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ABSTRACT

Audio-text contrastive models have become a powerful ap-

proach in music representation learning. Despite their em-

pirical success, however, little is known about the influence

of key design choices on the quality of music-text repre-

sentations learnt through this framework. In this work, we

expose these design choices within the constraints of lim-

ited data and computation budgets, and establish a more

solid understanding of their impact grounded in empir-

ical observations along three axes: the choice of base

encoders, the level of curation in training data, and the

use of text augmentation. We find that data curation

is the single most important factor for music-text con-

trastive training in resource-constrained scenarios. Moti-

vated by this insight, we introduce two novel techniques,

Augmented View Dropout and TextSwap, which increase

the diversity and descriptiveness of text inputs seen in

training. Through our experiments we demonstrate that

these are effective at boosting performance across different

pre-training regimes, model architectures, and downstream

data distributions, without incurring higher computational

costs or requiring additional training data.

1. INTRODUCTION

Music-text embedding models have become a cornerstone

of music information retrieval (MIR), facilitating core

tasks that underpin music organisation and search, such as

music tagging and cross-modal retrieval [8, 11, 14, 26, 27].

At a high level, these are multimodal models that produce

aligned audio-text representations by learning to project

high-dimensional data from the audio and text modalities

onto a lower-dimensional joint representation space whose

structure encodes semantic similarity. The canonical learn-

ing framework to obtain such embeddings is dual-encoder

multimodal contrastive learning, first popularised by CLIP

[20] in the image domain, and soon after adopted in most

areas of machine perception, including audio [9, 29] and

music processing [8, 11, 14].
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Driven by the empirical success of this framework, a

recent line of research has attempted to analyse its inner

workings from a theoretical perspective [18, 36] or eluci-

date which aspects are most responsible for its effective-

ness in visual models [34, 35]. However, within the au-

dio domain, our understanding of multimodal contrastive

learning remains limited [8], with sparse effort into ablat-

ing design choices, or training data- and compute-efficient

models. Among prior work that takes a step in this direc-

tion, the focus is mostly on comparing backbone models

[8, 11, 29], but without considering other important factors

such as model initialisation or training data. Additionally,

audio-text learning poses specific challenges in the context

of music, as the amount of data with aligned audio and

text is typically orders of magnitude smaller than in other

domains, where large-scale web-crawled data is common-

place. This makes transferring insights from other areas of

representation learning particularly challenging.

In this paper we present a deep dive into music-text con-

trastive learning and its use in text-based music retrieval,

adopting a practical perspective and thoroughly investigat-

ing the impact of major design choices. In particular, we

study the problem of how to train this family of models un-

der different resource-constrained scenarios (with respect

to data and compute), and how to meaningfully evaluate

them for real-world use. In brief, our contributions are

as follows: (i) we systematically compare backbone en-

coders in parameter-efficient settings, and demonstrate that

we can leverage this to enable multilingual support for the

first time and without additional training data (Section 3);

(ii) we study the trade-off between training dataset size and

quality, showing that the impact of data curation outweighs

that of scale (Section 4); (iii) building upon these find-

ings, we propose a training recipe, Augment, Drop & Swap

to construct more effective contrastive views (via Aug-

mented View Dropout) and improve model robustness (via

TextSwap) with no extra computational overhead (Section

5). Incorporating the proposed pipeline within variants of

the music-text contrastive framework under different com-

putational constraints, we show that this consistently im-

proves over prior work, establishing a new state-of-the-art

on three benchmark datasets. Finally, we conduct the first

listening study to evaluate text-based music retrieval, fur-

ther corroborating our automatic evaluations and under-

scoring the importance of accounting for distribution gaps

when measuring performance.

938



Figure 1: Overview of our approach. We study the role of encoders and data in music-text learning and propose a text

augmentation pipeline, Augment, Drop & Swap, to increase data diversity and introduce hard negatives during training.

2. STUDYING THE DESIGN SPACE OF

MUSIC-TEXT EMBEDDING MODELS

We explore two major factors in the design of music-text

embedding models: architecture and data. While we ac-

knowledge that there are others, such as training proce-

dure, and alternative designs, we choose to restrict our fo-

cus exclusively to these two axes and to dual-encoder mod-

els, due to their predominance in the field. In the rest of the

paper, we always refer to this family of models when dis-

cussing music-text embeddings or music-text models, and

interchangeably use the terms text and language.

