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ABSTRACT

Progress in the task of symbolic music generation may be

lagging behind other tasks like audio and text generation,

in part because of the scarcity of symbolic training data.

In this paper, we leverage the greater scale of audio music

data by applying pre-trained MIR models (for transcrip-

tion, beat tracking, structure analysis, etc.) to extract sym-

bolic events and encode them into token sequences. To

the best of our knowledge, this work is the first to demon-

strate the feasibility of training symbolic generation mod-

els solely from auto-transcribed audio data. Furthermore,

to enhance the controllability of the trained model, we in-

troduce SymPAC (Symbolic Music Language Model with

Prompting and Constrained Generation), which is distin-

guished by using (a) prompt bars in encoding and (b) a

technique called Constrained Generation via Finite State

Machines (FSMs) during inference time. We show the flex-

ibility and controllability of this approach, which may be

critical in making music AI useful to creators and users.

1. INTRODUCTION

The success of language models — especially large ones

— has demonstrated that with more data and larger mod-

els, using a simple language model objective can endow

a model with powerful natural language generation capa-

bilities. On the other hand, although symbolic music and

natural language share many similarities, no music model

has yet seemed to match the capabilities of generative text

models. One reason for this gap is the insufficient amount

of symbolic music data.

To address this, previous efforts in symbolic mu-

sic generation have involved combining limited man-

ually annotated data with data obtained by automatic

transcription [1], or collecting private symbolic training

datasets [2]. By contrast, in this work, we demonstrate
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that a high-quality, multi-track symbolic music generation

model can be trained just using results from running Mu-

sic Information Retrieval (MIR) models on audio music

data. In this way, our framework eliminates the need for

manually annotated symbolic music data, allowing for ex-

pansion purely through audio datasets.

On the other hand, there has been a recent surge of ef-

forts that directly generate the auditory modality of mu-

sic [3–5]. This is useful for some applications, but typ-

ically precludes fine-grained control and editing the out-

come, which is crucial for composers who wish to shape

their musical ideas precisely. In contrast, outputting sym-

bolic data gives composers the ability to interactively shape

and modify their musical ideas.

Considering such advantages, the problem of how to in-

tegrate user input to control the generation of symbolic mu-

sic has been a popular research topic. In previous works,

two methods for incorporating control signals are usually

used. The first approach is based on a Variational Autoen-

coder (VAE) [6, 7], wherein the control is exerted within

the VAE’s latent space. The second approach is to embed

control information directly into the encoding of symbolic

music and implant control inputs during inference [8–11].

In this work, we introduce the SymPAC framework

(Symbolic Music Language Model with Prompting And

Constrained Generation), designed to work with decoder-

only language models to enable user input controls. The

SymPAC framework consists of the following two parts.

First, inspired by the prompting mechanism used in the

natural language domain [12, 13], we introduce prompt

bars in our symbolic music encoding, which consolidates

all control signals into a separate prompt section before en-

coding the actual musical notes. This design is essential for

a decoder-only language model to have the full context of

control signals during the generation of music. Second, in

the controlled symbolic music generation setting, the gen-

erated tokens should not only comply with the encoding

grammar but also adhere to user inputs. Thus we propose

to use Constrained Generation via Finite State Machines

(FSMs), which constrains the sampling of tokens at each

time step to a subspace. We will discuss the advantages of

SymPAC over previous methods in Section 2, and provide

more details of how SymPAC can be used for various types

of user inputs in Sections 3 and 4.
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We collected roughly one million in-house audio sam-

ples and extracted MIR information for each, using pre-

trained models for beat tracking [14], chord detection [15],

section detection [16, 17], multi-track transcription [18],

and music tagging [19]. The MIR results were transformed

into various tokens, and then integrated into an extended

REMI [10, 20] encoding to train a language model based

on Llama [21] architecture. To summarize, our main con-

tributions are:

Scalability: We demonstrate that a high-quality symbolic

music generation model can be trained solely with tran-

scribed data, without the need of manually annotated sym-

bolic music, and can be scaled by amassing more audios.

Controllability: We propose the SymPAC framework,

which enables flexible user input controls on a decoder-

only language model while retaining good quality.

