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ABSTRACT

The neural semi-Markov Conditional Random Field (semi-

CRF) framework has demonstrated promise for event-based

piano transcription. In this framework, all events (notes or

pedals) are represented as closed time intervals tied to spe-

cific event types. The neural semi-CRF approach requires

an interval scoring matrix that assigns a score for every

candidate interval. However, designing an efficient and

expressive architecture for scoring intervals is not trivial.

This paper introduces a simple method for scoring inter-

vals using scaled inner product operations that resemble

how attention scoring is done in transformers. We show

theoretically that, due to the special structure from encod-

ing the non-overlapping intervals, under a mild condition,

the inner product operations are expressive enough to rep-

resent an ideal scoring matrix that can yield the correct

transcription result. We then demonstrate that an encoder-

only non-hierarchical transformer backbone, operating only

on a low-time-resolution feature map, is capable of tran-

scribing piano notes and pedals with high accuracy and

time precision. The experiment shows that our approach

achieves the new state-of-the-art performance across all

subtasks in terms of the F1 measure on the Maestro dataset.

See appendix for post-camera-ready updates.

1 Introduction

Automatic Music Transcription (AMT) transforms the au-

dio signal of music performances into symbolic represen-

tations [1]. In this work, we focus on transcribing piano

performance audio into its piano roll representation. 1 The

piano roll representation, as formulated in [2], can be ab-

stracted as consisting of sets of non-overlapping time inter-

vals of the form [onset, offset], with each set corresponding

to one particular event type, e.g., a specific note or pedal.

Recent strategies to handle the problem of outputting this

structured representation fall into three main categories: 1)

Keypoint detection and assembly: This approach involves

identifying the onsets, offsets, and frame-wise activations

of notes and then assembling these elements together with a

handcrafted post-processing step. Examples include [3–5];

1 Code: https://github.com/Yujia-Yan/Transkun
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2) Structured prediction with a probabilistic model: Models

in this category use a probabilistic model to ensure the struc-

ture of the output to be sets of non-overlapping intervals,

e.g., [2, 6, 7]; 3) Sequence-to-sequence (Seq2Seq) meth-

ods 2 : These methods, such as [8], treat music transcription

as a machine translation problem, which translates audio to

tokens that encode the target symbolic representation.

Our study focuses on the neural semi-Markov Condi-

tional Random Field (semi-CRF) framework [2] from the

second category, which directly models each music event

(note or pedal) as a closed time interval associated with a

specific event type. The approach employs a neural network

to score interval candidates and uses dynamic programming

to decode non-overlapping intervals. This framework elimi-

nates the need for separate keypoint detection and assembly

steps in the first category but outputs the events (intervals)

in a single stage. Compared to other methods in the second

category, e.g. [6, 7], it does not need hand-crafted state defi-

nitions and state transitions. Additionally, it benefits from

optimal decoding in a non-autoregressive fashion as op-

posed to the slow autoregressive and suboptimal decoding

in Seq2Seq methods (the third category).

This paper builds upon, simplifies, and improves the neu-

ral semi-CRF framework [2] for piano transcription. Our

major contributions are as follows. First, we replace the

original scoring module that assigns a score for every pos-

sible interval with a simpler and more efficient pairwise

inner product operation. Specifically, we prove that due

to the special structure of encoding non-overlapping inter-

vals, under a mild condition, the inner product operation

is expressive enough to represent an ideal scoring matrix

that can yield the correct transcription decoding. Second,

inspired by the resemblance between the proposed inner

product operation and the attention mechanism in the trans-

former [9], we use the transformer architecture to produce

the interval representation for inner product scoring. We

demonstrate that an encoder-only non-hierarchical trans-

former backbone, operating only on a low-time-resolution

feature map, is capable of transcribing notes with high ac-

curacy and time precision. Third, we compare our method

against state-of-the-art piano transcription systems on the

Maestro v3 dataset, showing that our method establishes

the new state of the art across all subtasks in terms of the

F1 score.