The typical design of a music-text embedding model

consists of the following components: two modality-

specific base encoders which separately process inputs of

the text and audio modality to an intermediate represen-

tation space; a fusion or projection module responsible for

mapping the intermediate representations to the shared em-

bedding space; and a contrastive loss, through which the

model parameters are optimised to encode semantically

related audio and text inputs within the same neighbour-

hood of the embedding space, while pushing apart unre-

lated items. We provide an overview of this design in Fig-

ure 1. While prior works have converged towards standard

choices for the last two components, it remains unclear

how to reliably choose unimodal encoders among several

existing options. We look at this in Section 3, before dis-

cussing the role of training data in Section 4.

2.1 Our experimental approach

Before delineating our areas of focus, we outline here the

standard experimental setup used in our experiments.

Projection module We design our experiments to com-

pare variations of the dual-encoder contrastive architecture

described above, varying several components, but keep-

ing two fixed throughout: the projection module and the

loss. Similarly to [16, 24], we adopt a two-head, two-

layer Transformer as our projection module. From a se-

quence of 256-dimensional embeddings produced by each

projection head, we employ the [CLS] token embedding

as the global representation for each branch. For ease of

reference, we denote this model architecture by DuET-MC

(Dual-Encoder Text-Music Contrastive).

Training We optimise our network via the multimodal

formulation of the InfoNCE loss [19], using cosine sim-

ilarity between the l2-normalised projection embeddings

from the audio and text branch as our scoring function,

and a temperature parameter of 0.03. As part of our train-

ing procedure, we use the Adam optimizer with decoupled

weight decay of 0.05, varying our learning rate through a

cosine decay schedule from its peak value of 1e-3, after a

linear warm-up of 5 epochs. We train on 8 A100 NVIDIA

GPUs, with an effective batch size of 1024 or 2048 based

on memory requirements, for a maximum of 100 epochs,

with early stopping based on the validation loss. Unless

otherwise specified, our default training data is a corpus

of licensed instrumental music with high-quality, manually

curated genre, mood, and instrument tags, which we refer

to as MusicTextHQ. For training, we select a subset to-

talling a duration of 100 hours, and augment tags into cap-

tions following our data augmentation strategy described

in Section 4.

2.2 Evaluation

We evaluate all our models on text-based music retrieval,

as this represents the most prominent task for music-text

embedding models and has been shown to correlate to per-

formance on other tasks [11, 14]. Retrieval is performed

by ranking all audio clips in the dataset by decreasing co-

sine similarity of their embedding with the embedding of a

text query. From this, we compute Recall@k (R@k), the

average number of times the target appears within the top-

k retrieved items, and Median Rank (MR). To normalise

performance scores by the different dataset sizes, we re-

peat this procedure on random subsets of 500 items, and

report the average value for each metric. When reporting a

single metric, we always refer to R@10.

Datasets In order to robustly measure performance

across our experiments, we adopt a multi-dataset evalua-

tion suite comprising three public datasets containing au-

dio tracks paired with human-written captions: YT8M-

MusicTextClips (MTC) [16], MusicCaps [2] and Song De-
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Dataset Hours* Tags Captions

Training
LP-MusicCaps [7] (A) 50 Human Synthetic
MusicTextHQ (B) 100 Human Synthetic
YT8M-MV [1] (C) 270 Synthetic Synthetic

Evaluation
YT8M-MTC [16] 8 - Human
MusicCaps [2] 8 - Human
Song Describer [15] 2 - Human

Table 1: Overview of the datasets used in our experi-

ments. *Hours denotes the audio duration used in training.

Encoder # Params Model version

Audio

HTS-AT [5] 30M AudioSet
1

MERT [33] 330M MERT-v1-330M

Text
RoBERTa [13] 125M roberta-base

CLIP-T [20] 151M clip-vit-base-patch32

T5 [21] 11.3B flan-t5-xx

mT5 [30] 13B mt5-xx

Table 2: Audio and text encoders we compare in our ex-

periments on the impact of encoder backbones (Section 3).

scriber (SDD) [15]. These all represent out-of-distribution

data (see Table 1), with different degrees and types of dis-

tribution shifts in both the audio and text modality. For ex-

ample, MTC and MC both contain 10-second audio clips

from YouTube videos, but they differ significantly in their

captions, with respect to content, descriptiveness and even

text length [15]. Audio in the SDD consists instead of mu-

sic recordings from the music platform Jamendo [3], while

captions describe much longer audio segments.

