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ABSTRACT

Current generative models are able to generate high-

quality artefacts but have been shown to struggle with com-

positional reasoning, which can be defined as the ability

to generate complex structures from simpler elements. In

this paper, we focus on the problem of compositional rep-

resentation learning for music data, specifically targeting

the fully-unsupervised setting. We propose a simple and

extensible framework that leverages an explicit composi-

tional inductive bias, defined by a flexible auto-encoding

objective that can leverage any of the current state-of-art

generative models. We demonstrate that our framework,

used with diffusion models, naturally addresses the task

of unsupervised audio source separation, showing that our

model is able to perform high-quality separation. Our find-

ings reveal that our proposal achieves comparable or supe-

rior performance with respect to other blind source sepa-

ration methods and, furthermore, it even surpasses current

state-of-art supervised baselines on signal-to-interference

ratio metrics. Additionally, by learning an a-posteriori

masking diffusion model in the space of composable rep-

resentations, we achieve a system capable of seamlessly

performing unsupervised source separation, unconditional

generation, and variation generation. Finally, as our pro-

posal works in the latent space of pre-trained neural audio

codecs, it also provides a lower computational cost with

respect to other neural baselines.

1. INTRODUCTION

Generative models recently became one of the most im-

portant topic in machine learning research. Their goal is

to learn the underlying probability distribution of a given

dataset in order to accomplish a variety of downstream

tasks, such as sampling or density estimation. These mod-

els, relying on deep neural networks as their core architec-

ture, have demonstrated unprecedented capabilities in cap-

turing intricate patterns and generating complex and real-

istic data [1]. Although these systems are able to generate

impressive results that go beyond the replication of training

data, some doubts have recently been raised about their ac-
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tual reasoning and extrapolation abilities [2, 3]. Notably, a

critical question remains on their capacity to perform com-

positional reasoning. The principle of compositionality

states that the meaning of a complex expression is depen-

dent on the meanings of its individual components and the

rules employed to combine them [4, 5]. This concept also

plays a significant role in machine learning [6], with a par-

ticular emphasis in the fields of NLP and vision. Indeed,

compositionality holds a strong significance in the inter-

pretability of machine learning algorithms [7], ultimately

providing a better understanding of the behaviour of such

complex systems. In line with recent studies on composi-

tional inductive biases [8, 9], taking a compositional ap-

proach would allow to build better representation learn-

ing and more effective generative models, but research on

compositional learning for audio is still lacking.

In this work, we specifically focus on the problem of

compositional representation learning for audio and pro-

pose a generic and simple framework that explicitly targets

the learning of composable representations in a fully unsu-

pervised way. Our idea is to learn a set of low-dimensional

latent variables that encode semantic information which

are then used by a generative model to reconstruct the in-

put. While we build our approach upon recent diffusion

models, we highlight that our framework can be imple-

mented with any state-of-the-art generative system. There-

fore, our proposal effectively combines diffusion models

and auto-encoders and represents, to the best of our knowl-

edge, one of the first contributions that explicitly target the

learning of unsupervised compositional semantic represen-

tations for audio. Although being intrinsically modality-

agnostic, we show that our system can be used to per-

form unsupervised source separation and we validate this

claim by performing experiments on standard benchmarks,

comparing against both unsupervised and supervised base-

lines. We show that our proposal outperforms all unsu-

pervised methods, and even supervised methods on some

metrics. Moreover, as we are able to effectively perform

latent source separation, we complement our decompo-

sition system with a prior model that performs uncondi-

tional generation and variation generation [10]. Hence,

our method is able to take an audio mixture as input, and

generate several high-quality variations for one of the in-

strumental part only, effectively allowing to control regen-

eration of a source audio material in multi-instrument se-

tups. Furthermore, we train a masking diffusion model in

the latent space of composable representation and show

1037



that our framework is able to handle both decomposition

and generation in an effective way without any supervi-

sion. We provide audio examples, additional experiments

and source code on a supporting webpage 1

2. BACKGROUND

In this section, we review the fundamental components of

our methodology. Hence, we briefly introduce the prin-

ciples underlying diffusion models and a recent variation

rooted in autoencoders, referred to as Diffusion Autoen-

coder [11], which serves as the basis for our formulation.