2 Strictly speaking, the Seq2Seq approach can also be categorized as
a probabilistic model for structrued prediction. We isolate it here for
simplifying the discussion.
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2 Related Work

2.1 Neural Semi-CRF for Piano Transcription

Previous work of [2] introduced a neural semi-Markov Con-

ditional Random Field (semi-CRF) framework for event-

based piano transcription, where each event (note or pedal)

is represented as a closed interval associated with a spe-

cific event type. The approach employs a neural network to

score interval candidates and uses dynamic programming to

decode non-overlapping intervals. After interval decoding,

interval-based features are used to estimate event attributes,

such as MIDI velocity and refined onset/offset positions 3 .

The neural semi-CRF can be viewed as a general output

layer, similar to a softmax layer, but tailored for handling

non-overlapping intervals. For a sequence of T frames, let

Y denote a set of non-overlapping closed intervals. The

semi-CRF layer for Y takes two inputs for each event type:

1. score(i, j): A T × T triangular matrix that scores

every candidate interval [i, j] for inclusion in Y . The

diagonal values score(i, i) represent single-frame

events.

2. scoreϵ(i− 1, i): A (T − 1)-dimensional vector that

assigns a score to every interval [i− 1, i] not covered

by any interval in Y , serving as an inactivity score.

Both score(i, j) and scoreϵ(i−1, i) are computed using

a neural network from the audio input X . The total score

for Y , given X , is:

Φ(Y|X ) =
∑

[i,j]∈Y

score(i, j) +
∑

[i−1,i]
not covered

in Y

scoreϵ(i− 1, i).

(1)

For inference, maximum a posteriori (MAP) is used to infer

the optimal set of non-overlapping intervals Y∗:

Y∗ = argmax
Y

Φ(Y|X ). (2)

For training, the maximum likelihood approach is used,

with the conditional log-likelihood defined as:

log p(Y|X ) = Φ(Y|X )− log
∑

Y′

expΦ(Y ′|X ). (3)

Here, argmax in Eq. (2), and the summation in the second

term in Eq. (3) are over all possible sets of non-overlapping

intervals. We refer the readers to [2] for algorithmic details.

To make predictions for all event types (88 keys + ped-

als), multiple instances of semi-CRF are used in parallel,

each corresponding to a specific event type.

2.2 Vision Transformer and YOLOS

The Vision Transformer (ViT) [10] introduced a significant

shift in computer vision, offering an alternative to traditional

CNN models. ViT processes images as sequences of fixed-

size patches using transformer layers [9], proving success-

ful across various tasks. For end-to-end object detection,

YOLOS [11] demonstrated a minimal, non-hierarchical

encoder-only design that appends [DET] tokens (represent-

ing object slots) directly to image patch tokens as input to

the transformer encoder. Our architecture adopts a similar

encoder-only design for event-based music transcription.

3 For dequantizing onset/offset positions from quantized positions.

3 Revisiting Interval Scoring for Semi-CRFs

The neural semi-CRF framework crucially relies on model-

ing the interval scoring matrix, score(i, j), which assigns

a score to each candidate interval. The size of the matrix,

which grows quadratically with the sequence length, poses

a challenge to designing an efficient and expressive model

architecture. For this discussion, scoreϵ will be excluded

due to its minimal impact on model performance from our

observation and negligible modeling challenges.

3.1 Interval Scoring in [2]

In [2], a backbone model first transforms the input sequence

X = [x0, . . . ,xT−1] into a sequence of feature vectors

[h0, . . . ,hT−1]. Each interval [i, j] is scored by applying

an MLP to features computed from the interval, with the

output dimension being the number of event types. For

simplicity, assuming only one event type to predict, the

score is computed as

score(i, j) = MLP([hi,hj ,hi ⊙hj ,m1,m2,m3]), (4)

where hi and hj are feature vectors corresponding to the

interval’s onset and offset, ⊙ denotes element-wise multi-

plication, and m1,m2,m3 are the first, second, and third

statistical moments over the interval [i, j].
After producing the initial interval scoring matrices for

all event types, a shallow CNN is applied, treating the in-

terval endpoints as spatial coordinates and event types as

channels. This refinement step slightly improves the result.