2. RELATED WORK

2.1 Training Data For Symbolic Music

In Table 1, we summarize some popular music datasets

in the symbolic and audio domains, together with our in-

house audio dataset, and compare their sizes. The Lakh

MIDI Dataset [24] is one of the biggest public datasets,

containing 170K multitrack pieces in MIDI format. Many

researchers use publicly available symbolic music datasets

for training, but some collect and use large-scale ones that

are not disclosed; e.g., MusicBERT [2] was trained on the

Million-MIDI Dataset (MMD).

Although the combined size of the public datasets in Ta-

ble 1 is large, combining them is not straightforward since

they vary in format. For example, the Maestro dataset

consists of transcriptions of piano performances where

note timings reflect actual performance timings, whereas

datasets like Lakh are quantized to metrical time with

alignment to beats. The inclusion of instrument tracks and

additional information (e.g., chords, sections) also differs

between datasets. To expand the scale of training data by

combining these datasets, it is necessary to unify their for-

mats first, which may be tedious and introduce errors.

On the other hand, publicly available audio datasets are

much larger in scale. The Million Song Dataset (MSD)

[26], for example, contains 1M songs, or 709M notes in

total after being run through a 5-track transcription model

[18]. The recently published DISCO-10M [27] is of an

even larger scale. Furthermore, by using a single set of

MIR models to annotate all the audio data, we do not need

to be concerned about the issue of inconsistent data for-

mats. This makes it easier to scale up the training dataset.

2.2 Encoding For Symbolic Music

Since the introduction of the Music Transformer [28], lan-

guage models based on the transformer architecture have

become a popular choice for symbolic music generation.

One of the most critical research questions has been how

to encode symbolic music that is amenable to processing

by such a model, which, in the context of language models,

involves converting the piece into a sequence of tokens.

Early transformer-based models for symbolic music

predominantly employed a MIDI-like encoding scheme,

by treating MIDI event sequences almost identically as

input token sequences [8, 9, 29]. Later, the Revamped

MIDI (REMI) encoding [20] was proposed, which mod-

ified the MIDI encoding by replacing time shift events

with duration events for each note and introducing bar and

beat concepts to adopt metrical time instead of absolute

time. These modifications facilitated the model’s learning

of rhythmic patterns within the music, improving the qual-

ity of the output. Building upon REMI, several extensions

have been proposed to support encoding multitrack [9] and

various control tokens [10]. Our work is based on the

multitrack REMI encoding, and given the MIR models we

have, it incorporates control tokens such as genre, chord,

and section tokens to the encoding.

2.3 Controllable Symbolic Music Generation

Previous methods for controlling symbolic music genera-

tion have typically fallen into two categories. The first is

based on Variational Autoencoders (VAEs) [6, 7]. VAEs

aim to find a latent space for representing music that en-

codes distinct musical attributes in independent dimen-

sions. This disentanglement allows for specific attributes

of generated music (e.g., rhythm, genre, or timbre) to be

individually manipulated by altering corresponding dimen-

sions in the latent space without affecting other attributes,

thereby enhancing the controllability of music generation.

The second approach is to include control tokens in the

encoding of symbolic music. For example, MMM [9] in-

cludes instruments and note density tokens in the encod-

ing, which can be specified at inference. Similarly, FI-

GARO [10] uses “expert descriptions” indicating time sig-

nature, note density, mean pitch, mean velocity and mean

duration as well as instruments and chords. It then uses an

encoder-decoder model to learn a mapping from descrip-

tions to sequences of a piece of music. Driven by the devel-

opment of Large Language Models (LLMs), recent work

has also explored using natural language to control sym-

bolic music generation [30–33]. Natural language text can

also be treated as control tokens, with the key distinction

that it usually requires pre-training the LLM on text.

In our work, the proposed SymPAC framework is de-

signed to work with a decoder-only language model. In

a controlled generation setting, prompt bars that conform

with user input control signals are generated first. The

generation of musical part comes after that, in which the

model will have full context of control signals from prompt

bars. These two generation stages are both controlled by an

FSM, which takes into consideration the grammar of the

encoding and user inputs. There are two main differences

between SymPAC and previous works

1. We encode control signals as tokens and use FSM to

enforce input control signals during inference. In con-

trast, for VAE-based control methods, control signals

are converted into latent embeddings, and the model is

not guaranteed to follow these control signals.