Notation. Throughout this paper, we suppose a dataset

D = {xi}ni=1 of i.i.d. data points xi ∈ R
d coming from

an unknown distribution p∗(x). We denote θ ∈ Θ ⊆ R
p,

ϕ ∈ Φ ⊆ R
q and ψ ∈ Ψ ⊆ R

r as the set of parameters

learned through back-propagation [12].

2.1 Diffusion models

Diffusion models (DMs) are a recent class of generative

models that can synthesize high-quality samples by learn-

ing to reverse a stochastic process that gradually adds noise

to the data. DMs have been successfully applied across

diverse domains, including computer vision [13], natural

language processing [14], audio [15] and video genera-

tion [16]. These applications span tasks such as uncondi-

tional and conditional generation, editing, super-resolution

and inpainting, often yielding state of the art results.

This model family has been introduced by [17] and has

its roots in statistical physics, but there now exist many

derivations with different formalisms that generalise the

original formulation. At their core, DMs are composed of

a forward and reverse Markov chain that respectively adds

and removes Gaussian noise from data. Recently, [18] es-

tablished a connection between DM and denoising score

matching [19, 20], introducing simplifications to the origi-

nal training objective and demonstrating strong experimen-

tal results. Intuitively, the authors propose to learn a func-

tion ϵθ that takes a noise-corrupted version of the input and

predicts the noise ϵ used to corrupt the data. Specifically,

the forward process gradually adds Gaussian noise to the

data x → xt according to an increasing noise variance

schedule β1, . . . , βT , following the distribution

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

with T ∈ N and t ∈ {1, . . . , T}. Following the nota-

tion αt = 1 − βt and ᾱt =
∏t

s=1 αs, diffusion mod-

els approximate the reverse process by learning a function

ϵθ : R
d × R→ R

d that predicts ϵ ∼ N (ϵ,0, I) by

min
θ∈Θ

Et,x0,ϵ

[

∥ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)− ϵ∥

]

, (2)

with ϵθ usually implemented as a U-Net [21] and the step

t ∼ U [0, T ].
Deterministic diffusion. More recently, [22] intro-

duced Denoising Diffusion Implicit Models (DDIM), ex-

tending the diffusion formulation with non-Markovian

1 https://github.com/ismir-24-sub/unsupervised_

compositional_representations

modifications, thus enabling deterministic diffusion mod-

els and substantially increasing their sampling speed. They

also established an equivalence between their objective

function and the one from [18], highlighting the generality

of their formulation. Finally, [23] further generalized this

approach and proposed Iterative α−(de)Blending (IADB),

simplifying the theory of DDIM while removing the con-

straint for the target distribution to be Gaussian. In fact,

given a base distribution 2 pn(x0), we corrupt the input

data by linear interpolation xα = (1 − α)x0 + αx with

x0 ∼ pn(x0) and learn a U-Net ϵθ by optimizing, e.g.,

min
θ∈Θ

Eα,x,x0

[

∥ϵθ(xα, α)− x∥22
]

, (3)

with α ∼ U [0, 1]. This is known as the c variant of IADB,

which is the closest formulation to DDIM. In our imple-

mentation, we instead use the d variant of IADB, which

has a slightly different formulation that we do not report

for brevity. We experimented with both variants and did

not find significant discrepancies in performances.

Diffusion Autoencoders. All the methods described in

the preceding paragraph specifically target unconditional

generation. However, in this work we are interested in

conditional generation and, more specifically, in a condi-

tional encoder-decoder architecture. For this reason, we

build upon the recent work by [11] named Diffusion Au-

toencoder (DiffAE). The central concept in this approach

involves employing a learnable encoder to discover high-

level semantic information, while using a DM as the de-

coder to model the remaining stochastic variations. There-

fore, the authors equip a DDIM model ϵϕ with a semantic

encoder Eθ : Rd → R
s with s ≪ d that is responsible for

compressing the high-level semantic information 3 into a

latent variable z ∈ R
s as z = Eθ(x). The DDIM model

is, therefore, conditioned on such semantic representation

and trained to reconstruct the data via

min
θ∈Θ,ϕ∈Φ

Et,x0,ϵ

[

∥ϵϕ(
√
αx0+

√
1− αϵ, z, t)−ϵ∥

]

(4)

with α =
∏t

s=1(1 − βs) and βi being the variance at the

i−th step. Since the DiffAE represents the state of the art

for encoder-decoder models based on diffusion, we build

our compositional diffusion framework upon this formula-

tion, which we describe in the following section.

