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ABSTRACT

Recent advancements in music generation are raising mul-

tiple concerns about the implications of AI in creative mu-

sic processes, current business models and impacts related

to intellectual property management. A relevant discus-

sion and related technical challenge is the potential repli-

cation and plagiarism of the training set in AI-generated

music, which could lead to misuse of data and intellectual

property rights violations. To tackle this issue, we present

the Music Replication Assessment (MiRA) tool: a model-

independent open evaluation method based on diverse au-

dio music similarity metrics to assess data replication. We

evaluate the ability of five metrics to identify exact repli-

cation by conducting a controlled replication experiment in

different music genres using synthetic samples. Our results

show that the proposed methodology can estimate exact

data replication with a proportion higher than 10%. By in-

troducing the MiRA tool, we intend to encourage the open

evaluation of music-generative models by researchers, de-

velopers, and users concerning data replication, highlight-

ing the importance of the ethical, social, legal, and eco-

nomic consequences. Code and examples are available for

reproducibility purposes. 1

1. INTRODUCTION

Significant advancements in generative algorithms for dig-

ital art creation are challenging the role of artificial intel-

ligence (AI) in artistic practices. Regarding generative AI

in the music domain, there is an increasing discussion re-

lated to the use of computational tools in music creative

processes [1], the effects on artists’ work, existing listen-

ing experiences and business models, and the impacts on

intellectual property (IP) management [2,3]. A key point is

the potential replication and plagiarism of the training set

in AI-generated music [3,4], which can lead to data misuse

and IP violations.

1 https://github.com/roserbatlleroca/mira
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The inherent opaque nature of music generation mod-

els complicates tracing replications or references to train-

ing set samples in AI-generated music, limiting the inter-

pretation of whether generated samples contain replicated

fragments. In addition, diffusion models, one of the most

popular generative AI architectures, tend to memorise and

replicate training data [5–7]. Understanding the behaviour

of these models has become critical to address legal is-

sues [8], especially when dealing with data protected by IP

rights. This is significant in the music domain as the vast

majority of music is protected by authorship and copyright.

Despite multiple claims emphasising the importance of

assessing music-generative algorithms, there is a lack of

evaluation tools directly focused on detecting data replica-

tion based on raw audio. Considering this research gap, the

present investigation is motivated by two main questions:

• Are audio-based music similarity metrics suitable to

assess data replication in AI-generated music?

• Can we propose an open model-agnostic evaluation

method and tool found on diverse audio-based music

similarity metrics?

Thus, this work proposes assessing the effectiveness

of five music similarity metrics 2 (four state-of-the-art

widely-used and a novel one) in estimating exact data repli-

cation in music. We review the implications of poten-

tial data replication in AI-generated music (Section 2) and

present our experimental setup, including the selected mu-

sic similarity metrics and specific methodology to control

and estimate exact data replication (Section 3). We anal-

yse metrics’ behaviour in different music materials (Sec-

tion 4.1), aiming to assess later their data replication detec-

tion sensitivity (Section 4.2). The proposed methodology

is implemented in tool MiRA (Music Replication Assess-

ment), which computes music similarity between reference

and target samples to obtain global and per-pair distances

(Section 5). Finally, we discuss our research’s insights,

limitations and future perspectives (Section 6).

By introducing MiRA tool, we advance towards the as-

sessment of data replication in AI-generated music using

similarity metrics, contributing to open evaluation meth-

ods for accessibility for researchers, developers and users.

We strive to raise awareness, detect and prevent misappro-

priation of training sets, and hope to motivate research on

these issues.

2 Hereafter, music similarity metrics refer to audio-based metrics.
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2. BACKGROUND AND RELATED WORK

2.1 Implications of potential data replication in

AI-generated music

Music-generative AI is advancing rapidly with novel high-

quality models driven by a strong push from the indus-

try, which is encouraging a suitable environment for real-

world deployment. Yet, music generation algorithms bring

significant concerns regarding their ethical, social, legal

and economic implications. A key challenge is the po-

tential data replication in AI-generated music—inquiring

whether a generative model extracts and copies fragments

from the training data and whether AI-generated music can

be considered novel and original [3, 4]. This issue is fur-

ther complicated by the implications derived concerning

data misuse and IP violations such as copyright infringe-

ment. Moreover, diffusion models, one of the most pop-

ular architectures for generative AI, present high risks of

data replication as they have shown a tendency to mem-

orise their training data [5–7]. In the image generation

domain, Somepalli et al. [9] demonstrate instances where

generated images with diffusion models contain object-

level copies of their training data. Based on image retrieval

frameworks, they compare generated images with training

samples and detect when content has been replicated. Sim-

ilarly, Carlini et al. [5] demonstrate that diffusion models

memorize and reproduce images from their training data.