3. THE ROLE OF ENCODER BACKBONES

We experiment with two audio encoders, HTS-AT [5] and

MERT [33], and three text encoders, RoBERTa [13], the

text encoder from CLIP [20] (CLIP-T), T5 [21] and mT5

[30]. We choose these either because they represent the

state of the art in their respective tasks, or because they

have been previously used in contrastive audio-text learn-

ing, thus allowing for direct comparison with prior work.

3.1 Encoders: initialization and freezing

In this set of experiments, our goal is to study parameter-

efficient configurations of existing audio and text encoders,

training only a subset of the model weights. The motiva-

tion for exploring this setting is threefold: freezing part of

the model lowers the memory budget and training time,

it avoids catastrophic forgetting [17], and it reduces the

risk of overfitting in data-constrained scenarios. To fulfil

these requirements, we do not consider end-to-end finetun-

ing, and instead focus on leveraging pre-training, locking

the audio and text encoders based on their parameter size.

1 We use the HTSAT_AudioSet_Saved_6 checkpoint of HTS-AT
trained on AudioSet from the official repository.

Figure 2: Retrieval performance (R@10) of differ-

ent combinations of audio and text encoders compared

through the lens of our DuET-MC framework.

Specifically, we keep all text encoders frozen, as these all

count over 100M parameters, as shown in Table 2, and only

train the full audio encoder, both with and without general-

audio pre-training when using HTS-AS, due to its smaller

size. When using MERT, we keep the encoder frozen but

train a learnable aggregator over the hidden states of each

layer, implemented as a 1D convolutional layer, to obtain

audio representations that capture the different levels of ab-

straction encoded at different depths of the network [33].

Results From Figure 2 we first observe that, under the

constraints described above, the overall best configuration

is given by MERT and CLIP-T. We attribute this to two

main reasons: with regards to the audio branch, the supe-

rior performance exhibited by MERT suggests that a larger

model capacity and stronger music prior may be beneficial

to music-text alignment; with regards to the text branch,

while all encoders are characterised by large-scale pre-

training, CLIP-T stands out as the only model with mul-

timodal capabilities. Although this is somewhat surpris-

ing, as CLIP is pre-trained on image-text pairs, we note

that prior work has also shown that it can be successfully

transferred to the audio and music domains [6, 16, 28, 32].

Secondly, when using MERT with any of the text encoders

considered, we find that we can train less than 1% of the to-

tal amount of weights (∼ 3M making up the projection and

aggregation layers) without loss of performance compared

to current state-of-the-art models (shown later in Table 4).

This demonstrates that we can successfully align locked

text representations to the audio modality through light-

weight music-text contrastive learning, confirming that our

encoder locking strategy is effective when leveraging pow-

erful music-specific pre-training, in line with similar find-

ings in the visual domain [35]. With regards to the audio

branch initialization, comparing the two variants of HTS-

AT, we find that general-purpose audio pre-training can

give a slight advantage over training from scratch, but this

benefit is not consistent across the different text encoders

HTS-AT is paired with. In the rest of the paper we fix the

encoder configuration to locked MERT + locked CLIP-T

in all experiments, unless otherwise specified.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024
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Language
R@10

YT8M-MTC MusicCaps Song Describer

English 10.43 16.00 19.00
German 9.90 13.28 18.00
French 11.71 12.32 15.40
Italian 10.43 13.68 15.80

Spanish 11.60 13.48 18.40

Table 3: Multilingual retrieval performance.

3.2 Supporting retrieval in multiple languages

Due to a lack of data in different languages, music-text

modelling has so far exclusively focussed on English.

Real-world applications for music-text embeddings, how-

ever, can greatly benefit from the support of multiple lan-

guages. To address this limitation, we explore the use of

pre-trained locked encoders, similarly to Section 3.1, this

time adopting mT5 [30], a multilingual text-to-text Trans-

former model, as our text encoder. To evaluate multilingual

performance, we choose a subset of four languages, Ger-

man, French, Italian and English, and translate our eval-

uation datasets via GPT3.5-turbo [4]. In Table 3, we

show that this approach provides a viable solution to text-

based retrieval in multiple languages while using only En-

glish text paired with music in training and with only a

minor drop in performance compared to English.

4. THE ROLE OF TRAINING DATA

Having established best practices with respect to choosing

audio and text backbones, we now shift our attention to the

training data. As widely acknowledged in the literature [7,

8, 14], a major limitation in training music-language mod-

els is the lack of large public datasets with paired audio-

text data. To circumvent this issue, a number of works

have proposed to employ large language models to aug-

ment text data more commonly found in music datasets,

such as categorical labels, metadata and tags, into full nat-

ural language sentences, corresponding to pseudo-captions

[7, 10, 16]. In the next section we present our investigation

of the impact of tag-to-caption augmentation.