3. PROPOSED APPROACH

In compositional representation learning, we hypothesize

that the information can be deconstructed into specific,

identifiable parts that collectively makes up the whole in-

put. In this work, we posit these parts to be distinct instru-

ments in music but we highlight that this choice is uniquely

dependent on the target application. Due to the lack of a

widely-accepted description of compositional representa-

tions, we formulate a simple yet comprehensive definition

that can subsequently be specialized to address particular

2 For simplicity we assume pn(x0) = N (x0;0, I).
3 In the domain of vision this could be the identity of a person or the

type of objects represented in an image.
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Figure 1. The overall architecture of our decomposition model. We first mix the sources, map the data x to the latent space

through a frozen, pre-trained EnCodec model, and then decompose it into a set of latent variables (two shown here). These

variables then condition a parameter-sharing diffusion model whose generation are then recomposed by an operator C.

cases [24, 25]. Specifically, we start from the assumption

that observations x ∈ R
d are realizations of an underlying

latent variable model and that each concept is described by

a corresponding latent zi ∈ Zi, where i ∈ {1, . . . , N}
with N being the total number of possible entities that

compose our data. Then, we define a compositional rep-

resentation of x as

x = C(ẑ1, . . . , ẑN ) = C(f1(z1), . . . , fN (zN )), (5)

where C : Ẑ1 × Ẑ2 × . . . ẐN → R
d is a composition op-

erator and each fi : Zi → Ẑi is a processing function that

maps each latent variable to another intermediate space.

By being intentionally broad, this definition does not im-

pose any strong specific constraints a priori, such as the

requirement for each subspace to be identical or the alge-

braic structure of the latent space itself. Hence, to imple-

ment this model, we rather need to consider careful inten-

tional design choices and inductive biases. In this work,

we constrain the intermediate space to be the data space

itself, i.e. Ẑi = R
d for all i = 1, . . . , N and we focus

on the learning of the latent variables and the processing

functions. Finally, we set the composition operator to be

a pre-defined function such as mean or max and leave its

learning to further investigations.

3.1 Decomposition

In this section, we detail our proposed model, as depicted

in Figure 1. Globally, we follow an encoder-decoder

paradigm, where we encode the data x ∈ R
d into a set

of latent representations Z = {z1, . . . , zN}, where zi ∈
Z ⊆ R

h for each i = 1, . . . , N . This is done through an

encoder network Eθ : R
d → Z×· · ·×Z that maps the in-

put x to the set of variables Z, i.e. [z1, . . . , zN ] = Eθ(x).
Each latent variable is then decoded separately through a

parameter-shared diffusion model, which implements the

processing function f : Z → R
d in Equation 5, mapping

the latents to the data space. Finally, we reconstruct the

input data x through the application of a composition op-

erator C and train the system end-to-end through a vanilla

iterative α−(de)Blending (IADB) loss. Specifically, we

learn a U-Net network gϕ : Rd × R × R
h → R

d and a

semantic encoder Eθ via the following objective

min
θ∈Θ,ϕ∈Φ

Eα,x,x0

[

∥ĝϕ(xα, α)− x∥22
]

, (6)

with α ∼ U [0, 1], x0 ∼ N (x0;0, I) and

ĝϕ(xα, α) = C(gϕ(xα, α, z1), . . . , gϕ(xα, α, zN )), (7)

with xα = (1−α)x0+αx and [z1, . . . , zN ] = Eθ(x). We

chose the IADB paradigm due to its simplicity in imple-

mentation and intuitive nature, requiring minimal hyper-

parameter tuning.

At inference time, we reconstruct the input by progres-

sively denoising an initial random sample coming from the

prior distribution, conditioned on the components obtained

through the semantic encoder.