Memorising training data and potential IP violations is

highly under-discussed in music generative models lit-

erature, despite being one of generative AI’s main nega-

tive ethical implications in the music domain [10]. How-

ever, the recently proposed music generative model Musi-

cLM [11] has been refrained from releasing due to the eth-

ical risks and potential work replication. In addition, Mu-

sicLDM [12] acknowledges potential issues linked to data

replication and plagiarism and, to address them, proposes

two beat-synchronous mix-up strategies for data augmen-

tation. The exemplified initiatives underscore the relevance

of considering and addressing the ethical implications of

these algorithms.

2.2 Evaluation methodologies in music generation

Xiong et al. [13] present a survey on music generation

evaluation methodologies divided into objective, subjec-

tive and combined approaches. They highlight a cur-

rent claim in finding a standardised proper method that

aligns with all stakeholders, from developers to musicians

and music listeners. However, even if multiple evaluation

methodologies exist for music generation models, the lit-

erature highlights a lack of evaluation methodologies fo-

cused on assessing data replication and the originality of

AI-generated music [4,14]. In the symbolic domain, Yin et

al. [4] introduce the originality score to measure the extent

to which an algorithm might be copying from the train-

ing set. Nonetheless, there is a growing interest in models

outputting directly audio music instead of symbolic repre-

sentations. Thus, a research gap exists in detecting data

replication in AI-generated music based on raw audio.

A recent work by Barnett et al. [15] proposes a frame-

work based on two music audio embeddings to assess the

similarity between the training data and AI-generated sam-

ples for understanding training data attribution. Their ap-

proach, based on VampNet [16], computes cosine distance

on embeddings obtained from CLMR (Contrastive Learn-

ing of Musical Representations) [17] and CLAP (Con-

trastive Language-Audio Pretraining) [18].

Our perspective is that combining metrics based on au-

dio embeddings, acoustic qualities, and features capturing

music characteristics, such as chord progression or tonal

similarity, provides a comprehensive assessment of poten-

tial data replication in AI-generated music. In this study,

we aim to validate the effectiveness of five music similarity

metrics and build an open tool to assess exact data replica-

tion in AI-generated music using these metrics.

3. FORCED-REPLICATION EXPERIMENT

3.1 Audio Music Similarity Metrics

For this study, we consider five music similarly metrics:

four state-of-the-art approaches and a novel one, covering

a diversity of characteristics. We here describe the metrics

(summarised in Table 1) and methods used to implement

them. 3

Cover Song Identification (CoverID) [19–21]: Cover

song identification is a task aiming to detect whether two

music recordings are based on the same composition, ac-

counting for variations in tempo, structure, and instrumen-

tation while keeping a similar melodic or harmonic line.

CoverID relies on pitch-content features and local align-

ment. To obtain CoverID distance, we use the implemen-

tation available in Essentia. 4 A low CoverID value sug-

gests substantial composition similarity between the two

analysed music samples.

Kullback-Leibler (KL) divergence: This metric pro-

vides a non-symmetric statistical measurement between

reference and target probability distributions relative to

their entropy. KL divergence has been employed in the

literature to estimate similarity in music (e.g. [22, 23]),

and more recently, to assess automatic music generation

prompt adherence (e.g. [24]). We aim to explore its capa-

bilities to estimate data replication in music samples. To

obtain probability distributions, we use the PaSST audio

classifier proposed in Koutini et al. [25], trained on Au-

dioset. This methodology aligns with common practice in

the literature, such as in AudioGen [26] and MusicGen [27]

to obtain the probabilities of the labels in their audio and

music samples. To avoid the non-symmetry of KL diver-

gence, we compute reference to target and target to ref-

erence KL divergence and, subsequently, average both re-

sults to obtain symmetric KL divergence. Low KL diver-

gence indicates a closer similarity between distributions.

