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ABSTRACT

Musical rhythm and meter are characterized by simple

proportional relationships between event durations within

pieces, making comparison of rhythms between different

musical pieces a nebulous practice, especially at different

tempos. Though the “main tempo,” or tactus, of a piece

serves as an important cognitive reference point, it is dif-

ficult to identify objectively. In this paper, I investigate

how statistical regularities in rhythmic patterns can be used

to determine how to compare pieces at different tempos,

speculating that these regularities could relate to the per-

ception of tactus. Using a Bayesian statistical approach,

I model first-order (two-gram) rhythmic event transitions

in a symbolic dataset of rap transcriptions (MCFlow), al-

lowing the model to renotate the rhythmic values of each

transcription as needed to optimize fit. The resulting model

predicts makes “renotations” which match a priori predic-

tions from the original dataset’s transcriber. I then demon-

strate that the model can be used to rhythmically align new

data, giving an objective basis for rhythmic annotation de-

cisions.

1. INTRODUCTION

Symbolic representations of music generally encode

rhythm using integer-related note-value categories—

whether expressed as durations or inter-onset-intervals

(ioi). Absolute timing is encoded indirectly (if at all) as

the tempo of a reference note-value, conventionally the

quarter-note. The musical and psychological validity of

this approach is well established, as the schematic syntax

of musical rhythm is primarily determined by proportional

relationships, not absolute (clock-time) durations [1]. 1

However, this approach also presents a problem: If only

proportional relationships within a piece are rhythmically

relevant, on what basis can relationships or comparisons be

made across pieces? Can we be confident that a “quarter-

note” in one piece is the same as a “quarter-note” in an-

other? For example, consider three expert transcriptions of

1 In fact, human perception tends to normalize ioi ratios that are not

simple ratios to the nearest simple-ratio category [2].
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songs by Johnny Cash from the RS200 dataset [3]: “Fol-

som Prison Blues” (1955) and “Ring Of Fire” (1963) are

transcribed with quarter-notes at 110bpm and 104bpm re-

spectively, while “I Walk The Line” (1956) is transcribed

at 210bpm. 2 These three songs share many idiomatic mu-

sical features, including backbeat strikes in between bass-

notes at a 105–110bpm pulse. Given these similarities, per-

haps the quarter-notes in “I Walk the Line” ought to be

compared to the eighth-notes in “Ring of Fire.”

The quarter-note is more than a default reference unit

for rhythmic encoding: It is also associated with the cogni-

tive phenomenon of the “main beat” or tactus, and thus the

“true” tempo of metric music [1, 4–6]. Other metric levels

may be related to the tactus, both in notation and in human

perception [1, 5, 6]. Thus, rhythmic comparison (in metric

music) might be, essentially, a question of tactus compari-

son between two or more pieces. Which metric level in, for

example, “Ring of Fire” or “I Walk the Line” is the tactus?

This is essentially another perspective on the classic issue

of “tempo octaves” in tempo-estimation research.

1.1 Background

Listeners must infer metric structure from music as they

hear it [7], including the tactus level [5]. Though listen-

ers’ metric interpretations often agree [8], disagreement

is also common, especially regarding tactus [4, 5, 8–11].

This suggests that tactus inference is constrained, but not

determined, by features of music’s objective organization.

Which features constrain our perception of tactus? The

obvious feature to consider is absolute (clock) time. In-

deed, listeners tend to subdivide slower pulses or group

faster pulses into beats in a preferred timing range, ap-

proximately corresponding to a tempo octave (2/1 ratio) of

160–80bpm [5,10,12]. However, empirical measures of op-

timal tempo ranges have often covered larger ratios—from
2.25/1 [12] to 2.5/1 [13]—and a non-trivial number of obser-

vations spread across even more extreme tempos [4, 10].

Tempos from 200–60bpm will feel somewhat familiar to

most musicians, creating an “apparent contradiction be-

tween the narrow range of preferred tempi and the wide

range of (absolute) tempi found in real music” [14]. These

findings demonstrate that tactus perception is not deter-

mined by absolute timing in a trivial manner. Even if

a strict tempo-octave were used for comparison, this still

requires an arbitrary choice of the cutoff between tempo-

octaves [10].