A note on complexity. We found that using a single

diffusion model proves effective instead of training N sep-

arate models for N latent variables. Consequently, we

opt for training a parameter-sharing neural network gϕ.

Nonetheless, the computational complexity of our frame-

work is therefore N times that of a single DiffAE.

3.2 Recomposition

One of our primary objectives is to endow models with

compositional generation, a concept we define as the abil-

ity to generate novel data examples by coherently re-

composing distinct parts extracted from separate origins.

This definition aligns with numerous related studies that

posit compositional generalization as an essential require-

ment to bridge the gap between human reasoning and com-

putational learning systems [26]. In this work, we allow

for compositional generation by learning a prior model in

the components’ space. Specifically, once we have a well-

trained decomposition model Dθ,ϕ = (Eθ, gϕ) we learn a

diffusion model in Z in order to obtain a full generative

system. We define z = [z1, . . . , zN ] = Eθ(x) and train

a IADB model to recover z from a masked view z̃. At

training time, with probability pmask, we mask each latent

variable zi with a mask mi ∈ {0, 1}dim(Z) and optimize

the diffusion model ϵψ by solving

min
ψ∈Ψ

Eα,z,z0,m[∥z− ϵψ(zα, α,m)∥2], (8)
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Algorithm 1 Training prior model

Input: dataset D, U-Net ϵψ , pre-trained semantic en-

coder Eθ, masking probability pmask, learning rate γ.

while not converged do

for x in D do

z = [z1, . . . , zN ] = Eθ(x).
Sample α ∼ U [0, 1] and z0 ∼ N (0, I).
z̃α = (1− α)z0 + αz

Draw m ∈ {0, 1}dim(Z)×···×dim(Z)

zα = z̃α ⊙m+ (1−m)⊙ z

L(ψ, z, α,m) = ∥z− ϵψ(zα, α,m)∥2
Update ψ ← ψ − γ∇ψL(ψ, z, α,m)

end for

end while

Return: ϵψ

where zα = z̃α⊙m+(1−m)⊙z and z̃α = (1−α)z0+αz.

Here, z0 ∼ N (z0;0, I) and z̃α denotes the α-blended

source z. At each training iteration we randomly mask

z̃α via m and train the diffusion model ϵψ to recover the

masked elements given the unmasked view z. Our mask-

ing strategy allows for dropping each latent separately as

well as all the latents simultaneously, effectively leading

to a model that is able to perform both conditional and

unconditional generation at the same time. In our appli-

cation case, the conditional generation task reduces to the

problem of generating variations. As our decomposition

model proves to be effective in separating the stems of a

given mixture, we obtain a system that is able to generate

missing stems given the masked elements. Hence, this also

addresses the accompaniment generation task. Algorithm

1 resumes the training process of the prior model.

4. EXPERIMENTS AND RESULTS

This section provides an overview of the experiments

aimed at assessing the performance of our proposal in

both decomposition (section 4.1) and recomposition (sec-

tion 4.2) scenarios. Prior to diving into the specifics of each

experiment, we provide a brief overview of the shared el-

ements across our experiments, including data, evaluation

metrics, and neural network architectures.

Data. We rely on the Slakh2100 dataset [27], a widely

recognized benchmark in source separation, comprising

2100 tracks automatically mixed with separate stems. We

selected this dataset because of its large-scale nature and

the availability of ground truth separated tracks. Follow-

ing recent approaches in generative models [28, 29], we

rely on a pre-trained neural codec to map the audio data to

an intermediate latent space, where we apply our approach.

Specifically, we employ the EnCodec model [30], a Vector

Quantized-VAE (VQ-VAE) model [31] that incorporates

Residual Vector Quantization [32] to achieve state-of-the-

art performances in neural audio encoding. We take 24
kHz mixtures from the Slakh2100 dataset, which we then

feed to the pre-trained EnCodec model to extract the con-

tinuous representation obtained by decoding the discrete

codes. EnCodec maps raw audio to latent trajectories with

MS-STFT FAD (LC-A) FAD (LC-M)

4.7 0.05 0.04

Table 1. EnCodec reconstruction quality, measured in

terms of MS-STFT and FAD and computed following the

procedure descried in section 4.

a sampling rate of 75 Hz. Specifically, we take audio crops

of approximately 7s (6.82s), which are mapped via En-

Codec to a latent code x ∈ R
128×512.

