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ABSTRACT

We introduce Cadenza, a new multi-stage generative

framework for predicting expressive variations of symbolic

musical ideas as well as unconditional generations. To ac-

complish this we propose a novel MIDI encoding method,

PerTok (Performance Tokenizer) that captures minute ex-

pressive details whilst reducing sequence length up to 59%

and vocabulary size up to 95% for polyphonic, mono-

phonic and rhythmic tasks. The proposed framework com-

prises of two sequential stages: 1) Composer and 2) Per-

former. The Composer model is a transformer-based Vari-

ational Autoencoder (VAE), with Rotary Positional Em-

beddings (RoPE) [1] and an autoregressive decoder mod-

ified to more effectively integrate the latent codes of the

input musical idea. The Performer model is a bidirectional

transformer encoder that is separately trained to predict

velocities and microtimings on MIDI sequences. Objec-

tive and human evaluations demonstrate Cadenza’s versa-

tile capability in 1) matching other unconditional state-of-

the-art symbolic models in musical quality whilst sounding

more expressive, and 2) composing new, expressive ideas

that are both stylistically related to the input whilst pro-

viding novel ideas to the user. Our framework is designed,

researched and implemented with the objective of ethically

providing inspiration for musicians.

1. INTRODUCTION

The creative endeavor in present-day music production is

inherently complex and multifaceted. However, it can be

broadly categorized into distinct phases that include 1) ini-

tiation, 2) evolution and development, and 3) completion

of musical ideas into a finished musical outcome. Mod-

ern generative models have had a major impact in every

creative domain, none the least in music creation. MIDI,

and therefore Symbolic AI research approaches for single-

track MIDI generation are especially applicable to the con-

temporary music producer. The motivation behind our

investigation arises from a gap in this current landscape

to facilitate the crucial middle phase of the creative pro-
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cess: absence of a comprehensive, adaptable modeling

framework specifically engineered for generating expres-

sion variations from a given MIDI file input. Our pro-

posed solution, Cadenza, addresses this by focusing on the

’development’ phase of music creation while unveiling a

framework that is designed for flexibility and efficiency.

Cadenza utilises a multi-stage generative process, the com-

poser and the performer, to create novel ideas and varia-

tions while emulating the nuanced performance character-

istics that can define a given musical style. We choose to

call our framework ’Cadenza’, inspired by the improvised

musical passage played by soloists, creating new and ex-

citing variations of the original motifs of the piece being

performed.

1.1 Encoding Symbolic Music

Alongside transformer-based architectures a number of

methods have been proposed to encode, or tokenize MIDI

files into a discrete sequence of tokens. As transformers

suffer from quadratic memory complexity in relation to se-

quence lengths [2], particular focus is placed on captur-

ing relevant MIDI information whilst minimizing the total

number of tokens. Popular tokenizers include REMI [3],

TSD [4] and Structured [5], amongst many others. How-

ever, these approaches suffer from a common drawback:

they rely on singular tokens to denote the position of each

note event on an evenly-spaced temporal grid. In com-

parison to MIDI files, which typically utilise a time res-

olution of 220 or 440 ticks-per-quarter [note], these tok-

enizers are typically employed with just four intervals per

quarter note. This has two negative effects: first, note-

values outside this range are immediately quantized, such

as quarter-triplets, eighth-triplets, quintuplets, and thirty-

second notes. In addition, any rhythmic performance at-

tributes, expressed as subtle deviations from the fixed-grid,

are immediately lost. As a result, the current state-of-the-

art in MIDI tokenizers are unable to accurately capture the

full range of rhythmic values and expressive performances.

1.2 Expressive Modeling

In both digital and physical contexts, it is common to di-

vide the act of composing music and performing it. The

composition (or score) contains the raw musical idea,

whereas the performance will typically embellish it with

additional details, such as varying volumes (velocities in

MIDI) and subtle timing deviations. Symbolic datasets can

981



be categorized broadly as:

• Score: The sequences contain quantized rhythmic

values and minimal/no volume information.