Directly computing Eq. (4) and the subsequent refine-

ment step are memory intensive. The official implementa-

tion processes the scoring matrix in segments and applies

gradient checkpointing during training, reducing peak mem-

ory usage at the cost of increased computational time. Con-

sequently, the MLP and CNN layers’ depth and width are

constrained, potentially limiting the model’s capacity and

increasing susceptibility to local pattern overfitting.

3.2 Interval Scoring with Inner Product

We propose to use the following method for interval scoring:

score(i, j) =
|j − i|√

D
⟨qi,kj⟩+ biδ(i, j), (5)

where δ(i, j) is the Kronecker delta, which is 1 if i = j and

0 otherwise. qi ∈ R
D, ki ∈ R

D and bi ∈ R are computed

from the embedding vector hi using a linear layer f :

[qi,ki, bi] = f(hi). (6)

The interval scoring matrix computed from Eq. (5) takes

a low-rank plus diagonal structure. This method, termed

Scaled Inner Product Interval Scoring, computes the

score of an event as the scaled inner product between vec-

tors qi and kj representing the start and the end of the

interval.

Despite its simplicity and resemblance to the attention

mechanism in transformers, one question arises about the

expressiveness of the inner product for capturing the tran-

scription result. We answer this question by constructing a

family of interval scoring matrices that can yield the correct

decoded result, and then show that this family of matrices

can be represented in the form of pairwise inner product

under certain conditions.
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Without loss of generality, we ignore the intervals of

form [i, i], which correspond to the diagonal values in the

interval scoring matrix; they can be added back as diagonals

as in Eq. (5). Additionally, since only the upper triangular

part of the interval scoring matrix is used, we use the nota-

tion for a full matrix to simplify the derivation. We begin

by defining a set of nonoverlapping closed intervals.

Definition 3.1. Let Y be a set of closed intervals defined on

N ∩ [0, T − 1], i.e., T steps. It is a set of non-overlapping

intervals if for any two intervals [i0, j0] ∈ Y and [i1, j1] ∈
Y , i0 ≥ j1 or i1 ≥ j0, and, additionally, ∀[i, j] ∈ Y, i < j.

Definition 3.2. An ideal interval scoring matrix for Y over

T steps, i.e., SY ∈ R
T×T , is a matrix such that

SY(i, j) > 0, ∀[i, j] ∈ Y,

SY(i, j) = −ϵ, otherwise

where ϵ > 0.

With an ideal scoring matrix SY , it is clear that the MAP

decoding will yield Y , since the exclusion of ∀[i, j] ∈ Y or

the inclusion of ∀[i, j] /∈ Y will decrease the total score.

Lemma 3.1. The rank of an ideal interval scoring matrix

SY for a set of non-overlapping intervals, Y , is M + 1,

where M = |Y|, which is the number of intervals.

Proof. By definition, the first column is −ϵ1, that is,

∀i,SY(i, 0) = −ϵ. Subtracting the first column from all

columns gives S′
Y such that

S′
Y(i, j) > ϵ, ∀[i, j] ∈ Y,

S′
Y(i, j) = 0, otherwise

Given that no two non-zero entries in S′
Y share a row or

column (as per the definition of set of non-overlapping

intervals), and there are M non-zero entries, the rank of

S′
Y is M . Since there are at most T − 1 non-overlapping

intervals across T frames, we have M ≤ T − 1, and the

number of nonzero entries in S′
Y is smaller than or equal to

T−1. As a result, −ϵ1 (T non-zeros) cannot be represented

by a linear combination of other nonzero columns in S′
Y ,

therefore rank(SY) = rank(S′
Y) + 1 = M + 1.

Theorem 3.2. Let Y be a set of non-overlapping closed

intervals over T steps, with cardinality M . An ideal in-

terval scoring matrix SY can be represented as pairwise

inner products between two 1d sequences (ki)i and (qi)i
of vectors:

SY(i, j) = ⟨qi,kj⟩, (7)

provided that rank(QY) > M and rank(KY) > M
where QY = [q0, . . . , qT−1], and KY = [k0, . . . ,kT−1].