2. Since we use a decoder-only language model, the to-
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Dataset #Songs #Notes Format Multitrack Public

Maestro [22] 1.1K 6M MIDI N Y

GiantMIDI-Piano [23] 10.9K 39M MIDI N Y

Lakh [24] 170K 910M MIDI Y Y

MMD [2] 1.5M 2,075M MIDI Y N

FMA [25] 100K N/A * Audio Y Y

MSD [26] 1M 709M Audio Y Y

DISCO-10M [27] 15M N/A * Audio Y Y

In-House Dataset (IHD) 1M 3,688M Audio Y N

Table 1: Comparison of different symbolic and audio music datasets. * Since we did not run transcription on FMA or

DISCO-10M, we don’t have the number of notes information for them.

kens in prompt bars are also learned simultaneously.

Consequently, the user is only required to input a por-

tion of the control information, with the model being

able to automatically generate missing controls. In

contrast, an encoder-decoder framework like the one

described in [10] would require a complete encoder

input during inference, which lacks flexibility.

3. METHOD

3.1 Symbolic Music Encoding And Prompt Bars

Our data representation is based on the REMI+ [10] rep-

resentation, an extension of REMI [20] that supports mul-

titrack data. An illustration of our encoding is shown in

Fig. 1. The fundamental unit of our encoding is a bar, of

which there are two types: prompt bar and song bar. The

token sequence of a song bar can be divided into four parts:

• The meta part includes four tokens for the

bar, genre, sec (for section type name), and

bpm_level (which indicates the tempo range).

• The chord part consists of alternating position and

chord tokens.

• Each instrument track part consists of a track to-

ken, followed by one or more groups of position,

duration and pitch tokens.

• The drum track part consists of a track<drum> to-

ken, followed by one or more groups of position

and drum (drum MIDI) tokens.

Here are further explanations of position,

duration and track tokens 1 :

• position: Represents the starting position of sub-

sequent chord, pitch or drum token within a bar.

Each bar is divided into 16 steps, so that position ranges

from 0/16 to 15/16.

• duration: Ranges from the minimum time division

of 1/16 bar to a maximum of 2 bars, or 32/16.

• track: A track token will only exist if there is at least

one note in the bar for the corresponding instrument.

This allows the user to control which instruments are

used within a bar.

1 Details of all token types are provided in supplementary materials

Prompt bars contain a subset of tokens in song bars,

retaining only tokens that represent control signals. In

our case, these include genre, section, tempo, chords and

tracks. As future work, this encoding could be extended

to include more control signals (e.g. note density for

a track). The encoding of a full piece of music will

consist of: all prompt bars in the piece; then, a special

end_of_prompt token; then, all song bars in the piece;

and finally a special end_of_song token.

During training stage, the model is trained to predict to-

kens in prompt bars as well, not distinguishing them from

tokens in song bars. As mentioned previously, this design

enables the user to input partial control signals (or no input

at all), and the model is able to infer the missing ones.

Algorithm 1 Constrained Generation via FSM

1: procedure CONSTRAINEDSAMPLING(M, V ,R)

2: s0 ← x0 start token (bar in our encoding)

3: q0 ← initial state

4: t← 0
5: while not end of sequence do

6: Vt+1 ← GETSUBVOCAB(R, qt, xt)
7: qt+1 ← UPDATESTATE(R, qt, xt)
8: xt+1 ← SAMPLE(M,Vt+1)
9: st+1 ← st ◦ xt+1

10: t← t+ 1
11: end while

12: return st

13: end procedure

3.2 Constrained Generation via FSM

In the controlled symbolic music generation setting, there

are two types of constraints:

Grammar constraint: The encoding of symbolic music

follows a specific format. For example, for our proposed

encoding shown in Fig. 1, a bar token will always be fol-

lowed by a genre token.

User input constraint: Generated token sequence should

conform with user inputs. For example, if the user wants

to generate “rock” style music, the genre token can only

be genre<rock>.

Since we are already aware of these constraints in ad-

vance, there is no need to sample from the entire vocabu-

lary space during inference. Instead, we can sample from

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024
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Figure 1: Illustration of our symbolic music encoding.

a subspace that is in accordance with the constraints.

To achieve this, we employ a Finite State Machine

(FSM) to interact with the language modelM during infer-

ence. Let xt denote the token generated byM at time step

t. The FSM takes xt, the current state qt and the predeter-

mined rule set R, and outputs a subset of the vocabulary

Vt+1, from which the language model M can sample at

time t + 1. We call this procedure Constrained Genera-

tion via FSM, which is formally defined in Algorithm 1.