• Time-Performance: Dynamics and expressive tim-

ing are captured. The performer(s) play without a

fixed tempo, resulting in a time-based encoding (typ-

ically milliseconds), such as [6].

• Beat-Performance: Dynamics and expressive tim-

ing are captured. The notes are recorded in relation

to a fixed tempo, with rhythmic expressivity occur-

ring as deviations from the quantized beats.

Although a substantial quantity of score datasets exist,

there are significantly fewer in both performance cate-

gories. As a result, systems such as that proposed in [7],

wherein both composition and performance elements are

jointly trained and predicted, are limited by this inequality.

A number of recent models have been proposed to

exclusively add performance elements, such as Render-

ingRNN [8] and ScorePerformer [9]. However, they rely

on the prediction of tempo tokens in alignment with the

Time-Performance standard. This results in MIDI files

that are still rhythmically quantized, albeit with varying

tempos. We posit that this approach is incompatible with

the common production standards of many modern genres

that instead rely on fixed tempos.

The framework in Compose & Embellish [10] proposed

a system of jointly training Lead-Sheet (score) and Per-

formance models. With a modified REMI [3] tokeniza-

tion they demonstrated that the lead-sheet model could be

pre-trained on a greater quantity of score data, and subse-

quently fine-tuned with the performer, on a smaller per-

formance dataset. Similar to prior systems, they quan-

tize rhythms to the nearest 16th position, and instead pre-

dict [Tempo] for expressive timing. Furthermore, due to

the joint-conditioning training method, the compose model

can lose certain capabilities from the fine-tuning process as

it fits to the smaller performance dataset.

1.3 Generating Variations

A number of models have been proposed to solve

variations-adjacent tasks. ThemeTransformer [11] utilises

contrastive representation learning in a sequence-to-

sequence framework to generate a melody and accompani-

ment that recurrently incorporates the original theme. The

authors of Music FaderNets [12] instead propose a style-

transfer task, wherein a number of high-level attributes

can be applied to transform a polyphonic sequence. Our

work most notably builds off of the model proposed in

MuseMorphose [13], which uses a novel in-attention

mechanism in a transformer-based VAE for generating

attribute-controlled variations on symbolic data. However,

these models are designed to predict long-form sequences

(16+ bars) that do not contain any expressive information.

Overall, our key contributions to the field through this

work are two-fold. Firstly, in section 2.2 we introduce

PerTok, a novel MIDI encoding method that captures ex-

pressive details with required granularity while maintain-

ing compact sequence lengths and manageable vocabulary

sizes. PerTok is implemented with the MidiTok [4] li-

brary, released open source and is compatible with any

token-based sequential generation model. Secondly, the

Cadenza framework itself represents a significant leap for-

ward as presented in section 3, integrating the ’Composer’

and ’Performer’ models into a cohesive architecture that

is researched and designed for the domain of AI-assisted

music creation. Our framework offers a natural and intu-

itive way for musicians to create and modify music, which

can be tailored to specific stylistic goals. Human evalu-

ations showcase how Cadenza matches other state-of-the-

art MIDI models in unconditional score generation quality,

creates dynamic variations on input ideas, and sets a new

standard for human-like expressive articulations.

2. SYMBOLIC DATA ENCODING

We aim to encode MIDI data in a manner that is both

1) aligned with common audio production use-cases and

2) efficient in the context of transformer-based generative

models. While a number of state-of-the-art models such as

Anticipatory Music Transformer (AMT) [14], Figaro [15]

and Multi-Track Music Machine (MMM) [16] have fo-

cused on long-form, multi-track generation, we have ob-

served from our experiences in designing products for con-

temporary music producers that they more commonly in-

teract with short, single-track files. Furthermore, we ob-

serve that a number of tokenization methods such as [9]

rely on tempo tokens to create a sense of expressive per-

formance, whereas music producers often keep a singu-

lar, consistent tempo throughout their composition. Thus,

our proposed encoding method is focused on single-track

MIDI files in which the expressivity is calculated in rela-

tion to a fixed tempo.

