SD” occurs.

In addition to the Octave F-measure that illustrates how

the model misjudges the beat subdivision at which cymbals

are played, the confusion matrix shows that the model does

not differentiate well the cymbals. However, one might

wonder why these issues are prevalent on ADTOF-YT and

not the other datasets.

5. ANNOTATIONS ACCURACY

To understand why the model is prone to make mistakes

specifically with ADTOF-YT, we took a closer look at the

accuracy of its annotations. Both the datasets ADTOF-

RGW and ADTOF-YT are crowdsourced; since human

annotations are not perfect and annotators do not always

agree with each other, we expect mistakes in the datasets.

While a cleansing/cleaning procedure was employed to im-

prove the time position of the annotations and to remove la-

bel ambiguity [1, p.784], it is not realistic to expect that all

mistakes will be corrected. Although DL is generally ro-

bust to label noise [22], incorrect labeling might affect the

models during training and testing, especially with crowd-

sourced datasets that likely contain more mistakes than

non-crowdsourced ones. Specifically during testing, any

error in the annotations is indistinguishable from wrong

estimations of the models and impacts their evaluation.

Therefore, by assessing the accuracy of the annotations, it

is possible to estimate an upper bound of the performance

of the models tested on the dataset. As this bound corre-

sponds to the score achieved by a perfect classifier, it can

show how far the current models are from this ideal.

To estimate the annotations’ accuracy on a dataset and

create a ground truth of high confidence, it is common to

compare labels provided by independent annotators on the

same data and measure the confidence of the annotations,

SUM BD SD TT HH CY
0.00

0.25

0.50

0.75

1.00

F

0.87 0.9 0.95 0.89
0.73

0.83

Duplicated tracks between ADTOF-RGW and ADTOF-YT

SUM BD SD TT HH CY
0.00

0.25

0.50

0.75

1.00

F

0.98 1.0 1.0 0.99 0.95 0.98
Duplicated tracks in ADTOF-YT

Figure 3: Box plots representing the distribution of the

F-measure on tracks present both in ADTOF-RGW and

ADTOF-YT (top) and on duplicated tracks in ADTOF-YT

(bottom).

for example by grouping multiple independent annotations

into a single set (e.g., [23, p.7], [24], [25, p.255]). Fur-

ther, by comparing this ground truth with a new (group of)

annotator(s), one can estimate either the ground truth accu-

racy or the human-level accuracy depending on how much

one trusts the reference group (e.g., [23, p.7 and 31], [26]).

In our context, similarly to what Flexer and Grill [27] did

in their work, we aim to estimate an upper limit of the

score achievable on the datasets by assessing the agree-

ment among human annotators.

To do so, we rely on the tracks that appear multiple

times and are annotated by different persons in the datasets.

After aligning two instances of the same track according to

their annotations, we were able to compute the agreement

between the annotators the same way we evaluate any al-

gorithmic estimation: By taking either set of annotations

as the reference and the other one as the estimation, we

can then compute the F-measure. Note that the results do

not depend on which annotator is used as the reference:

By switching the annotator used as the reference, preci-

sion and recall are also switched, without impacting the

F-measure. The distribution of the F-measure for all the

tracks found both in ADTOF-RGW and ADTOF-YT (34

couples, 4h28min) and duplicated in ADTOF-YT (7 cou-

ples, 34min) is shown in Fig. 3. There are no duplicated

tracks within ADTOF-RGW.

On the one hand, the annotations in duplicated tracks

of ADTOF-YT are almost identical, whereas they differ

between ADTOF-RGW and ADTOF-YT. This is an indi-

cation that the annotators of ADTOF-YT agree more of-

ten with themselves than with the annotators of ADTOF-

RGW. In turn, this is a sign that the annotations of ADTOF-

YT are very accurate. If that is the case, then the models

we evaluated on ADTOF-YT are far from perfect, as they

do not achieve results close to the inter-rater agreement.