This algorithm is analogous to regular expression match-

ing, where it checks if a given input string conforms to

a specified pattern. Here the pattern and input string are

equivalent to rule setR and token sequence st respectively.

4. EXPERIMENTS AND RESULTS

To validate our contributions, we conduct experiments to

assess whether the system is scalable (i.e., improves when

scaling up training data) and controllable (i.e., there is con-

sistency between generation output and user inputs).

In Sec. 4.3, we conduct a quantitative analysis to com-

pare models trained on different amounts of training data,

in order to assess scalability. In Sec. 4.4, we examine two

common types of control inputs: chord progression and

section structure. The impact of these control inputs is

tested through both quantitative metrics and qualitative ex-

amples. Lastly, in Sec. 4.5, we compare our models trained

on different datasets with other baseline symbolic music

generation systems through subjective evaluation.

4.1 Datasets

We use three datasets in our experiments. We always use

each dataset individually; i.e., we never merge the datasets

to train a single model. The datasets are:

Lakh MIDI Dataset (LMD) [24]. A dataset in MIDI for-

mat, containing around 170K songs. We use this to com-

pare with models trained on transcribed audio data.

Million Song Dataset (MSD) [26]. A public dataset used

extensively by MIR researchers. We use the 30–60s pre-

view audio clips, representing the highlight of the song.

In-House Dataset (IHD). We use a licensed internal col-

lection with about 1M full songs in audio format, covering

a wide range of Western modern genres.

4.2 Training Settings

We train a decoder language model with the Llama [21]

architecture. We set the number of layers, number of atten-

tion heads and embedding dimensions to be 12, 12 and 768

respectively, resulting in a model with about 86M train-

able parameters. We concatenate token sequences of all

pieces into a 1-D array, and randomly pick a window of

size 10,240 as one training sample. As the average se-

quence lengths of LMD, MSD and IHD are 900, 1500 and

8000 respectively, this window size would contain 11.4,

6.8 and 1.3 pieces on average for each dataset.

When training data are limited, data augmentation and

data filtering (to ensure that unusual data do not pollute the

training) are commonly used. However, we adopt neither

approach, for two reasons. First, since we have a large

dataset of audio samples, the training data are likely to

cover a broad spectrum of examples already, reducing the

need to filter out unusual data points. Second, augmenta-

tion may alter the training data in unwanted ways. For ex-

ample, a common augmentation approach is to transpose

all the pitches in a piece [11, 28]. However, this may dis-

tort the pitch ranges of each instrument: e.g., if the input

bass parts are transposed up and down, the model will not

learn the correct range of realistic bass notes.

Metric Class IHD 100% IHD 10% IHD 1%

Chord 0.112 0.119 0.347

Structure 0.348 0.220 0.786

Vocal Note 0.416 0.892 1.086

Guitar Note 0.222 0.257 0.397

Piano Note 0.178 0.403 0.686

Bass Note 0.180 0.867 1.038

Drum Note 0.650 2.902 1.248

Table 2: Average Kullback-Leibler Divergence (KLD) of

metrics in different metric classes for models trained on

different dataset against a held-out validation set.
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4.3 Unconditioned Generation

Intuitively, increasing the amount of data should enhance

the performance of the model. In this experiment, we use

objective metrics to validate this. Designing objective met-

rics to evaluate symbolic music remains an open question.

A common approach is to prepare a reference dataset, cal-

culate embeddings or metrics of the generated samples and

reference set, and then compare these using distance met-

rics such as the Fréchet Distance or Kullback-Leibler Di-

vergence (KLD). For a detailed review on evaluation meth-

ods for symbolic music, see [34, 35].

In our experiment, we prepare a held-out validation set

with 3000 samples. We use a range of metrics that can

be categorized into the following classes: chord, structure,

instrument note (including vocals, guitar, piano and bass)

and drum note. Detailed definitions are provided in supple-

ments. In general, the metrics in each class are as follows:

• Chord: chord label, chord root, chord transition;

• Structure: section label, section label bigram, instru-

ment labels per bar;

• Instrument Note: note pitch, note duration, pitch

class, min/max pitch per bar, max number of notes per

bar, uniformity of number of notes per bar;

• Drum Note: drum key, max number of notes per bar,

uniformity of number of notes per bar, and unique

drums per bar.