2.1 Score & Performance Encoding

To address this, we create separate tokens to model the

composition and performance timing elements. More

specifically, the macro timeshift tokens represent the quan-

tized note locations within a score. Separately, the mi-

croshift events denote a small adjustment from the quan-

tized location, similar to the subtle timing deviations used

by human performers. By separating these events, we are

able to maintain reasonable balance between vocabulary

size and total sequence length. Furthermore, the differen-

tiation allows for models to be separately trained on the

composition and performance tasks respectively. As there

is a significant difference in the availability between quan-

tized and performed symbolic datasets, this enables us to

feed a far greater quantity of data into the composition-

only model.

Initial tests revealed that the common convention of

quantizing the composition-level timeshift tokens to 16th

notes was leading to a number of musical issues. For ex-

ample, when quarter- or eighth-note triplets were present
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Figure 1. Example of PerTok tokenization on a 2-bar excerpt of a MIDI file. Composition tokens are highlighted in yellow,

and performance tokens in blue.

in the input MIDI file, the quantization process was con-

sidering them to be 16th notes with large degrees of mi-

croshift. We addressed this by providing the ability to

specify multiple, overlapping quantization grids, such as

16th, quarter-triplets, and 8th-triplets. Thus, the PerTok

tokenizer is more adept at capturing the wide variety of

rhythmic values that are commonly found in genres such

as hip-hop, jazz and salsa (among many others).

2.2 PerTok

Score Tokens: Similar to the MIDI-Like [7] and Struc-

tured [5] encoding methods we represent macro time

changes between notes with Timeshift tokens. As MIDI

time data is typically expressed as ticks-per-quarter, Per-

Tok allows for multiple overlapping granularities to model

a variety of rhythmic values. When encoding the MIDI

data, PerTok matches each note’s position to the closest

possible timeshift value. Pitch is denoted as a MIDI pitch

value between 0-127, with the capability to limit this range

when musically appropriate. Duration tokens are used

after each new note, to indicate the length of time be-

fore a MIDI note-off message is triggered. Notably, Per-

Tok allows for the removal of duration tokens altogether,

which helps further reduce sequence lengths when model-

ing rhythmic instruments.

Performance Tokens: With the addition of perfor-

mance tokens, we aim to capture the musical subtleties that

transform a written score into an expressive performance.

Velocity tokens denote the strength of the note’s attack, a

property that is typically used in DAWs to augment tim-

bre and volume characteristics. Although MIDI provides a

range of 0 - 127 for velocity values, we allow for a bucket-

ing approach to reduce a given velocity into one of n pos-

sible values. Microshift tokens provide a granular shift

from the quantized rhythmic note value. PerTok is pro-

vided a maximum microshift value (e.g. 30 MIDI ticks)

and a discrete number of possible microshift buckets. For

example, Microshift 15 represents a placement of 15 ticks

after the quantized note position, and Microshift 0 results

in the initial quantized value.

In Table 1 we provide a benchmark of our proposed

PerTok encoding against a number of popular MIDI tok-

enizers. We sampled from 2,000 polyphonic 4- and 8-bar

Tokenizer Vocab. Size Seq. Length

REMI 273 195
REMI-p 5505 199
Structured 289 216
Structured-p 7265 216
TSD 288 188
TSD-p 7264 192
PerTok 196 134
PerTok-p 259 243
PerTok no-duration 164 80

Table 1. Vocabulary sizes and average sequence lengths

for popular tokenizers and our proposed PerTok encoding.

MIDI files that are used in modern audio production envi-

ronments. For each tokenizer, we use 32 possible velocity

buckets. To demonstrate the tradeoff between composition

and performance, we initialize one version with 16th-note

quantization (thus removing any performance characteris-

tics), and a second (denoted with a -p) version with 440

timeshifts per quarter note. REMI and Structured method-

ologies use evenly spaced temporal grids to encode the lo-

cation of each event, whereas PerTok uses a mixture of

macro and micro timeshift tokens leading to a 95% reduc-

tion in vocabulary size when encoding expressive rhythmic

details. We additionally provide a visualization of our en-

coding method with a sample 2-bar melody in Figure 1.