Proof. By Lemma 3.1, the rank of SY is M + 1. Then it

directly follows the rank factorization of a matrix.

Theorem 3.2 establishes a minimum rank requirement

for QY and KY to represent an ideal scoring matrix. This

leads to two key observations:

1. The vector dimensions D of ki and qi must exceed

the total number of intervals, |Y|.

2. Consider a linear upsampling operator uc, which is a

special case of a 1-d transposed convolutional layer.

It works by dividing each step of a vector sequence

into c equal parts when the sequence is upsampled

c times. Suppose we want to represent QY and KY

using low-resolution 1-d vector sequences: Q′
Y =

[q′
0, . . . , q

′
T ′−1] and K ′

Y = [k′
0, . . . ,k

′
T ′−1] where

T ′ < T , and this representation is achieved by apply-

ing uc to Q′
Y and K ′

Y , resulting in QY = uc(Q
′
Y),

and KY = uc(K
′
Y), where c = T/T ′ represents

the upsampling factor. For this representation to be

valid, the vector dimension D′ for the low-resolution

sequence, i.e., q′
i and k′

i should exceed c|Y|.
These observations highlight that the dimensionality re-

quirement depends solely on the count of intervals in Y
and the downsampling (upsampling) factor c = T/T ′ along

the time axis. This analysis reveals sufficient conditions to

guarantee the expressiveness of the inner product interval

scoring method. From Theorem 3.2, by applying a scaling

factor 4 and reintegrating diagonal terms, we can recover

Eq. (5).

3.3 Comparison with Attention Mechanism

Comparing the neural semi-CRF with the inner product

scoring to the attention mechanism reveals interesting par-

allels. Both of them have quadratic time complexity in the

length of the input. The original score module, as in [2],

resembles an additive attention mechanism, as introduced

by [12]. However, attention mechanisms based on inner

products [13] have become preferred for their simplicity

and computational efficiency. Similarly, the proposed inner

product scoring for neural semi-CRFs efficiently scores in-

tervals. However, in contrast to attention mechanisms that

score sequence positions and normalize posteriors for each

position, neural semi-CRFs score intervals and normalize

posteriors globally over sets of non-overlapping intervals.

The Transformer architecture can be viewed as inher-

ently refining a sequential representation for inner product

scoring. Inspired by these similarities, we utilize the trans-

former architecture to produce the 1-d sequence representa-

tions (heventType
i ) for each event type, termed event tracks,

which will be used for inner product interval scoring.

4 Proposed System

Figure 1 summarizes the proposed system. The input is

an oversampled log-mel spectrogram, as in [2]. The spec-

trogram is downsampled using 2-d strided convolutional

layers, followed by the addition of spatial position embed-

dings (Section 4.2). Event tracks for all event types (notes

and pedals) are initialized with their own spatial position

embeddings and concatenated with the downsampled spec-

trogram representations. The concatenated features are

processed by a transformer encoder. Subsequently, only the

event track embeddings are upsampled using one 1-d trans-

posed convolutional layer. The upsampled event tracks are

used for inner product interval scoring (Eq. (5)) to generate

4 Note that applying a length-dependent scaling on the ideal scoring
matrix does not change the decoded result.
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Figure 1: Overview of the proposed system. Inner product

scoring follows Eq. (5).

interval scoring matrices, which are then fed to the neural

semi-CRF layer for log-likelihood calculation or inference.

4.1 Rethinking Downsampling

Existing studies on Vision Transformers (ViTs) demon-

strate the effectiveness of a non-hierarchical design that uses

highly downsampled, low-resolution feature maps even for

tasks requiring dense predictions, e.g., [14], challenging the

dominance of hierarchical models like UNET [15]. How-

ever, state-of-the-art (SOTA) piano transcription systems,

including [2, 4, 5, 8], retain full resolution along the time

axis. These approaches preserve the temporal detail of the

input frames, but at the cost of increased training time and

reduced model scalability.

This choice might be explained by concerns over losing

temporal precision when locating events. However, we

argue that the high dimensionality of the embeddings makes

the low temporal resolution feature map still capable of

processing with enough information.