3 Two of the metrics rely on Essentia implementation. Essentia is an
open-source library and tools for audio and music analysis, description
and synthesis, developed in the Music Technology Group at Universitat
Pompeu Fabra: https://essentia.upf.edu.

4 https://essentia.upf.edu/reference/std_

CoverSongSimilarity.html
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Table 1: Summary of the considered music similarity met-

rics, indicating whether values correspond to higher or

lower similarity (↓/↑).

Metric Description

CoverID (↓)
Musical composition similarity

based on music-specific

characteristics.

KL divergence (↓) Differences in distributions from

an audio classifier.

CLAP (↑) Distance between embeddings

from a music pre-trained model.

DEfNet (↑)
Novel metric based on distance

between embeddings from a

contrastive learning model for

music similarity.

FAD (↓) Distance between embeddings

based on CLAP music model.

Contrastive Language-Audio Pretraining (CLAP)

score [18]: CLAP embeddings 5 allow to obtain latent rep-

resentations of audio or text by conditioning information.

For instance, MusicLDM [12] uses this metric to assess

the novelty in text-to-music generations. To compute the

CLAP score between two music samples, we extract the

audio embeddings from the pre-trained music model 6 for

each one and compute the cosine distance between them.

A high CLAP score indicates a high similarity between the

two music samples.

Discogs-EffNet (DEfNet) score: In addition to state-

of-the-art distances between audio embeddings, we incor-

porate a novel approach based on Essentia models [28].

Essentia’s Discogs-EffNet model 7 provides music au-

dio embeddings trained on Discogs metadata with con-

trastive learning purposes for music similarity. We con-

sider DEfNet score to observe the effectiveness of embed-

dings of a model trained for a music-related task on es-

timating data replication. Embeddings are extracted based

on track self-supervised annotations 8 and compute the co-

sine distance between reference and target samples. A high

DEfNet score reveals high track similarity.

Fréchet Audio Distance (FAD) [29, 30]: FAD is an

adaptation of Fréchet Inception Distance (FID) for music,

comparing embedding distributions of a reference and a

target set, based on the ViGGish model [31]. Nonetheless,

a recent study by Gui et al. [30] questions whether VG-

Gish is the optimal model for FAD computation for music

generation evaluation. They propose a tool kit 9 with mul-

tiple models to obtain more accurate embeddings to assess

AI-generated music when calculating FAD. Consequently,

we implement the adapted version of FAD using the CLAP

audio music pre-trained model. A low FAD score indicates

a high resemblance between the compared music samples.

5 https://github.com/LAION-AI/CLAP
6 Checkpoints: music_audioset_epoch_15_esc_90.14.pt.
7 https://essentia.upf.edu/models.html#

discogs-effnet
8 Embeddings extracted with weights discogs_track_

embeddings-effnet-bs64-1.pb.
9 https://github.com/microsoft/fadtk

3.2 Experimental Approach

To validate the effectiveness of the selected music similar-

ity metrics in detecting exact data replication, we carried

out a controlled forced-replication experiment with syn-

thetic data, i.e. replicating music excerpts into another

song under controlled conditions. Synthetic data guaran-

teed that the analysed music samples contained copied in-

stances, limiting our scope to exact data replication.

For this experiment, we use an in-house dataset of 30-

second audio previews from the Spotify API 10 , composed

of over 18,000 samples and 24 music genre classes. We

focus on six music genre classes defined by Spotify API

internal class labels: heavy metal, afrobeats, techno, dub,

cumbia and bolero. These genres were chosen for their di-

verse musical compositions and elements, allowing us to

examine the metrics across multiple scenarios. This se-

lection was supported using ChatGPT, which affirmed that

these genres have distinct musical characteristics.

We divide data into three groups: (1) reference set: act-

ing as training data, (2) target set: composed of synthetic

data, representing AI-generated music, and (3) mixture

set: containing different songs from the reference set but

from the same music genre to build synthetic data. Syn-

thetic data with replication contains a controlled percent-

age of copy from a song in our reference set: 5% (1.5s),

10% (3s), 15% (4.5s), 25% (7.5s) and 50% (15s). A syn-

thetic sample is created by introducing the copied propor-

tion at a random point of a music sample in the mixture

set. We create 10 samples with a proportion of replication

per song in the reference set. Figure 1 illustrates the pro-

cedure to build synthetic data with 5% of replication. For

each music genre, the reference and mixture sets are com-

posed of 400 songs each. Thus, the target set comprises

4,000 (400 x 10) songs per percentage of replication for

each genre. Music samples are 30 seconds long as cur-

rently it is the common length in full song composition

music generative models.