3. MODEL

With the objective of generating expressive, beat-

structured variations on an input MIDI file, we present Ca-

denza, a multi-stage VAE with transformer-based compo-

nents. The framework is designed upon a principle that the

composition task requires a significant quantity of data and

benefits from auto-regressive generation, whereas the pat-

terns of expressive performance tokens can be learned with

smaller datasets and predicted in a bi-directional manner.

3.1 The Composer

Given an input sequence of tokens {x1, x2, ..., xt} in

which xt represents a single token x at index t the

composer model is designed to auto-regressively predict

{y1, y2, ..., yt}, an output sequence that is musically re-

lated yet distinct from the input. We utilise a sequence-to-
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Figure 2. An overview of the multi-stage Cadenza architecture.

sequence VAE architecture with in-attention conditioning

similar to MuseMorphose [13], enabling the model to learn

a compressed, latent representation of short musical ideas

within a regularized space. Within each attention mecha-

nism, the query q and key k vectors at timesteps m,n are

obtained with RoPE [1] for enhanced positional context:

q⊤mkn = (Rd
Θ,mW qxm)⊤(Rd

Θ,nW
kxn) (1)

Wherein Rd
Θ,m and Rd

Θ,n are the rotary matrices for po-

sitions for embedding positional information, W q and W k

are learnable weight matrices transforming inputs xm and

xn into the query and key vectors. For additional context

we encourage readers to refer the original paper. As music

is a deeply temporal phenomenon, the composer benefits

from the increased token spatial modelling that is provided

by the rotary embeddings.

The encoder is designed to create a latent vector z of

the input musical idea which serves as an anchor through-

out the decoding process. In alignment with the original

transformer [2] we first project the input sequence with a

learned embedding space, transforming it into X ∈ R
d×t

where d is the hidden dimension size. This is then pro-

cessed through several multi-head self-attention layers.

Following a similar approach to [13] we extract the first

timestep of the final attention layer output to obtain hidden

vector h ∈ R
d, a contextual representation of the full input

sequence.

Following standard VAE methodology [17], the output

vector is then processed through two learnable weight ma-

trices Wµ ∈ R
d×dz and Wσ ∈ R

d×dz , wherein dz denotes

the size of the latent dimension. This process yields the

mean µ and standard deviation σ vectors, encapsulating the

latent space distribution parameters. Using the reparame-

terization trick, we sample ϵ from the Gaussian distribution

to obtain z ∈ R
dz from our encoder:

z = hWµ + hWσ ⊙ ϵ (2)

The encoder’s output distribution q(z|X) is aligned to a

Gaussian prior N (0, 1) by the traditional Kullback-Leibler

(KL) divergence loss term:

DKL(q(z|X)∥p(z)) = −
1

2

dz
∑

k=1

(

1 + log(σ2

k)− µ2

k − σ2

k

)

(3)

We further modify the equation utilising free bits as pro-

posed by [18], allowing the encoder a degree of unpenal-

ized space defined by λ to learn musical attributes without

regularization.

LKL =

dz
∑

k=1

max(λ,DKL(q(zk|X)||p(zk))) (4)

The decoder is trained to autoregressively predict an

output sequence of tokens whilst maintaining a recogniz-

able connection with the input musical idea. Initially, the

latent vector z is expanded to the decoder’s hidden dimen-

sion d via a learnable matrix Wpre ∈ R
dz×d. We sepa-

rately expand the input tokens v1, v2, ..., vk with the same

embedding layer used by the encoder.