2 “Ring of Fire” was transcribed by Temperley, the other two songs by
de Clercq.
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Relative rhythmic features also contribute to tactus per-

ception [4, 13–15]. In particular, the density and consis-

tency of attacks at particular metric levels—what Martens

[4] calls “pulse consistency”—serve as a important cue

[6, 10]. Music theorists have also noted specific rhythmic

patterns or aspects of the music’s feel 3 that relate to tac-

tus. A notable example is the backbeat pattern evident in

the Johnny Cash examples above, which is often regarded

as tactus defining [5, 17, 18]. However, De Clercq [17] has

argued that absolute speed overwhelms the backbeat norm

in many cases, and musical features must be balanced with

absolute speed when inferring the tactus.

In traditions that rely on notated music, composers’ ex-

plicit choice of note values and time signature might be

regarded as the “correct” tactus; However, many scholars

have noted that classical time signatures leave room for

ambiguity regarding the true tactus [4,10,17,19,20]. Music

from vernacular traditions pose an even more acute prob-

lem for research, as rhythm values must be chosen by a

scribe [17]. If theory, convention, and intuition serve, we

might hope that homogeneous collections of scores are co-

herently aligned. Unfortunately, representing metric align-

ment across pieces is not necessarily an important goal in

traditions of music notation, and there are no clear stan-

dards for composers, transcribers, or arrangers to follow.

1.2 Hypothesis

If metric orientation is essential to the syntactic organi-

zation of music, then proper metric alignment of pieces

is necessary to reveal structural similarities and gener-

alize about rhythmic syntax in a body of music [17].

Conversely, any “misaligned” pieces—like “I Walk the

Line,” perhaps—add noise to empirical distributions and

hinder musicological analysis. In this paper, I explore

a novel statistical approach to aligning and comparing

rhythmic patterns across pieces within stylistically homo-

geneous musical corpora. I hypothesize that regularities

in proportionally-encoded rhythmic patterns can serve as

consistent cues of metric alignment of pieces, independent

of absolute speed. In other words, that specific rhythmic

patterns or features (notably, pulse saliency) will be sta-

tistically associated with particular metric levels, and that

these patterns can then be used as the basis to align and

compare pieces. To achieve this, we can systematically

rescale note values of transcriptions—either in augmenta-

tion (longer values) or diminution (shorter values)—so as

to optimize the fit of statistics related to syntactic rhythm

relationships. For example, we could renotate “I Walk the

Line” in diminution, and then confirm if the resulting tabu-

lation of the overall RS200 collection is less noisy, “ex-

pos[ing] connections that would be otherwise hidden or

obscured” [17]. My argument is that these connections,

should they be revealed, may relate to listeners’ perceptual

3 Another plausible area where musical organization might influence
metric alignment is sub-syntactic micro-timing: small discrepancies be-
tween actual rhythmic timing and their perceived rational categories.
Micro-timing is often related to the “feel” of music, and can be used to
emphasize particular beat levels [16].

experience of the tactus, though I cannot directly demon-

strate that here.

A central premise of my hypothesis, is that metric align-

ment can be done based on proportional rhythmic data,

without absolute timing information. This does not pre-

clude that absolute timing plays an important role in musi-

cal alignment, but if the hypothesis is supported, it would

demonstrate that rhythmic syntax is at least partly inde-

pendent of tempo, and help explain why tempos are used

outside a preferred tempo octave.

2. METHODOLOGY

With no ground truth available, I can only attempt to op-

timize fit to my data in an unsupervised way. My ap-

proach is to characterize empirical probability distributions

of rhythmic data conditioned on different interpretations of

the metric alignment of pieces.

2.1 Data

For this project, I use my own Musical Corpus of Flow

(MCFlow) [18], in which I transcribed the rapped part of

124 popular hip-hop songs, all in 4
4 time. Rap flow is suit-

able for this task for several reasons: Rap flow is satu-

rated with the rhythmic features of American popular mu-

sic more broadly, with lots of rhythmic variation within

songs. Rap also tends to exhibit a rhythmically dense, fast

pace, with few long iois, which makes relatively simple

ngram-like analyses (described below) more plausible. I

parsed the MCFlow dataset using humdrumR [21]—a R

package for analyzing data encoded in the humdrum syn-

tax (as MCFlow is). I restrict my analysis to inter-stress-

intervals because rap scholars agree that most useful rhyth-

mic information is in the stressed syllables of rap [18, 22].