We compare models trained on 100%, 10% and 1% of

the IHD data, and do generation in an unconditioned set-

ting. For each model, we generate 800 samples to compute

metric distributions. KLD values are then computed be-

tween distributions of generated samples and distribution

of the validation set for each metric. Lower KLD indicates

that two distributions are closer, suggesting the generated

samples sound more similar to the validation set. We report

the average KLD values for the same class, and provide a

full list of KLDs for each metric in supplements.

The results are shown in Table 2. We can see that the

model trained with 100% IHD data has the lowest KLD

against the validation set on 6 out of 7 classes, and the

model trained on only 1% data has the highest KLD on 6

out of 7 classes. The results confirm that a model trained

on more data can generate samples closer to the training

data. Furthermore, we observed that the benefit of using

more data is greater for the ’Note’ metrics than for the

’Chord’ or ’Structure’ ones. This is likely because note to-

kens are more numerous and have complex distributions,

which needs larger scale of data to learn. Counterintu-

itively, the KLD for ’Structure’ was better when using 10%

of the data instead of 100%. We speculate that since the

structure tokens are scarcest, this could be the result of a

lucky alignment between the validation set at the 10% of

the data used, but this deserves more study.

4.4 Controlled Generation

The SymPAC framework aims to give users flexible control

over the music generation process. However, we need to

verify that this control is effective: do the notes generated

agree with the control inputs? To this end, we conduct

controlled generation experiments on two input scenarios:

chord progression inputs and section structure inputs.

Chord Progression Inputs. In this experiment, we ran-

domly pick 20 top trending chord progressions from Hook-

Theory 2 as the chord progression inputs. We only include

major and minor triad chords. We then let the model gen-

erate 64 bars of music by looping the chord progressions.

To evaluate the match between the input chord progres-

sion and the output, we apply a symbolic chord detec-

tion method on the generated samples. Details about the

method can be referred in the supplementary materials.

The accuracy of detected chord from the input chord

progression is shown in Table 4. As shown in the result,

the models trained on MSD, IHD 100% and IHD 10%

all have similar overall accuracy, with MSD slightly out-

performing the others. But the model trained on IHD 1%

(just 10K songs) is much worse than the other three. This

suggests that a dataset at the scale of 100K songs is suffi-

cient to model low-level control signals like chord, given

the model and encoding we are using here. We also pro-

vide examples in supplementary audios of outputs when

given unusual chord progressions.

Section Structure Inputs. In this experiment, we take 10

typical section sequences as inputs (listed in supplements),

ranging in length from 4 to 13 sections (16 to 68 bars),

and use each model to generate 100 outputs per prompt.

We compare the same 4 models from the previous section.

For each generated output, we leverage a Music Structure

Analysis (MSA) algorithm [36] to predict its structure, and

compare this to the input structure. The MSA algorithm’s

predictions may be inaccurate, but we still expect that a

greater match between the intended and estimated struc-

ture indicates more success at controlling the structure.

We use Foote’s algorithm [37] for segmentation and the

2D-Fourier magnitude algorithm [38] for section labeling,

with a beat-wise feature embedding that averages the pitch-

wise MIDI piano rolls within a beat interval. We evaluate

the results using mir_eval [39], and report three met-

rics: boundary prediction f -measure with a 3-second tol-

erance (HR3F); pairwise clustering f -measure (PWF); and

the normalized entropy score f -measure (Sf). To test di-

rectly how similar the repeated sections are, we also report

PWF and Sf when the ground-truth segmentation is used.

We find that all metrics are worse (lower) when the sys-

tem is trained on MSD or IHD 1%, and improve substan-

tially when at least 10% of the data are used (Table 5). This

is expected, since the audio clips in MSD are only excerpts

and thus not instructive for modelling full-song structure.

Fig. 2 shows the piano roll of a typical output, where the

match between the intended and predicted structure was

average (Sf = 0.508). Even so, the match between the in-

tended and realized structure is evident in the piano roll:

the chorus sections are similar but not identical to each

other, and so are the verse sections.