In the context of the autoregressive VAEs it has been

noted that posterior collapse is a common issue [19–21],

in which a sufficiently powerful decoder can simply ig-

nore the encoder’s regularized information, instead relying

purely on the previous tokens. We utilise the methodol-

ogy of Skip-VAE [22] and MuseMorphose [13], integrat-

ing the proposed in-attention mechanism. Prior to each

attention layer, we sum expanded latent vector zpre with

every timestep of the previous hidden state, thus reinforc-

ing its information throughout every stage of the decoding

process. Therefor hidden state H ∈ R
t×d at layer i is cal-

culated as:

Hi = SelfAttention(Hi−1 + xpre) (5)

The final hidden state is then passed through a feed-

forward layer, which has weights tied to the embedding

layers as first proposed in [23]. The decoder minimizes the

negative log likelihood (NLL) of the output sequence yt
when given prior tokens:

Lrecon =
T
∑

t=1

logpθ(yt|y<t, z) (6)

Thus, the composer is optimized with the NLL recon-

struction loss as well as the β-scaled regularization KL

loss:

Lcomposer = Lrecon + βLKL (7)
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3.2 The Performer

The Performer is separately tasked with computing tokens

for velocity and microshift time values. Thus, it is able

to transform a quantized MIDI score into one with expres-

sive characteristics, rendering it more suitable for a variety

of music production tasks. Whereas the composition task

generally benefits from an autoregressive setup wherein

each token is predicted sequentially, it has been demon-

strated in [24, 25] that performance attributes can be pre-

dicted in a bi-directional manner.

We utilise a framework comparable to the masked to-

ken prediction task of BERT [26]. During training and

inference, we replace the input performance tokens denot-

ing velocity and microtiming with a single [MASK] to-

ken. The tokens related to pitch, timeshift, and duration

are left unmodified. The model is a standard transformer

encoder as per [2], with sinusoidal positional embeddings,

layer normalization and a final feedforward layer that has

weights tied to the initial embedding layer.

During training the model is tasked to replace each

[MASK] token with an appropriate velocity and microshift

value, with cross-entropy loss used exclusively on the

masked tokens. We perform the masking operation on

100% of performance tokens. At inference time, we man-

ually mix tokens between the original source and model

predictions, thus ensuring the original pitch, timeshift and

duration values are maintained.

4. EXPERIMENTAL SETUP

4.1 Composer Ablations

By training several composer models, we aim to under-

stand the relationship between various degrees of KL reg-

ularization and the decoded sequence’s similarity to the in-

put. Each model is trained on 4-bar segments of the full

Lakh-MIDI dataset [27]. The models all have 12 layers

and 8 heads in both the encoder and decoder, with a la-

tent dimensionality dz of 128 and hidden dimension d of

512. The Full-KL model was trained with a KL regularizer

β = 1.0 and free bit λ = 0.15. The Balanced-KL model

was trained with β = 0.3 and λ = 0.25. In both instances

the KL regularization was applied with cosine cyclical an-

nealing [28] every 10,000 steps. We initially keep β = 0.0
for the first 25,000 steps, and then linearly raise it to the

maximum value over the proceeding 25,000 steps. Finally,

the No-KL model had a β = 0.0 (no regularization), thus

allowing the encoder to exclusively optimize against re-

construction quality.

Objective Evaluations : We generate a single varia-

tion for 500 files from the test set for each model, utilising

greedy decoding to remove any sampling logic from the

evaluation framework. For each sample, we calculate the

similarity in pitch distribution, onset locations and du-

rations:

similarity(xa, xb) = 100
⟨xa, xb⟩

||xa||||xb||
(8)

wherein x ∈ Z
t is a discrete vector of t attributes; in the

case of pitch we set t = 128 to capture the full MIDI note

range, and for both onset location and duration t = 64,

representing the nearest 16th value in a 4-bar pattern. Fi-

nally, we report Absolute Similarity, the percentage of

notes that have identical characteristics (pitch, onset, du-

ration) between both sequences.

4.2 Performer Fidelity

Two performer models are trained with separate datasets

to measure their capacity to model the unique expressive

characteristics of a given training set. Both models are

trained with 12 layers and heads, a hidden dimensional-

ity of 768, and a dropout of 10%. One model is trained

on the classical MusicNet dataset [29], and the other (re-

ferred to as HipHop) is trained on a proprietary hip-hop

dataset. In both cases, we train on approximately 10,000

4-bar excerpts. Each dataset contains polyphonic data with

differing expressive patterns of velocities and microtiming.