Evaluation metrics. Throughout this section, we report

quantitative reconstruction metrics in terms of both Mean

Squared Error (MSE) and Multi-Scale Short-Time Fourier

Transform (MS-STFT) [33, 34] for latent and audio data,

respectively. We perform the MS-STFT evaluation using

five STFT with window sizes {2048, 1024, 512, 256, 128}
following the implementation of [34]. In order to evalu-

ate the quality of the generated samples and the adherence

to the training distribution, we also compute Fréchet Au-

dio Distance (FAD) [35, 36] scores. Specifically, we ob-

tain the FAD scores via the fadtk library [36], employ-

ing both the LAION-CLAP-Audio (LC-A) and LAION-

CLAP-Music (LC-M) models [37], as it was shown in [36]

that these embedding models correlate well with percep-

tual tests measuring subjective quality of pop music. In

assessing FAD scores, we utilize the complete test set of

Slakh2100, while for MSE and MS-STFT values, we ran-

domly select 512 samples of 7s (∼ 1 hour) from the same

test set and report their mean and standard deviation. Fi-

nally, in order to provide the reader a reference value, we

report in Table 1 the reconstruction metrics for the pre-

trained EnCodec.

When assessing the effectiveness of source separation

models, we adhere to common practice by relying on the

museval Python library [38] to compute standard separa-

tion metrics: Source-to-Interference Ratio (SIR), Source-

to-Artifact Ratio (SAR), and Source-to-Distortion Ratio

(SDR) [39]. These metrics are widely accepted for evalu-

ating source separation models, where SDR reflects sound

quality, SIR indicates the presence of other sources, and

SAR evaluates the presence of artifacts in a source. Specif-

ically, following [39] we compute their scale-invariant (SI)

versions and, hence, provide our results in terms of SI-

SDR, SI-SIR and SI-SAR. The values shown are expressed

in terms of mean µ and standard deviation σ computed on

512 samples of ∼ 7s from the Slakh2100 test set.

Architectures. We use a standard U-Net [21] with 1D

convolution and an encoder-decoder architecture with skip

connections. Each processing unit is a ResNet block [40]

with group normalization [41]. Following [42], we feed the

noise level information through Positional Encoding [43],

conditioning each layer with the AdaGN mechanism. We

also add multi-head self-attention [43] in the bottleneck

layers of the U-Net. The semantic encoder mirrors the U-

Net encoder block without the attention mechanism and

maps the data x ∈ R
128×512 to a set of variables z =

[z1 . . . zi . . . zN ] whose dimensionality is zi ∈ R
1×512.
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Finally, these univariate latent variables condition the U-

Net via a simple concatenation, which proved to be a suffi-

ciently effective conditioning mechanism for the model to

converge. We use the same U-Net architecture for both the

decomposition and recomposition diffusion models.

4.1 Decomposition

In order to show the effectiveness of our decomposition

method described in section 3.1, we perform multiple ex-

periments on Slakh2100. Throughout this section, we fix

the number of training epochs to 250 and use the AdamW

optimizer [44] with a fixed learning rate of 10−4 as our

optimization strategy. The U-Net and semantic encoder

have 13 and 8 million trainable parameters, respectively.

Finally, we use 100 sampling steps at inference time.

First, we show in Table 2 that our model can be used

to perform unsupervised latent source separation and com-

pare it against several non-neural baselines [45–49], as

well as a recent study that explicitly targets neural latent

blind source separation [50]. We also report the results

obtained by Demucs [51], which is the current top per-

forming fully-supervised state-of-the-art method in audio

source separation. As the only non-neural baseline, LASS,

has been trained and evaluated on the Drums + Bass sub-

set, we perform our analysis on this split and subsequently

perform an ablation study over the other sources.