4.1 Tag-to-caption augmentation via LLMs

Following [16], we leverage the in-context learning abil-

ity of LLMs via few-shot prompting, and adopt a simi-

lar approach to augment tags into captions for our train-

ing dataset MusicTextHQ. For this, we use BLOOM-176B

[23], a competitive open-access LLM trained on responsi-

bly sourced data. Differently from [16], we do not employ

synthetic tags, but use tags provided by expert annotators.

We compare this to training on LP-MusicCaps-MTT [7]

(LP-MusicCaps for short), a dataset obtained via a simi-

lar approach, where tags from the MagnaTagATune [12]

dataset are augmented into captions via GPT3.5-turbo.

To measure the impact of tag-to-caption augmentation, we

train three variants of our model on each dataset, varying

pcap, the probability of selecting captions over tags as the

text input for each training pair.

Figure 3: The effect of varying pcap, the probability of

swapping tags with captions. On the y-axis, we show the

relative change in performance compared to pcap = 0.

Results Results are shown in Figure 3, where we com-

pare the effect of gradually shifting from tags to captions

in the two training datasets considered. We first note that

introducing tag-to-caption augmentation for at least a por-

tion of the training data (pcap = 0.5) leads to an improve-

ment regardless of training dataset. Interestingly, unlike

in MusicTextHQ, this trend does not extend to the sce-

nario where we replace all text inputs with pseudo-captions

(pcap = 1) in LP-MusicCaps. In this case, we observe in-

stead a slight degradation in performance on two of the

evaluation datasets, compared to using only tags, or using

captions half of the time. We posit that this divergence may

be due to a gap in label quality between the two training

sets, as pseudo-captions in LP-MusicCaps are generated

based on sparse labels, with 50% of the items in the dataset

paired to only three tags or less, and in many cases without

being balanced across categories. Intuitively, this is likely

to result in non-descript, or even inaccurate captions, as the

LLM generation will be more prone to hallucinations and

may therefore deviate substantially from the audio content.

In contrast, MusicTextHQ provides strong grounding to the

audio content, with multiple expert-provided tags per cat-

egory (often three or more for each tag category). From

this, we conclude that, while LLM-enabled text augmen-

tation can provide a valuable strategy for enriching train-

ing data, it is not a substitute for adequate data curation,

but rather a supplement. This is an important observation,

as prior work has also found that specificity in captions is

instrumental to effective multimodal contrastive learning

[22, 31]. Since LLM-based augmentation, being bounded

by the information content in the source data, cannot in-

crease specificity, our results highlight an often overlooked

shortcoming of synthetic text.

4.2 Training data: size vs quality

Next, we ask whether simply increasing dataset size can

emphasise the benefits of tag-to-caption augmentation. To

scale up the size of our training data, we include YT8M-

MV, a subset of the YouTube8M dataset [1] tagged as mu-

sic video, as an additional dataset to our training pool. For

this, we follow [16] and employ tags from an automatic
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music tagger and pseudo-captions generated following the

same procedure described in Section 4.1. For simplic-

ity, we refer to LP-MusicCaps, MusicTextHQ and YT8M-

MV as Dataset_A (or simply A), Dataset_B (B) and

Dataset_C (C), ordered by size as shown in Table 1. We

also consider combining the two biggest datasets (B + C)

and all three together (A + B + C). We note that each dataset

differs not only in size, but also in audio and label quality.

Results In Figure 4 we showcase results from training on

the datasets described above. Notably, we find that scal-

ing dataset size does not consistently result in an improve-

ment, signalling that the gap in quality between datasets

can eclipse their size difference. Although we observe that

combining all datasets yields better performance, likely

due to overall increased diversity in the training data, the

difference is not proportionate to the rise in training cost

necessary to scale up. Instead, our results underscore the

importance of data curation as a more efficient way of

boosting performance, confirming that constructing a sub-

set of highly curated examples, with descriptive and accu-

rate captions, more positively contributes to learning in the

contrastive setting [22].

5. IMPROVING DIVERSITY VIA TEXT

AUGMENTATIONS

Having established that augmenting high-quality tags into

captions offers a useful and inexpensive strategy to en-

rich training data, we explore this further and propose two

augmentation-based techniques aimed at increasing data

diversity and model robustness.