We randomly extract 2,000 polyphonic 4-bar patterns

from the Lakh-MIDI dataset [27] and generate expressive

tokens from both models. We subsequently measure the

velocity and microtiming distributions of both the genera-

tions as well as the two original training datasets. Velocity

distribution is represented as v ∈ Z
128, a vector represent-

ing the number of occurences of each velocity value. For

each note, microtiming is calculated as a percentage devi-

ation from the nearest 16th note, with +/-50% denoting the

halfway point to/from the adjacent 16th time index. The

total distribution of microtiming deviations in a given se-

quence is thus represented with vector mt ∈ Z
100.

For both velocity and microtiming, we compare the dis-

tributions of both model’s predictions against the Music-

Net and HipHop datasets. In Table 4 we report the KL di-

vergence, as well as the absolute difference in the mean and

standard deviation for these distributions. In each metric, a

lower value indicates higher degree of similarity between

the model’s predictions and the original dataset’s expres-

sive characteristics.

4.3 User Study

We conduct a thorough user study to achieve a qualita-

tive understanding of our model’s performance, compar-

ing to different external baselines and versions due to hy-

perparameter settings. All the audio samples that users

heard were 4 bar MIDI files voiced through the same Pi-

ano VST. In Part A of the user study, 25 human evaluators

listened to 5 seed melodies and 4 alternative variations for

each of them, coming from the No-KL, Balanced-KL and

Full-KL versions of our proposed model, and additionally

a Placebo melody which was randomly selected to be in

the same key and scale as the input but had no relation to

it. This was done to confidently ground the musical un-

derstanding of our human evaluators. Overall, 44% of our

evaluators identified themselves as "Novice : I have little

to no experience making music", 32% as "Amateur : I love

making music for fun", and 24% as "Professional : I regu-

larly make music in a professional capacity".
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Model Pitch Sim.(%) Onset Sim.(%) Duration Sim.(%) Absolute Sim.(%) Human Eval(1-5)

Full-KL 71.01 77.99 88.65 9.44 1.94

No-KL 95.64 83.04 98.40 20.05 2.84

Balanced-KL 92.06 80.80 96.95 16.46 2.71

Placebo - - - - 1.22

Table 2. Objective and human-evaluation results from the

ablation studies. Higher values indicate more similarity to

the input’s musical characteristics.

In Part B, the same 25 human evaluators also rated 3 un-

conditional generations from Cadenza, Anticipatory Mu-

sic Transformer (AMT) [14] 1 and Figaro [15] models,

which broadly represent the state-of-the-art in symbolic

polyphonic generation. We randomly sampled 3 genera-

tions from publicly-available checkpoints of each model,

all of which were trained on identical versions of the Lakh

MIDI dataset [27], and present the results in Table 3. As

Cadenza’s composer requires a latent vector, we randomly

sample from a Gaussian distribution for unconditional gen-

erations. For each sample, the evaluator was asked to rate

between how musically appealing it sounded to them with

1 being the lowest and 4 being the highest score. In ad-

dition, they were also asked to select, in a binary choice,

whether they thought the performance was generated by a

human or computer.

Model (Params) Musical Appeal Score ↑ (1-4) ‘Human-like’ Score ↑ (1-2)

AMT (360M) 3.33 1.57 (57.3%)

Figaro (87M) 2.73 1.57 (57.3%)

Cadenza (142M) 2.91 1.72 (72.0%)

Table 3. Human Evaluation Results for Model Quality.

Percentages represent the fraction of modeling outputs that

were selected by human evaluators when asked if it could

have been created by a human.

5. RESULTS AND DISCUSSION

We discuss our experimental results to answer three high

level questions - 1) provided an input MIDI sequence,

how musically related are the Cadenza variations; 2) can

the performer model tangibly improve expressivity; and

3) how appealing are the novel generations. We analyze

our proposed scientific approach through quantitative and

qualitative measures.