Model SI-SDR (↑) SI-SIR (↑) SI-SAR (↑)
rPCA [45] -2.8 (4.8) 5.2 (7.3) 5.6 (4.6)

REPET [48] -0.5 (4.8) 6.8 (7.0) 3.0 (5.2)

FT2D [49] -0.2 (4.7) 5.1 (7.0) 3.1 (4.7)

NMF [46] 1.4 (5.0) 8.9 (7.6) 2.9 (4.5)

HPSS [47] 2.3 (4.8) 9.9 (7.5) 5.1 (4.6)

LASS [50] -3.3 (10.8) 17.7 (11.6) -1.6 (11.2)

Ours 5.5 (4.6) 41.7 (9.3) 5.6 (4.6)

Demucs [51] 11.9 (5.0) 37.6 (8.7) 12.0 (5.0)

Table 2. Blind source separation results for the Drums +

Bass subset. Our model is trained with the mean composi-

tion operator. The results are expressed in dB as the mean

(standard deviation) across 512 elements randomly sam-

pled from the test set of Slakh2100.

As we can see, our model outperforms the other base-

lines in terms of SI-SDR and SI-SIR and performs on par

with respect to SI-SAR. Interestingly, our model outper-

forms the Demucs supervised baseline in terms of SI-SIR,

which is usually interpreted as the amount of other sources

that can be heard in a source estimate. In order to test

LASS performances, we used their open source check-

point which is trained on the Slakh2100 dataset, and fol-

lowed their evaluation strategy. Unfortunately, we were

not able to reproduce their results in terms of SDR but we

found that their model performs well in terms of SI-SIR,

which they did not measure in the original paper. More-

over, as LASS comprises training one transformer model

per source, we found their inference phase to be more com-

Operator MSE (↓) ×104 MS-STFT (↓)
Sum 1.87820 (0.13418) 3.6 (0.1)

Mean 1.87020 (0.13183) 3.6 (0.1)

Min 2.54182 (0.17714) 4.5 (0.1)

Max 2.43302 (0.17510) 4.3 (0.1)

Table 3. Reconstruction quality in latent space (MSE) and

audio (MS-STFT) of our decomposition-recomposition

model for different recomposition operators for the Drums

+ Bass subset.

putationally demanding than ours. Finally, among non-

neural baselines, we see that the HPSS model outperforms

the others. This seems reasonable as HPSS is specifically

built for separating percussive and harmonic sources and

hence naturally fits this evaluation context.

Moreover, in order to show the robustness of our ap-

proach against different sources and number of latent vari-

ables, we train multiple models on different subset of the

Slakh2100 dataset, namely Drums + Bass, Piano + Bass

and Drums + Bass + Piano. The interested reader can refer

to our supplementary material and listen to the separation

results.

Subsequently, we show that our objective in Equation

6 is robust across different composition operators. We

show that, for simple functions such as sum, min, max

and mean our model is able to effectively converge and

provide accurate reconstructions. Again, we provide this

analysis by training our model on the Drums + Bass subset

of Slakh2100, fixing the number of components to 2. We

report quantitative results in terms of two reconstruction

metrics, the Mean Squared Error (MSE) and Multi-Scale

STFT distance (MS-STFT) in Table 3. As we can see, sum

and mean operators provided the best results, while min

and max proved to be less effective. Nonetheless, the au-

dio reconstruction quality measured in terms of MS-STFT

provided reconstruction scores that are lower or compara-

ble with respect to those obtained by evaluating EnCodec

performances.

4.2 Recomposition

As detailed in section 3.2, once we are able to decom-

pose our data into a set of composable representations we

can then learn a prior model for generation from this new

space. Since our decomposition model is able to compress

meaningful information through the semantic encoder, we

can learn a second latent diffusion model on this com-

pressed representation to obtain a full generative model

able to both decompose and generate data.

Here, we validate our claims by training a masked dif-

fusion model for the Drums + Bass split of the Slakh2100

dataset. In Table 4, we show that our model can indeed

produce good-quality unconditional generations by com-

paring it against a fully unconditional model. We mea-

sure the generation quality in terms of FAD scores com-

puted against both the original as well as the encoded test

data. Here, by original data we mean the audio coming
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Original Encoded

FAD (LC-A) (↓) FAD (LC-M) (↓) FAD (LC-A) (↓) FAD (LC-M) (↓)
Unconditional 0.09 0.09 0.06 0.06

pmask = 0.8 0.12 0.11 0.08 0.07

Bass 0.03 0.03 0.01 0.01

Drums 0.09 0.08 0.05 0.05

Table 4. Audio quality of unconditional generations by our generative model. We demonstrate that we can jointly learn

an unconditional and conditional model by showing that the FAD scores of pmask = 0.8 are comparable to those of an

unconditional latent diffusion model.