However, we acknowledge that this trend is only supported

by seven couples of tracks and further investigation is re-

quired to claim that this dataset contains so few errors.
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On the other hand, the median agreement between an-

notators of ADTOF-RGW and ADTOF-YT is very similar

to the best model’s sum F measure on ADOTF-YT (0.87

for the annotators Fig. 3 compared to 0.85 for the model

Fig. 1). This suggests that the model performs as well

as the annotators of ADTOF-RGW on ADTOF-YT. More-

over, this trend holds for the majority of the classes. Most

notably, both the annotators and the model manifest diffi-

culties with the discrimination between HH and CY (low-

est agreement and performance). Similarly to the models

in the previous sections, we attribute these human errors

both to the fact that one instrument is mistaken for the

other because of their similar timbre, and to the use of dif-

ferent rhythms because of the presence of quiet notes. See

Fig. 4 (top) showing the disagreement between two anno-

tators as an illustration of both phenomena. Although it is

not clear if these discrepancies are part of ADTOF-RGW,

ADTOF-YT, or both, they impact negatively the measure

of the model performance. However, we noticed that the

agreement between annotators is much lower than the per-

formance of the model on BD (0.90 for the annotators com-

pared to 0.97 for the model). This is due to the presence of

simplified annotations in ADTOF-RGW. As represented in

Fig. 4 (bottom), these simplifications are meant to ease the

gameplay when a double bass drum technique is required

(i.e., bass drum notes played with both feet) by omitting

the notes played by the left foot. Despite such simplifica-

tions, the model still manages to achieve a high F-measure

when testing on ADTOF-YT, which does not contain sim-

plified annotations.

Although data is not enough to determine accurately an

upper limit to the performance of the models, we believe

that the agreement we measured among annotators is a rea-

sonably good guess. Because it is not possible to know

which of the annotators made a mistake (possibly both),

the discrepancies between them do not always impact the

measure of the model’s performance, making this estima-

tion pessimistic. 5 However, considering that the best per-

formance we achieve on ADTOF-YT is close to the agree-

ment among humans, it is intuitive that any improvement

of the model beyond this point will not be easily measur-

able. In other words, this model is not far from a perfect

classifier on this dataset.

6. CONCLUSIONS

In this work, we analyzed the performance of a state-of-

the-art model for automatic drum transcription [1]. First,

through the F-measure for the individual classes, we iden-

tified that ADTOF-YT is the only dataset able to train a

model to such a high level of accuracy on its data distribu-

tion. In this context, when training and testing on ADTOF-

YT, the transcription is: almost perfect for the bass drum

(BD), better than previous methods for the sparse class of

tom-toms (TT), but less reliable for cymbals. Second, to

understand why cymbals are more difficult to transcribe,

5 In the hypothetical scenario where each disagreement is caused by
only one of the annotator making a mistake, the discrepancies will affect
the evaluation only 50% of the cases.
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Figure 4: Spectrograms and annotations from ADTOF-

RGW and ADTOF-YT for the first 10s of two tracks. No-

tice the confusion and the use of different subdivisions be-

tween CY and HH (top), as well as the simplification of

the BD for fast rhythms (bottom).

we used a new metric we named Octave F-measure as

well as a pseudo confusion matrix. We then concluded

that what hinders the cymbals’ transcription is their typical

accentuated-note/quiet-note pattern and their similar tim-

bre to each other. Last, because the test data has been an-

notated by many people with different levels of expertise,

we aimed to quantify the errors due to discrepancies in the

ground truth rather than to mistakes made by the model.

By estimating the accuracy of the annotations through the

agreement between multiple annotators of the same tracks,

we identified that the human-level accuracy is on par with

the performance of the model. Thus, it is not clear whether

the differences between the estimations and annotations

originate from the model or the annotators, even though

their causes are the same.

With this study, we quantified the main difficulties faced

by the model or the annotators. The errors caused by the

cymbals could be the focus of future research in ADT,

which we believe could be tackled in one of two ways: Ei-

ther existing annotations could be verified, possibly via a

semi-automatic method relying on the estimation of a pre-

trained model to detect likely errors, or complementary

training data could be generated, possibly in a synthetic

way, to ensure a perfect ground truth.
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