In our approach, we use strided convolutional layers to

downsample the input spectrogram, along both the time

and frequency axes, transforming it from its original spatial

dimensions (T, F ) to a low-resolution feature map with

dimensions (T ′, F ′) = ( T
cT

, F
cF

). In line with the ViT

literature, we refer to this reduced feature map as patch

embeddings for cT × cF patches. The choice of patch size

(cT , cF ) may present a trade-off between computational

efficiency and the model’s capacity to capture dense events

in the input spectrogram. As an initial exploration, we use

a patch size of 8 × 4 to keep the training time within our

expected range.

To upsample event tracks to the original temporal res-

olution of frames, we utilize a single transposed 1-d con-

volutional layer. We found that this simple upsampling

layer efficiently prepares representations for inner product

scoring at the desired resolution.

4.2 Transformer Encoder Architecture

RMSNorm
FFN

  

RMSNorm
Self-Attn

  

(a) Transformer Block.

TransformerBlock  
 On Freq/Event

axis

TransformerBlock 
On Time axis

 

(b) Encoder Layers

Figure 2: Building Blocks for the Transformer Encoder

Spatial Position Embedding. We use learnable

Fourier features for spatial position embeddings [16]

for both time-frequency representations with coordinates

(frameIdx, freqIdx), and event tracks with coordinates

(frameIdx, eventTypeIdx). This position embedding is cho-

sen for its simplicity and broad compatibility with trans-

former architectures. Our formula differs slightly from [16]

as we follow the formula in the original random Fourier

features paper [17]. We compute the position embedding

y ∈ R
E from a multidimensional coordinate x ∈ R

C as:

y = g(

√

2

B
cos(Wrx+ b)), (8)

where Wr is a learnable matrix R
B×C , initialized from

N (0, γ−2); B is the dimension for the Fourier features; γ
is a hyperparameter; b ∈ R

B is the learnable bias term,

initialized from U(−π,+π); g : RB → R
E is a two-layer

perceptron. This position embedding functions like an MLP

that takes coordinates as input, with the first nonlinearity

being a scaled cosine function.

The Transformer Encoder Layer. Figure 2a illustrates

the basic transformer block. This block first applies RM-

SNorm [18] before the self-attention and feed-forward lay-

ers. To enhance training stability, we use ReZero [19]

which applies a learnable scaling factor λ, initially set to

0.01, before adding to the skip connection. As in Fig-

ure 2b, for reducing computational cost, we alternate at-

tention within each transformer block along the time and

frequency/eventType axes; similar ideas are often used for

efficient transformer architectures [20–22].

4.3 Segment-Wise Processing

Longer audio is transcribed using segments with 50% over-

lap. Unlike [2], which discards events that exceed the seg-

ment boundary during training, we truncate such events to

fit within the segment. We introduce two binary attributes,

hasOnset and hasOffset, to indicate whether an event’s on-

set or offset has been truncated.

For each event type within a segment, decoding starts

from either: (1) the current segment’s boundary, or (2) the

offset of the last event in the result set with hasOffset =
true, whichever is later. Events decoded in the current

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

976



segment are then processed as follows: (1) non-overlapping

events with hasOnset = true are directly added to the result

set; (2) for events overlapping with the last event of the same

type in the result set: if the current event has hasOnset =
true, it replaces the last event 5 ; otherwise, the two events

are merged.

4.4 Attribute Prediction

Attributes associated with each event include velocity, re-

fined onset/offset positions (for dequantizing frame posi-

tions), and the binary flags hasOnset and hasOffset. To

predict these attributes for an event extracted from the event

track (heventType
i )T−1

i=0 , e.g., [a, b], we use a two-layer MLP

that takes h
eventType
a and h

eventType

b as input. The MLP out-

puts the parameters of the probability distributions for each

attribute. Specifically, velocity ∈ {0 . . . , 127} is modeled

as a categorical distribution, refined onset/offset positions

∈ (−0.5, 0.5) are modeled as continuous Bernoulli distri-

butions [23] shifted by −0.5, and hasOnset/hasOffset ∈
{0, 1} are modeled as Bernoulli distributions.