Type MSE ×103 MS-STFT

R
ea

l Drums 2.3259 (0.1287) 13.6 (0.4)

Bass 1.4393 (0.0874) 9.38 (0.2)

R
a
n

d Drums 4.8170 (0.1136) 20.5 (0.6)

Bass 4.8814 (0.1157) 21.7 (0.7)

Table 5. Diversity of variations generated by our prior

model, measured via the MSE and MS-STFT distances

against ground truth and random components.

from the test split of Slakh2100, while the encoded data

represents the same elements reconstructed with our de-

composition algorithm. As we train on the representations

obtained through the semantic encoder, the natural bench-

mark for the unconditional generation is given by the re-

constructions that we can obtain through our decomposi-

tion model, which represents the bottleneck in terms of

quality. Nonetheless, we show that the FAD scores do not

drop substantially when comparing against the original au-

dio, showing that we can indeed achieve a good generation

quality. In the same table, we report the partial genera-

tion FAD scores. Instead of generating both components

unconditionally, we generate the Bass (Drums) given the

Drums (Bass), and measure the FAD against the original

and the encoded test data, as done for the unconditional

case. Given the presence of a ground-truth element, the

FAD scores are lower, which is to be expected. Specifi-

cally, we can see that the drums generation is a more com-

plex task with respect to the bass generation, as the model

needs to synthesize more elements such as the kick, snare

and hi-hats, matching the timing of a given bassline.

Lastly, as we strive for high-quality generations, we also

aim to enhance diversity within our generations. Table 5

shows the diversity scores for partial generations obtained

with our model. We measure diversity in terms of MSE and

MS-STFT scores computed, respectively, in the latent and

audio space. We compare our partial generations against

real and random components, in order to provide the lower

and upper bound for generation diversity. Specifically,

given the Drums (Bass) we generate the Bass (Drums) and

we compute both MSE and MS-STFT scores against the

ground truth (Real) and random elements (Rand) coming

from the test set of Slakh2100. From the values reported

in Table 5, we can deduce that our model produces mean-

ingful variations. We invite the interested readers to listen

to our results on our support website.

5. DISCUSSION AND FURTHER WORKS

While our model proves to be effective for compositional

representation learning, it still has shortcomings. Here, we

briefly list the weaknesses of our proposal and highlight

potential avenues for future investigations.

Factors of convergence. In this paper, we used En-

Codec which already provides some disentanglement and

acts as a sort of initialization strategy for our method. We

argue that this property, jointly with the low dimensional-

ity of the latent space enforced by our encoder leads our

decomposition model to converge efficiently, not requiring

further inductive biases towards source separation.

Limitations. First, there is no theoretical guarantee that

the learned latent variables are bound to encode meaning-

ful information. Exploring more refined approaches, as

proposed by [52], could be interesting in order to incorpo-

rate a more principled method for learning disentangled la-

tent representations. Furthermore, we observed that the di-

mensionality of the latent space significantly influences the

representation content. A larger dimensionality allows the

model to encode all the information in each latent, hinder-

ing the learning of distinct factors. Conversely, a smaller

dimensionality may lead to under-performance, preventing

the model to correctly converge. It could be interesting to

investigate strategies such as Information Bottleneck [53]

to introduce a mechanism to explicitly trade off expressiv-

ity with compression. Finally, using more complex func-

tions as well as learnable operators is an interesting re-

search direction for studying the interpretability of learned

representations.

6. CONCLUSIONS

In this work, we focus on the problem of learning unsuper-

vised compositional representations for audio. We build

upon recent state-of-the-art diffusion generative models to

design an encoder-decoder framework with an explicit in-

ductive bias towards compositionality. We validate our ap-

proach on audio data, showing that our method can be used

to perform latent source separation. Despite the theoretical

shortcomings, we believe that our proposal can serve as a

useful framework for conducting research on the topics of

unsupervised compositional representation learning.
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