We assess each metric for all the songs within the ref-

erence set against themselves to establish a baseline (400

x 400 = 160,000 per-pair evaluations). Then, we compute

them for each reference song and its copied instances to

only consider cases with exact data replication (4,000 per-

pair evaluations). Our experiment considers 120,000 sam-

ples of synthetic data (approximately 167h of music with a

proportion of data replication).

Figure 1: Synthetic data procedure with 5% of replication.

10 https://developer.spotify.com/documentation/

web-api
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4. RESULTS

4.1 Analysing metric behaviour

Figures 2, 3, 4, 5 and 6 depict the average µ and standard

deviations σ of the different metrics per degree of repli-

cation and music genre. We observe a steady and similar

behaviour by three metrics (CoverID, CLAP and DEfNet)

through all studied music genres, showing higher simi-

larity values for cases with higher replication levels (i.e.,

50%). Standard deviation decreases with increasing repli-

cation level, which suggests less disparity within the anal-

ysed pairs. These three metrics show the sensitivity 11 to

estimate data replication.

Instead, KL divergence presents a different behaviour

with very similar values of µ and σ for all degrees of repli-

cation. Some sensitivity is observed in all music genres,

except for dub, where the baseline mean µb is smaller

than in replication cases µr, despite the standard deviation

being higher (µb=0.757, σb=0.511; µr=0.862, σr=0.462).

Thus, KL divergence demonstrates the capability of detect-

ing replication but is ineffective in distinguishing between

degrees of replication.

Contrasting with the other metrics, FAD based on

CLAP music embeddings completely differs from them.

On the one side, its behaviour is inconsistent as it exhibits

fluctuating trends for the different examined cases. On the

other side, it fails to detect data replication. A higher sim-

ilarity value (low FAD) is always obtained for the base-

line. Instead, for the different degrees of replication, higher

FAD is achieved. Consequently, FAD based on CLAP mu-

sic embeddings does not appear to be a suitable metric to

assess exact data replication in music samples.

By analysing the metrics’ behaviour, we could directly

conclude that CoverID, KL divergence, CLAP and DEfNet

are suitable for our posed research aim. However, further

exploration is required before determining their ability to

detect replication and degree of replication. We delve into

this analysis in the next subsection.

4.2 Assessing data replication detection sensitivity

In this section, we complement the previous analysis with

an assessment of statistical differences. Because our data

is not normally distributed and variance is heterogeneous,

the Kruskal-Wallis test [32] is the most adequate statistical

analysis to examine our results, as is non-parametric, does

not rely on normality and handles unequal sample sizes.

We perform the Kruskal-Wallis test on CoverID, KL di-

vergence, CLAP and DEfNet. Significant statistical differ-

ences (p < 0.05) are observed across all music genres and

degrees of replication, consistent with our earlier findings.

Nonetheless, the insight of this analysis relies on the

pairwise comparisons between the baseline and different

degrees of replication. CoverID pairwise comparison re-

veals a statistically significant difference between the base-

line and the 5% replication degree for afrobeat, cumbia

and techno. For the three other music genres, this happens

11 Sensitivity is understood as the capability to differentiate between
degrees of replication.

Figure 2: CoverID (↓)

Figure 3: KL divergence (↓)

Figure 4: CLAP (↑)
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Figure 5: DEfNet (↑)

Figure 6: FAD (↓)

for a 10% replication degree. Then, statistical significance

also appears in pairwise comparisons of different degrees

of replication. We can derive that CoverID is sensible for

10% of replication, and in some cases at 5%. When consid-

ering KL divergence, pairwise comparison depicts a statis-

tically significant difference between the baseline and the

5% replication degree. Between degrees of replication, no

statistical significance is revealed for any pairwise com-

parison, except for heavy metal between 5% and the other

replication degrees. Regarding the CLAP and DEfNet, a

significant difference already appears when comparing the

baseline against the samples with 5% replication, indicat-

ing that these metrics are sensitive to 1.5 seconds of repli-

cation. In all cases, a notable difference emerges among

the levels of replication, enhancing the sensitivity of these

metrics’ detection capabilities. They demonstrate sensitiv-

ity to varying replication degrees.