5 Experiment

5.1 Dataset

Maestro v3.0.0 [24]. This dataset contains about 200 hours

of piano performances, including audio recordings and cor-

responding MIDI files captured using Yamaha Disklavier

pianos. We use the standard train/validation/test splits.

MAPS [25]. The MAPS dataset includes both synthesized

and real piano recordings, with the real recordings captured

by MIDI playback on Yamaha Disklavier. We evaluate our

model on the Disklavier subset (ENSTDkAm/MUS and

ENSTDkCl/MUS) of the MAPS dataset, which consists

of 60 recordings and is commonly used for cross-dataset

evaluation. However, we discovered systematic alignment

issues in the ground-truth annotations for both notes and

pedals, affecting both onset and offset locations. Onset

alignment issues have been previously reported in [26] but

are not widely known in the community 6 .

SMD [27]. Similar to Maestro dataset, the SMD dataset

was created by recording human performance on a Yamaha

Disklavier. We use SMD version 2. The dataset contains

50 recordings. We found that both the onset and offset

annotations in SMD are better aligned compared to MAPS.

5.2 Model Specification

The key model specifications are summarized in Table 1.

Training takes about 6 days on 2 NVIDIA RTX 4090.

5 For overlapping events between segments: (1) The first event must
have hasOffset = false. (2) A continuing second event must have
hasOnset = false. (3) If the second event’s hasOnset = true, the first
event is replaced by the second event as it’s not supported by the second.

6 A piece-dependent onset latency around 15 ms has been previously
discussed in [26]. Due to the electro-mechanical playback mechanism,
this latency could also be note/pedal dependent. Offset deviation (up to
approximately 70 ms) appears more complex and may be influenced by
pedal-/note-dependent mechanical latency or undocumented specific piano
model’s response to non-binary pedal values.

Input Mel Spectrogram sr: 44100 Hz, hop: 1024, window size: 4096, subwin-

dows:5, mels: 229, freq: 30-8000 Hz, segment: 16s,

Patch shape: 8 × 4, embeding size: 256

Strided Conv. Layers initial proj. size: 64, added with freq. embeddings.

for Downsampling out channels: [128, 256, 256, 256], kernel size: 3,

strides: [(2,1), (2,2), (2,2), (1,1)], Each followed by

GroupNorm, groups = 4, and GELU (except for the

last conv.)

Position Embedding γ = 1, |B| = 256, MLP hidden size 1024

Transformer Encoder 8 heads, 6 layers (=12 blocks), FNN size: 1024

Upsampling 1d. transposed conv, out: 128, kernel size:8, stride:8

Attribute Prediction two layer MLP, hidden size: 512, dropout 0.1

Batch Size 12

Optimizer Adabelief [28], maximum learning rate: 4e−4
Weight Decay 1e−2, excluding bias, norm., and pos. embedding

Learning Rate Schedule 500k iterations, 5% warm-up phase, cosine anneal.

Gradient Clipping Clipping norms at 80% quantile of past 10,000 itera-

tions

Table 1: Model Specification.

5.3 Evaluation Metrics

We compute precision, recall, and f1 score averaged over

recordings for both activation level (from [2], equivalent

to frame level with infinitesimal hop size), and note level

metrics (Note Onset, Note w/Offset, and Note w/Offset &

Vel., using mir_eval [29], default settings). All metrics

are directly computed from transcribed MIDIs. For details

on these metrics, readers can refer to the supplementary

material of [2], and the documentation of mir_eval [30].

Due to the ground-truth alignment issues discussed in

Section 5.1 and space constraints, we only report activation-

level and onset-only note-level metrics for MAPS and SMD.

5.4 Results

Our results on the Maestro v3 test set are presented in

Table 2. The proposed model achieves state-of-the-art per-

formance across all metrics in terms of f1 score, surpassing

previous methods by a significant margin. We also report

results for soft pedal transcription which has not been pre-

viously explored. The low event-level metrics suggest that

accurately determining soft pedal onset and offset times is

more challenging than for notes and sustain pedals. We

conjecture this is because soft pedals are typically engaged

for longer durations and appear significantly less frequently

in the dataset than sustain pedals.