In both controlled generation experiments, the gap be-

2 https://www.hooktheory.com
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Model Coherence Richness Arrangement Structure Overall

FIGARO 3.12 ± 0.82 2.73 ± 0.92 2.85 ± 0.96 2.62 ± 0.80 2.74 ± 0.89

MMT 2.37 ± 0.35 2.27 ± 0.36 2.37 ± 0.34 2.08 ± 0.30 2.16 ± 0.35

Ours (IHD) 3.55 ± 0.53 3.58 ± 0.38 3.45 ± 0.49 3.73 ± 0.32 3.60 ± 0.39

Ours (LMD) 3.25 ± 0.34 3.25 ± 0.35 3.28 ± 0.30 3.20 ± 0.61 3.25 ± 0.46

Ours (MSD) 3.16 ± 0.27 3.17 ± 0.33 3.09 ± 0.32 3.15 ± 0.29 3.07 ± 0.28

Table 3: Results of subjective evaluation, mean opinion score (MOS)

Training Dataset Accuracy

IHD 100% 87.2%

IHD 10% 86.9%

IHD 1% 74.0%

MSD 87.6%

Table 4: Accuracy of chord progressions in controlled

generation with chord input.

Regular Oracle

Dataset HR3F PWF Sf PWF Sf

IHD 100% 0.60 0.50 0.50 0.72 0.80

IHD 10% 0.60 0.49 0.49 0.70 0.79

IHD 1% 0.54 0.47 0.47 0.62 0.73

MSD 0.57 0.47 0.47 0.63 0.74

Table 5: Accuracy of structure predicted from generated

songs with no guidance (left) and with ground truth seg-

mentation (right).

tween 100% and 10% IHD is very small, indicating that

10% IHD data combined with SymPAC is sufficient for

achieving good adherence to control inputs. However, it

is important to remember that the metrics of these two ex-

periments only reflect whether the control signals are well-

followed, not the overall quality of the generated pieces.

4.5 Subjective Evaluation

The models tested so far were all trained on transcribed

audio data, so it is worth comparing with models trained

directly on MIDI data. In this experiment, we compare our

model trained on LMD, MSD and IHD, and also two base-

lines, FIGARO [10] and MMT [11], in a subjective listen-

ing test. We recruited 12 participants with the background

of MIR researchers or music producers. Similar to [11], we

asked each participant to rate 10 audio samples generated

by each model on a 5-point Likert scale on five criteria:

coherence, richness, arrangement, structure and overall 3 .

The result is summarized in Table 3. All of our pro-

posed models outperform the baselines in all dimensions.

Our model trained on IHD has higher performance than

the other two training data setups, which attests to the vi-

ability of leveraging audio data by running MIR models

3 These criteria are described as: (1) Coherence: The rhythm is sta-
ble; The chord progression develops logically; Dissonant notes are not
excessive. (2) Richness: The melody and acccompaniment are interest-
ing and diverse. (3) Arrangement: Collaboration among multiple instru-
ments is harmonious and natural; Arrangements for different instruments
are diverse and reasonable. (4) Structure: The piece includes a clear and
engaging structure with appropriate repetitions and variations; The piece
has obvious connections and reasonable developments between sections.
(5) Overall: I like this piece in general.

verse chorus inst verse chorus inst chorus outro

Structure tokens

vocal

piano

guitar

bass

drums

Simplified piano roll

Figure 2: Constrained generation output with user-defined

structure using IHD 100% model. The simplified piano

roll gives beat-averaged values and excludes empty lines.

at scale. The result using LMD was better than MSD, de-

spite having fewer songs; this could be due to LSD having

more notes than MSD (see Tab 1), or due to it containing

full songs instead of only excerpts. We only compare FI-

GARO and Ours (LMD) with a statistical test, since these

were trained on the same dataset. Mann-Whitney U tests

found significant differences in Richness (p = .005), Struc-

ture (p = .0005), and Overall (p = .027) ratings, but not in

Coherence (p = .85) or Arrangement (p = .122).

5. CONCLUSIONS AND FUTURE WORK

We trained a language model for symbolic music gen-

eration leveraging audio data and pre-trained MIR mod-

els. We proposed the SymPAC framework, which includes

prompt bars in encoding and Constrained Generation via

FSM during inference time. We showed how combining

these two components enables a user to control the gener-

ation process, and we evaluated the results through quanti-

tative and qualitative analysis.

Future work could improve at least two aspects of this

system: (1) We quantified position and duration to 1/16 per

bar, which does not support 3/4 or 6/8 time signatures well.

Also, the chord detection model we used only supports

12 major and minor chords, limiting the user input op-

tions. We can expand the encoding to support finer-grained

quantization and more advanced chords. (2) Our token se-

quence length is long: 8000 on average for samples in IHD.

We could use tokenization methods such as Byte Pair En-

coding [40] or use compound word tokens [41] to com-

press sequences and improve training efficiency.
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