Both human and objective evaluations demonstrate in

Table 2 that training the composer with varying degrees

of KL regularization has noticeable impacts on the balance

between between recall and variety. Provided a musical

idea as input, the No-KL model will produce outputs nearly

identical to the input melody. Alternatively, the Balanced-

KL model will produce outputs that are related, yet altered

enough to provide new sources of inspiration. In many

cases, the Full-KL model will produce entirely unrelated

outputs, as a result of the encoder’s heavy focus on regu-

larizing the latent vectors. Since a score of 4.0 for a gen-

eration would be considered identical we can infer that the

1 Specifically, the music-medium-800k checkpoint

Model (Metric) KL Mean ∆ Std Dev ∆

Train Opposite Train Opposite Train Opposite

HipHop (Velocity) 1.68 3.63 1.81 16.83 1.74 9.04

HipHop (Microtiming) 0.66 2.64 0.05 0.05 0.00 0.14

MusicNet (Velocity) 3.17 11.57 1.95 13.06 1.20 12.00

MusicNet (Microtiming) 0.07 3.17 0.02 0.13 0.01 0.15

Table 4. Objective results on the Performer fidelity evalu-

ations.

ideas generated by No-KL and Balanced-KL are roughly

70% related to the input. This aligns with the quantita-

tive results, which consistently show a negative correlation

between the KL regularization and input/generation simi-

larity metrics. As such, our framework is demonstrated to

consistently generate variations that are perceptually rele-

vant to, yet distinct from, the input musical idea.

In Table 4, we report results from the Performer Fi-

delity quantitative study. In both MusicNet and HipHop

models, the distributions of predicted velocities and mi-

crotimings are consistently closer to that of their respective

training datasets. We can therefore infer that the performer

model, in conjunction with our newly proposed PerTok

tokenizer, is capable of accurately learning the patterns

of expressive characteristics from a comparatively small

dataset.

In Table 3 we compare Cadenza to AMT [14] and Fi-

garo [15] on the task of novel generations. Our model, al-

though comparable to its competitors on musical appeal,

comes in second to the AMT. However, Cadenza com-

prehensively outperforms other models by 14.7% in the

human-like expressivity ratings. We note that our frame-

work is highly adaptable, in that both composer and per-

former models could be replaced with any type of sequen-

tial network. Theoretically, one could further improve the

unconditional generation quality by replacing our VAE-

based composer model with a decoder-only model, similar

to that of AMT.

6. CONCLUSION

We introduced a multi-stage generative framework which

allows for both variation and novel generation tasks, main-

taining a competitive quality of composition and setting

a new state-of-the-art of expressive characteristics. Our

proposed tokenizer is used to create expressive symbolic

sequences while effectively reducing vocabulary size and

sequence length. We invite readers to our model page 2

where we showcase its fidelity in generating outputs for

polyphonic, monophonic, bass and drum instruments.

In particular, our performer model in conjunction with

the new tokenization method led to a quantifiable increase

in listener’s perceptions of the expressivity in the gener-

ations. These results were achieved with relatively tiny

datasets, paving the way for further collaborations with

artistic communities. Future research directions include

exploring controllability, as well as further improvements

in the domain of novel generation.

2 Access code and demonstrations on our model page here. PerTok
tokenizer is available as part of MidiTok library here.
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7. ETHICS STATEMENT

As generative AI technology advances rapidly, it is cru-

cial to address the implications of these developments in

the generative domain. Concerns such as perpetuating cul-

tural biases, undermining artists’ financial opportunities,

and using data without proper consent require urgent at-

tention and dialogue within research communities. When

developing new models, we must carefully consider both

their intended applications and potential impacts.

Our research involves deep collaboration with artists to

understand their motivations and needs, ensuring our ef-

forts benefit the creative communities we serve. For in-

stance, our new framework, designed for the MIDI sym-

bolic domain, focuses on enhancing artists’ tools with fea-

tures that inspire creativity rather than replacing the artists.

We also deliberately chose to work with smaller models,

which helps minimize data requirements. This strategy

promotes fair data agreements and increases the chances of

fairly compensating musicians, thus fostering sustainabil-

ity in creative industries and prioritizing ethical responsi-

bility, especially in creative domains.
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