Scoring Methods Comparison. We conducted an ablation

study to compare our proposed inner product scoring with

the more complex scoring method from [2]. We trained

a model with an identical architecture but replaced the in-

ner product scoring with the scoring module from [2]. To

ensure a fair comparison, we adjusted the hidden sizes of

the scoring module to keep the training time for a single

iteration within a factor of two of our proposed system.

Specifically, all event tracks were projected to a single se-

quence with a dimension of 512, and the hidden size of the

scoring module was set to 512. As shown in Table 2, our in-

ner product scoring outperforms the more complex scoring

method, demonstrating its effectiveness and efficiency.

Furthermore, we compared two variants of the inner

product scoring: a linear layer and an MLP for computing

the k/q/b vectors (f in Eq. (6)). The results demonstrate

that the linear layer yields better performance than the MLP.
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Method # Param Activation Note Onset Note w/ Offset Note w/ Offset & Vel.

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Notes

SemiCRF [2] 9.8M 93.79 88.36 90.75 98.69 93.96 96.11 90.79 86.46 88.42 89.78 85.51 87.44

hFT, reported in [5] 5.5M 92.82 93.66 93.24 99.64 95.44 97.44 92.52 88.69 90.53 91.43 87.67 89.48

hFT [5] 8 . 5.5M 95.37 90.82 92.93 99.62 95.41 97.43 92.22 88.40 90.23 91.21 87.44 89.24

Ours with scoring method in [2] 11.0M 93.79 92.40 93.06 98.61 95.92 97.23 91.69 89.23 90.43 91.08 88.64 89.83

Ours with MLP kqb mapping 13.0M 95.66 94.79 95.20 99.54 96.91 98.19 94.39 91.92 93.12 93.84 91.40 92.59

Ours w/o incomplete events 12.9M 93.76 94.46 95.07 99.56 97.10 98.30 94.66 92.36 93.48 94.12 91.83 92.95

Ours 12.9M 95.75 95.01 95.35 99.53 97.16 98.32 94.61 92.39 93.48 94.07 91.87 92.94

Sustain Pedals

Kong et al., reported in [4] 20.2M 94.30 94.42 94.25 91.59 92.41 91.86 86.36 87.02 86.58 - - -

Kong et al. [4]8 9 20.2M 94.14 94.29 94.11 77.43 78.19 77.71 73.56 74.21 73.81 - - -

SemiCRF [2] 9.8M 95.17 88.33 90.98 82.18 75.81 78.52 78.75 72.74 75.30 - - -

Ours w/o incomplete events 12.9M 96.69 92.92 94.47 89.10 83.96 86.28 86.33 81.40 83.63 - - -

Ours 12.9M 96.67 94.46 95.40 88.96 84.22 86.37 86.19 81.66 83.71 - - -

Soft Pedals

Ours w/o incomplete events 12.9M 74.41 28.77 36.54 20.24 9.08 11.69 17.19 7.51 9.76 - - -

Ours 12.9M 86.42 83.12 84.09 24.32 17.39 19.46 18.51 13.40 15.06 - - -

Table 2: Transcription Result on Maestro v3.0.0 Dataset Test Split.

Interestingly, this aligns with how k and q are computed in

transformers.

Effect of omitting incomplete events. We found that

omitting steps of handling incomplete events at segment

boundaries (Section 4.3) only cause noticeable performance

impact for pedals, particularly the soft pedal (Table 2). This

can be explained by the fact that pedal events, especially soft

pedals, can often exceed the segment length, while notes

are normally shorter than the segment length we choose.

Results on MAPS/SMD. We evaluated our model on the

MAPS dataset using three different ground-truth annota-

tions: (1) Original, (2) Ad hoc Align, where the median

deviation from the initial evaluation is subtracted from all

notes for each piece and then re-evaluated, and (3) Cogliati,

which subtracted a latency value per recording for ENST-

DkCL as provided by [26]. For the SMD dataset, only the

original annotation is used. Table 3 presents the results.