Withal, this statistical analysis sustains the validity of

these four metrics to assess exact data replication in the

training set and determines their degree of sensitivity.

5. MUSIC REPLICATION ASSESSMENT TOOL

Derived from the presented experiment, we implement the

proposed methodology into an evaluation tool. We intro-

duce the Music Replication Assessment (MiRA) tool: an

open evaluation method based on four diverse raw audio

music similarity metrics.

MiRA computes music similarity between reference

and target samples to obtain global and per-pair distances,

based on CoverID, KL divergence, CLAP and DEfNet. It

can estimate data replication with a proportion higher than

10% (3 seconds), but in most of the examined scenarios,

it is sensible to 5% of replication. Per-pair distances are

highly beneficial for detecting close pairs, outliers and sus-

picious cases with potential data replication. Considering

that replication detection requirements may vary depend-

ing on the evaluation, users are left to set their replication

threshold. In addition, MiRA is model-independent as no

information about the model architecture or its characteris-

tics is necessary. The evaluation is conducted directly with

the training (reference) and generated samples (target) of

the analysed generative model.

However, designating a baseline value is encouraged to

accurately interpret the music similarity between the refer-

ence and target samples. We propose a third comparison

group of samples (control) based on songs related to the

reference songs but unseen by the model (e.g. shared mu-

sic genre). Again, this is a decision for the users condi-

tioned to their evaluation scope. Note that using a control

group allows us to understand and interpret the results ob-

tained by acting as the baseline similarity level of indepen-

dent songs with a shared characteristic.

The complete structure of the implemented system is

depicted in Figure 7. We release MiRA as an open-source

tool, built into a PyPI package 12 . Together with the code,

we provide examples and best practice recommendations

for using this methodology. With the release of MiRA, we

hope to enhance transparency in music generation models

and data replication assessment.

Figure 7: MiRA’s structure scheme.

12 https://pypi.org/project/mira-sim/
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6. DISCUSSION AND CONCLUSIONS

This work focused on validating the use of music similar-

ity metrics for assessing data replication in AI-generated

music. We hypothesise that similarity metrics are effec-

tive in estimating data replication. Therefore, we framed

the scope of our study to exact data replication in music

samples, while conducting a controlled forced-replication

experiment with synthetic data.

We examined five diverse audio-based metrics: four

standard metrics (CoverID, KL divergence, CLAP and

FAD) and a novel one (DEfNet). Our results indicate that

four of the five studied metrics can detect data replication

to a certain extent. Instead, FAD based on CLAP music

embeddings presented an opposite behaviour compared to

the other metrics. Higher similarity is obtained for the

baseline group and FAD shows unstable trends throughout

the diverse music genres. Thus, we do not find it suitable

for our case study. However, it must be acknowledged that

the recent publication by Gui et al. [30] offered multiple

classifiers to compute FAD. There is the possibility that

we did not consider the appropriate classifier for our task.

Thus, we should consider exploring other classifiers before

determining the validity of FAD in detecting replication in

music.

Regarding the other four metrics, our results show in-

teresting insights. First, we find CoverID to be sensible to

different replication degrees, establishing a robust thresh-

old level at 10% of replication. Furthermore, in some of

the studied cases, replication sensitivity is lowered to 5%

of replication. This is a substantial finding to validate the

suitability of metrics oriented to specific music character-

istics, such as tempo, structure and composition.

Next, we observe that KL divergence can be sensitive to

replication as pairwise comparison between baseline and

degrees of replication is statistically significant. Neverthe-

less, the other pairwise results reveal that KL divergence is

ineffective for differentiating between replication degrees.

We consider this an unexpected turnout in our analysis.

Considering CLAP and DEfNet scores, both

embedding-based metrics, our experiment validates

their suitability to detect data replication. Not only do

they show robustness by increasing their similarity value

parallel to the replication degrees (i.e. higher similarity

for higher level of replication), but they also show high

sensitivity for different degrees of replication. All results

suggest their sensitivity might be higher than we envi-

sioned and might be able to detect replication in smaller

samples (i.e. < 1.5 seconds).