MCFlow divides each of its 124 songs into verses. In

some cases, different artists perform different verses, occa-

sionally even at different tempos. I thus regard each verse

as a separate rhythmic passage to analyze. To isolate only

“pure” duple rhythmic data, I remove 155 measures of mu-

sic, in 44 unique verses, which contain at least one triplet.

I then removed 16 verses with fewer than eight measures

remaining. This leaves a total of 376 verses, containing

36,553 stressed syllables; the shortest remaining verse has

only 21 stressed syllables, with the longest containing 314

and a median length of 98.

In my MCFlow transcriptions, I used the backbeat in

the rap’s accompaniment to determine the quarter-note

value [18]. However, one of the most important reasons

I use MCFlow is because I [23] originally noted thirty-

five verses (in eleven 4 songs) which are clear outliers in

tempo annotation (Table 1), and speculated that they might

be better notated at a different tempo. This gives us a set

of a priori predictions about metric alignment in the data.

Figure 1 illustrates the distribution of quarter- and eighth-

note iois in MCFlow, as notated (above) and incorporat-

ing my speculated renotations (below). Interestingly, the

4 I also identified two other outlier verses which I exclude because they
contained fewer than eight measures of non-triplet bars.
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Song Verse(s) BPM

Dead and Gone (T.I., 2009) 1–2 68
Niggas in Paris (Jay Z and Kanye West, 2011) 1–3 70
Mercy (Kanye West, at al., 2012) 1,2,4 70
What’s Your Fantasy (Ludacris, 2000) 1–3 70
Holy Grail (Jay Z, 2013) 1–2 72
How Low (Ludacris, 2009) 1–2 72
Woof (Snoop Dogg, 1998) 1–3 83
Pray (M.C. Hammer, 1990) 1–5 122
It’s Tricky (Run-D.M.C., 1987) 1–4 128
You Be Illin’ (Run-D.M.C., 1986) 1–4 128
Fight for Your Right (the Beastie Boys, 1987) 1–3 134
Mercy (Kanye West, at al., 2012) 3 140

Table 1. List of verses in MCFlow which Condit-Schultz

[18] identified as tempo outliers. BPM = quarter-notes per

minute.
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Figure 1. Distribution of notated quarter- and eighth-note

inter-stress-intervals in MCFlow, by absolute duration.

raw, backbeat-based notation covers an tempo range only

slightly greater than one tempo octave, similar to observed

listener preferences [12, 13]. In contrast, following my

speculated renotations results in a few verses being moved

into more extreme absolute tempos.

2.2 Meter

Meter is an organizational structure in music, wherein mul-

tiple phase-aligned beats with integer-related periods form

a nested hierarchical pattern [5]. These beats can be sorted

from fastest (“lowest”) to slowest (“highest”), each con-

sidered one metric level, notated here as [l1, . . . , lk]. The

highest metric level (lk) defines the overall period of the

meter, a measure; the lowest metric level (l1) is known as

the tatum. In a musical passage, each note onset is asso-

ciated with a tatum pulse [24], and thus a unique metric

position within each measure—e.g., “beat 4.” Metric po-

sitions may also coincide with one or more higher-metric

levels, with the highest level defining the “level” of that

position. For example, the downbeat of each measure is

the unique position at level lk.

In this paper, I consider only simple duple meter, with

each metric level having twice the period of the level be-

low it [1]: essentially a 4
4 meter with strictly no triplets.

The standard 4
4 generally presumes at least three central

levels [5, 20]. However, music often evinces hyper-metric

pulses above the measure level [20] and, conversely, faster

levels well below the ostensbile tactus (e.g., 16th- and

32nd-notes). Thus, I proceed with a slightly expansive

k = 6: six metric levels with 32 metric positions. This

could be interpreted as one measure of 32nd-notes, two

measures of sixteenth-notes, or four measures of eighth-

notes. Throughout this paper, I will take l1 as 32nd-notes,

putting quarter-notes in l4.

Regardless of notation, the fastest metric level (tatum)

can always be identified in any transcription. However,

some musical passages may have implicit subdivisions,

that would be felt by a listener, but are never articulated

in the music. Thus, the true tatum l1 may be different than

the observed tatum l1̄. For any given musical transcrip-

tion, we can postulate one or more implicit subdivisions,

effectively “shifting” the observed metric positions up one

level—equivalent to renotating the music in augmentation.