All methods exhibit low activation-level F1 scores on

MAPS. Using the onset-corrected annotation (Cogliati)

on MAPS increases the onset F1 score but degrades the

activation-level F1 score due to the uncorrected offset bi-

ases. In fact, the Cogliati annotation achieves similar or

lower activation-level F1 scores compared to all listed meth-

ods when evaluated against the original annotation.

All methods achieve F1 scores on SMD that are more

comparable to those evaluated on Maestro. However, per-

formance decreases significantly on MAPS, even with cor-

rected annotations. This suggests that the dataset issue may

be more complex than a simple piece-depedent timing shift.

Notably, the corrected annotations can lead to different

conclusions compared to the original annotation. For ex-

ample, while the data-augmented Onsets&Frames model

achieves a higher note onset F1 score than hFT using the

original annotation, it scores lower than hFT when evalu-

ated using the ad hoc correction and the Cogliati annotation.

These observations highlight the need for caution when

evaluating models on datasets created using mechanisms

that may involve systematic biases, e.g., electromechani-

cal playback. Despite these complications, our proposed

system, with or without data augmentation 7 , achieves the

highest note onset F1 score among the compared methods

on both SMD and MAPS with Ad hoc/Cogliati correction.

7 Data augmentation: pitch shifting ±20 cents, adding noise from [31],

Activation Note Onset

Method Dataset Groudtruth P(%) R(%) F1(%) P(%) R(%) F1(%)

Onsets MAPS Original 90.27 80.33 84.87 87.40 85.56 86.41

&Frames [24] MAPS Ad hoc Align 90.50 80.53 85.08 88.79 86.93 87.78

w. Data Aug.8 MAPS Cogliati 64.75 82.83 71.60 87.57 84.97 86.19

hFT [5].8 MAPS Original 91.53 71.03 79.81 84.63 85.75 85.13

MAPS Ad hoc Align 91.77 71.25 80.04 87.32 88.48 87.84

MAPS Cogliati 68.83 74.07 70.24 89.94 90.10 89.97

SMD Original 93.18 89.82 91.35 98.71 95.58 97.09

Ours MAPS Original 88.41 82.29 85.08 84.31 88.10 86.10

MAPS Ad hoc Align 88.69 82.57 85.36 86.63 90.53 88.47

MAPS Cogliati 65.74 84.69 72.78 89.60 91.39 90.44

SMD Original 92.36 95.24 93.73 98.16 97.65 97.89

Ours MAPS Original 94.11 84.63 89.00 92.11 88.78 90.38

w. Data Aug. MAPS Ad hoc Align 94.35 84.84 89.22 94.21 90.76 92.41

MAPS Cogliati 67.77 87.39 75.03 94.66 91.43 92.98

SMD Original 93.38 95.91 94.57 99.77 97.68 98.70

Between Ground Truths

Cogliati [26] MAPS Original 98.86 69.22 80.17 100 100 100

Table 3: Transcription Result on MAPS and SMD. See

Text for discussion of dataset issues.

6 Conclusion

This paper introduces a simple and efficient method for

scoring time intervals using scaled inner product operations

for the neural semi-CRF framework for piano transcription.

We demonstrate that the proposed scoring method is not

only simple and efficient but also theoretically expressive

for yielding the correct transcription result. Inspired by

the similarity between the proposed scoring method and

the attention mechanism, we employ a non-hierarchical,

encoder-only transformer backbone to produce event track

representations. Our method achieves state-of-the-art per-

formance on the Maestro dataset across all subtasks. Due

to resource constraints, we have not evaluated the effect of

patch and embedding sizes, which is left for future work.

Additionally, future research could explore more advanced

transformer architectures, investigate the interaction be-

tween transformer architecture and the neural semi-CRF

layer, and extend the approach to other instruments and

multi-instrument music transcription tasks.

applying randomized 8 band EQ and impulse response from [32].
8 Use their provided code and pretrained weights. Recomputed from

transcribed MIDIs.
9 Previous SOTA for sustain pedals. Their released code indicates a

200 ms onset tolerance for pedal evaluation, contrary to the reported 50
ms in their paper. Here, we use a 50 ms onset tolerance, which explains
the large discrepancy between the numbers here and their reported results.
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