As a result of these findings, we achieve our second goal

within the scope of this research: to build an open model-

agnostic tool based on music similarity metrics on raw au-

dio. In this article, we have introduced the MiRA tool,

leveraging the four validated similarity metrics, which can

be used to evaluate any music-generative model with au-

dio output. MiRA does not require any information about

the model architecture or its characteristics. Instead, sim-

ilarity evaluation relies on comparing reference and target

samples.

By introducing the MiRA tool, we are contributing to

the research gap of lack of evaluation methodologies di-

rectly assessing potential data replication in AI-generated

music. Our study validates the use of similarity metrics

to estimate training data replication. We intend to encour-

age the open evaluation of music generation models by re-

searchers, developers and users concerning data replica-

tion. In addition, our research strives for the importance of

ethical, social, legal and economic consequences of gen-

erative AI in the music domain, together with the need to

address their risks and issues.

6.1 Limitations and Future Work

Despite our contribution to advance towards data replica-

tion assessment with music similarity metrics, there are

multiple opportunities to complement our investigation.

First, we limited the scope of our experimental ap-

proach to assessing the use of different music similarity

metrics for exact data replication, consequently reducing

the definition of plagiarism to exact replication of frag-

ments in the training set. We followed such an approach to

validate our hypothesis and ensure an attainable method to

address this issue. While this reduced scope could poten-

tially be solved using audio fingerprinting strategies [33],

we believe that by employing a diverse range of metrics

we can provide a more comprehensive assessment of data

replication.

Framing our aim to exact data replication also intro-

duced a limitation in considering typical perturbations that

music samples experience when training the model or dur-

ing the model procedure to generate a music sample. Thus,

it would be a key point for future work to validate the ro-

bustness of these metrics towards typical data augmenta-

tion techniques, such as pitch shifting and reverberation.

Proving them to be robust would also enhance the capa-

bilities of MiRA for detecting potential replication in AI-

generated music. At the same time, we intend to expand

the abilities of MiRA for data replication by incorporating

complementary metrics, if necessary.

In addition, our experimental process was limited to the

high computational costs of some of the metrics. In partic-

ular, we faced significantly large amounts of time to com-

pute FAD and KL divergence. This is a relevant concern as

we want MiRA to be an open tool that can be used by any

researcher or user. Thus, considering the computational

capacity required to compute the integrated metrics within

is a relevant issue in our research.

Another limitation is the type of data that we use. We

base our experiment on synthetic data despite our goal be-

ing oriented to AI-generated music. We must use synthetic

data with a controlled percentage of replication to guaran-

tee and assess the capabilities of detection and sensitivity

of music similarity metrics. However, we would like to test

the validity of the introduced tool when used in a genera-

tion context. To do so, we require not only a generative

model but its details on training data and generation sam-

ples. We plan to expand our research in with AI-generated

content in upcoming studies.
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8. ETHICS STATEMENT

The late rapid popularity growth of generative AI in the

music domain brings significant ethical implications. The

main challenges are linked to the role of AI within mu-

sic creative processes, such as composition, potential mis-

appropriation of data in AI-generated music, inquiries on

the novelty of generations, derived authorship attribution,

effects on intellectual property rights and sustainability of

current business models. In addition, there are notable con-

cerns about the cultural bias in these systems and their en-

vironmental impact.

Our research focused on the issue of assessing potential

data replication in AI-generated music. We observed a lack

of evaluation methodologies to examine replication in raw

audio. We contributed to this issue by proposing a method-

ology based on audio-based music similarity metrics. We

demonstrated its effectiveness and provided an open tool

to evaluate AI-generated music. Our introduced approach

is contributing to the transparency of music generation al-

gorithms.

Despite the positive contribution of our investigation,

we must be critical of some methodological aspects of our

work. Our principal ethical concern falls under the type

of data used to conduct our forced-replication experiment.

In particular, we employ an internal dataset created with

Spotify previews (30-second samples of music). Even if

these practices are common in the ISMIR community, we

see the need for guidelines for the legal assessment of MIR

data included in datasets, incorporating country dependen-

cies, origin and intended use, personal data involved (from

artists and listeners) and potential future consequences 13 .
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