2.2.1 Modeling Meter

To characterize the rhythms of music in metric terms, I

use a first-order (two-gram) model, considering the joint

probability of the metric positions of sequential pairs

(antecedent-consequent) of note events. Given 32 posi-

tions, a full transition matrix would require 1,024 param-

eters, many of which would be close to zero or simply re-

dundant, as rhythmic patterns in different parts of the mea-

sure can be closely related. To work with less sparse and

more interpretable parameters, I explored ways of reducing

the full 32x32 parameters space to a smaller number of pa-

rameters while maintaining predictive power. My final ap-

proach is to bin each antecedent note according to its met-

ric level lk and each consequent into one of nine categories

defined relative to the antecedent position. My nine metric

consequent types, illustrated in Figure 2, are able to dif-

ferentiate between shorter and longer iois, weak-to-strong

versus strong-to-weak beat transitions, and different sorts

of syncopations. These forty-seven parameters are repre-

sented in a vector p, with components pl.m corresponding

to the probability of each metric transition (Table 2). In the

raw MCFlow data, the full 32X32 metric transition matrix

has a joint entropy of 6.19 bits (10 being the maximum

theoretical value). My antecedent-consequent parameteri-

zation, with only 47 parameters, achieves a cross-entropy

with the same data of 7.44 bits, gaining only 1.25 bits 5 by

removing 977 parameters. Figure 3 illustrates the distri-

bution of my antecedent-consequent parameters, using the

raw MCFlow note-values.

2.3 Statistical Model

The statistical model I employ mirrors the thought process

we explored with Johnny Cash songs above, “renotating”

5 This difference in bits is equivalent to the Kullback–Leibler diver-
gence.
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Figure 2. Illustration of nine metric consequent types at

the l4 level. Arrows point to exact points; shaded areas

indicate points binned together.

Drop Step Dot Straight Drop Straight Dot Up Long
sync. sync. sync. sync.

l6 p6.1 p6.2 p6.3 p6.4 p6.5 p6.7 p6.9
l5 p5.1 p5.2 p5.3 p5.4 p5.5 p5.6 p5.7 p5.8 p5.9
l4 p4.1 p4.2 p4.3 p4.4 p4.5 p4.6 p4.7 p4.8 p4.9
l3 p3.1 p3.2 p3.3 p3.4 p3.5 p3.6 p3.7 p3.8 p3.9
l2 p2.1 p2.2 p2.3 p2.4 p2.5 p2.6 p2.7 p2.8 p2.9
l1 p1.4 p1.6 p1.8 p1.9

Table 2. Forty-Seven metric coefficients (p). Empty slots

are logically impossible given the definitions. sync. = syn-

copation.
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Figure 3. Raw empirical estimates for pl.m. Both sides

of the figure show the same information in two different

formats: the left side shows the conditional probability of

each metric consequent, given the metric level of an an-

tecedent syllable; the right side shows the joint probability

of the same antecedent-consequent pairings.

verses in the MCFlow corpus to find a good fit. With each

iteration of the model’s Monte Carlo algorithm, the model

finds estimates of the metric coefficients (explained below)

using the dataset as currently encoded. The model then es-

timates parameters which represent the “scaling” of each

individual verse, by retabulating the music assuming one

or two unobserved sub-divisions—equivalent to renotating

the music in augmentation. The process repeats, reestimat-

ing the meter parameters using the new scaling parameters,

etc., until a complete picture of the posterior distribution

emerges, as guaranteed by the Metropolis-Hasting algo-

rithm [25]. Ultimately, I find the scalings of each verse

that result in the best fit to the overall metric distribution.

In each verse, I count instances of 47 metric transition

bins, indexed l.m as defined above for p. Let the counts

in the nth verse be labeled Cn = [cnl.m, . . .]. I then model

each set of counts as an independent draw from a multino-

mial distribution Cn ∼ M(
∑

Cn,p). The core purpose

of the project, however, is to estimate a set of indicator,

“shift,” parameters, one for each verse: s = [s1, . . . , sn],
where sn ∈ {0, 1, 2}. There are thus actually three dif-

ferent counts (Cn(s∈{0,1,2]}) for each verse, one for each

possible shift parameter: When Cn(s=0), the metric pa-

rameters are counted assuming the observed tatum is the

true tatum l1̄ = l1. When Cn(s=1), count assuming

that there is one implicit level of duple subdivision in the

meter, l1̄ = l2, “shifting” the metric parameters up one

level. When Cn(s=2), counted assuming two subdivisions,

lbar1 = l3. I assume also that the values of s ∼ M(n,S),
where S = [S0, S1, S2] is another discrete probability dis-

tribution (though this ultimately had little impact on my

results).

2.3.1 Model Estimation

Given the assumed distributions above, I use a Bayesian

Markov Chain Monte Carlo (MCMC) algorithm to calcu-

late posterior distributions for p, s, and S. Since objec-

tive estimates for the s shifting parameters are my main

goal, I specify no prior distribution for s, letting the model

believe (initially) that all values of s are equally proba-

ble. For p and S, I specify minimally informed Dirich-

let prior distributions: prior(p) ∼ Dir(αl.m = 5) and

prior(S) ∼ Dir(αS = 5). These minimal priors—

equivalent to observing 235 prior note transitions and 15

prior verse shifts respectively—mainly serve to (weakly)

discourage the model from assigning values close to zero.

Note that the Bayesian approach here does not only find

the optimal point-estimate for each parameter, but a com-

plete prior distribution of belief regarding each parameter.

This will allow the model to express degrees of certainty

about each sn, rather than finding only one optimal choice.

I estimate the posterior distribution using a custom

MCMC implementation in R, with three Gibbs-sampler

steps (for s, S, and p) in each iteration, i. In each Gibbs

step, I sample new parameter estimates for one parameter

from the conditional distribution of that parameter given

the current values of the other parameters. The result

is a sequence of estimates for each parameter, forming a
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Figure 4. MCMC trace for four selected parameters.

Dashed lines indicate boundaries between independent

chains.

Markov chain which converges on the true posterior distri-

bution.

For the s scaling parameters, new estimates for all

[s1...n] parameters are sampled in a single step. For each

verse, the probability of observing Cn(s) for all three val-

ues of s, conditioned on pi and Si, is computed.

sni+1 ∼ P (Cn(s)|M(
n∑

1

C
n(s)
i ,pi)) ∗ Si

For the p metric coefficient parameters, new estimates

for all parameters were sampled in a single step, condi-

tional only on si. Taking advantage of the conjugate re-

lationship between the multinomial and Dirichlet distribu-

tions, I can sample from the conditional distribution of p

directly using the Dirichlet distribution:

pi+1 ∼ Dir(α =
N∑

n=1

Cn(si)i + priorα(p))

Updates for S are similar but even simpler, using only

the current (estimated) counts of s: Si+1 ∼ Dir(α =
counts(si) + priorα(S)).

To minimize the effect of initial values, I initialized

forty independent markov chains on different random

draws from the prior distributions of p and S, and a uni-

form random sample of s parameters. Each chain ran for

11,000 samples, with an initial “burn in” of 1,000 iterations

removed from each chain, though each chain appeared to

reach its stationary distribution well before the 1,000th it-

eration. All forty chains converged on the same final dis-

tributions for all parameters (see Figure 4 for a few exam-

ples). As is usually the case with MCMC models, several

parameter chains evinced moderate autocorrelation values

(the largest being 0.287), so I thinned the chain by tak-

ing every tenth sample, cutting the absolute autocorrelation

values down to r ≤ 0.115. The result is a chain of 40,000

samples for each parameter. Figure 4 shows the MCMC

traces for four of the p parameters; the other parameter

traces look essentially identical.

3. RESULTS

The main parameters I am interested in are the estimates

of s, the “shift” parameters for each verse. Despite the

fairly long MCMC trace (40,000 samples), in 372 of 376

verses the model selected the same shift parameter in ev-

ery sample; evidently, most verses fit in one, and only

one, interpretation. In only three verses—none of which

were a priori tempo outliers—did the model find signifi-

cant uncertainty, with the non-modal choice sampled be-

tween 12.6% and 43.9% of the time (these appear midway

between shift levels in Figure 5). The important question is

whether these highly confident shift parameters match my

a priori expectations. If we take the posterior modal value

for each sn, we observe 37 shifts of 0, 318 of 1, and 21 of 2.

Figure 5 shows these average posterior s values normalized

relative to the original empirical l1̄ of each verse, such that

0 indicates the original notated quarter-note. The model

correctly identifies the predicted renotation for 27 of the

35 a priori outliers. The model also identifies four unan-

ticipated verses that need shifting, and fails to shift eight

verses—if we view this as a binary classification task, the

model achieves an F-score of .818. Note that the model

was not provided any information about absolute timing,

so this accuracy is achieved purely by looking at metric

transitions. Close investigation of the false positives re-

veals that, though I didn’t originally identify these verses

as outliers [18], each features flow that could make sense

renotated. The false negatives are not as easy to interpret;

However, in no case did the model falsely reject all outlier

verses in a song: for example, the model correctly shifts

four of the five verses in MC Hammer’s “Pray,” but fails to

shift the fourth verse (for no obvious reason).

To visualize the posterior distribution of p, the metric

coefficients, I show the average posterior value for each

pl.m parameter in Figure 6. If we compare this to Figure

3, there are no dramatic differences, except at l1, where

the model places considerably less probability mass. The

average entropy of the p posterior is 3.339 bits, slightly

lower than the joint distribution of the raw-notation counts

at 3.409 bits, demonstrating that model has improved the

overall fit of the data. Finally, I can also use the posterior

parameters to evaluate unseen data. For example, if I apply

the posterior p to our three Johnny Cash songs, we find

that the model shows (with total confidence) that the three

songs should be aligned at the same backbeat level, as I

speculated at the outset.

4. DISCUSSION AND CONCLUSION

Though it appears that my statistical approach both im-

proves fit and matches (my) expert judgments [18], this ini-

tial foray is not a decisive demonstration that this approach

can help us generalize about metric syntax. It appears

that my model is learning, or at least observing, something

about the organization of metric syntax across metric lev-

els, but future work is needed to elucidate what is going

on, and determine how robust this methodology can be.

It may seem that my full Bayesian treatment is overkill:
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Both sides of the figure show the same information in two

different formats: the left side shows the conditional prob-

ability of each metric consequent, given the metric level of

an antecedent syllable; the right side shows the joint prob-

ability of the same antecedent-consequent pairings. Bars

indicate the Bayesian 95% credible interval for each pa-

rameter.

My parameter estimates are tightly packed around their

mean and not dramatically different than the simple counts

derived from the raw data; my posterior estimates of s

also show little variability. This suggests that a simpler

approach could probably achieve similar results on this

dataset. My results are also strongly fitted to this particular

dataset—for this initial attempt I specified uninformative

priors on all parameters, allowing the model to fit the data

at hand very closely. However, I believe this full Bayesian

approach will prove robust if extended to other datasets

which might be less rhythmically uniform than MCFlow,

and the results here could be used as the basis for more

informative priors for future work.

Finally, though I have argued that this task is theoret-

ically connected to perceptual and musicological ideas of

tactus and tempo, future work with human participants will

be necessary to establish direct connections between my

findings and human perception. For example, my p es-

timates could be used to generate rhythmic stimuli with

different (predicted) tactus interpretations. For course, as

discussed above, there is plenty of evidence that tactus is

never fully determined by musical features [4, 5, 8–11].

Listeners’ perception might be shaped previous context,

personal experience, their own personal state, or by con-

scious effort. My analysis of “syntactic regularities,” even

if valid, isn’t necessarily connected to tactus at all: in-

deed, at least one prominent psychomusicological theory

of rhythm, London’s [20] (p. 95) tempo-metrical types,

“is [explicitly not] defined in terms of the level heard as

the tactus.” It’s possible that the statistical regularities

found by my model represent tempo-metrical types, or

other rhythmic structural principles, but not tactus.

Basing psychological conclusions on statistical evi-

dence requires a match between the musical corpora and

the listening experience of people. Different musical ex-

posure (and thus statistical experience) might explain dis-

agreements about tactus. Stepping back further, it is pos-

sible that syntactic relationships in music involve relation-

ships between various rhythms and beats without assum-

ing any privileged reference level at all. My results here

make this final possibility appear unlikely, but much work

remains to be done.
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