5.1 Augment, Drop & Swap

Augmented View Dropout First, building upon the tag-

to-caption strategy described in Section 4.1, we explore

text augmentation with the goal of constructing more ef-

fective views for contrastive learning, following the prin-

ciple that optimal views should minimise mutual informa-

tion between paired items while retaining a high degree of

semantic alignment [25]. To this end, we propose Aug-

mented View Dropout, where, for each item in our dataset,

we randomly sample a subset of the tags, balanced by cat-

egory (genre, mood, instrumentation) and produce a set of

10 different captions. Each can be thought of as a comple-

mentary, but partial view of the associated music track, as

we mask a subset of all the ground-truth tags to produce

each view. At training time, views are randomly sampled,

effectively resulting in a further form of data augmentation.

Hard negatives via TextSwap Finally, we tackle an-

other important challenge in contrastive learning, hard neg-

ative sampling, and propose to also address this through

the lens of text augmentation, via a technique which we

call TextSwap. In order to increase the rate of hard nega-

tives beyond the natural rate found in the dataset, we create

partially perturbed versions of the captions by stochasti-

cally swapping genre, mood or instrument keywords with

alternative descriptors from a predefined dictionary (e.g.

“a mellow pop track” becomes “a mellow hip-hop track”).

Figure 4: Retrieval performance across models trained on

datasets that differ in size and annotation quality.

During training, for each positive pair, we then select a ran-

dom subset of the negative captions in a batch and replace

them with hard negatives by applying TextSwap once per

descriptor category. This is illustrated in Figure 1, where

we provide a visual guide for the full Augment, Drop &

Swap pipeline. We hypothesise that the presence of hard

negatives is particularly critical in later stages of training,

once the model has already acquired basic features, and

learning on “easy” negatives has saturated. Based on this,

we follow a curriculum learning approach and linearly in-

crease the probability of applying TextSwap from 0 to 15%

over the course of 20 epochs, after a warm-up period of 5.

5.2 Experiments

Ablations In this set of experiments we examine the ef-

fect of each of the three components in our augmentation

pipeline: tag-to-caption augmentation, Augmented View

Dropout and TextSwap. We look at two scenarios: one

where we want to measure their contribution in training

two variants of our parameter-efficient DuET-MC frame-

work, each with different degrees of audio pre-training and

finetuning and locked text encoders, and one where we re-

lax our computational requirements and explore whether

our proposed method can be usefully applied in finetun-

ing a general purpose audio-text embedding model (CLAP

[29]), with limited paired music data.

Results We present our ablations on the proposed

pipeline in Table 4, where we also compare to two audio-

text contrastive baselines, CLAP [29] and TTMR [8],

trained on general-purpose audio and music respectively.

The table displays three different settings to which we ap-

ply our proposed pipeline: (1) training the audio encoder

from scratch (shown in the HTS-AT + CLIP-T configura-

tion), (2) training only 1% of the parameters in our locked

audio-text encoder (MERT + CLIP-T), and (3) fine-tuning

the full model on music, following general audio-text pre-

training (CLAP-FT). From this, we observe that, while the

vanilla version of DuET-MC (trained only on tags) exhibits

at best comparable performance to the baselines, each ad-

ditional component in our pipeline lifts performance across

all model configurations, pre-training regimes and finetun-

ing strategies. Among these, tag-to-caption augmentation

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024
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Model
Tag-to-
caption

Augmented
View Dropout

TextSwap
YT8M-MTC MusicCaps Song Describer Avg

R@10 ↑
R@10 ↑ MR ↓ R@10 ↑ MR ↓ R@10 ↑ MR ↓

Baselines
CLAP [29] - - - 11.9 80 40.3* 17* 19.8 53 24.0*
TTMR [8] - - - 11.6 79 9.6 115 16.5 57 12.6

DuET-MC
(HTS-AT +
CLIP-T)

✗ ✗ ✗ 8.5 103 12.2 82 15.3 53 12.0
✓ ✗ ✗ 8.0 104 13.4 76 14.1 57 11.8
✓ ✓ ✗ 9.4 93 15.1 65 19.6 49 14.7
✓ ✓ ✓ 9.4 93 15.8 66 17.4 48 14.2

DuET-MC
(MERT +
CLIP-T)

✗ ✗ ✗ 10.8 82 18.3 56 20.2 45 16.4
✓ ✗ ✗ 11.7 69 21.3 41 23.4 36 18.8
✓ ✓ ✗ 13.4 65 24.9 36 27.7 32 22.0
✓ ✓ ✓ 14.5 62 24.6 34 27.3 29 22.1

CLAP-FT

✗ ✗ ✗ 14.2 63 38.8* 18* 20.8 38 24.6*
✓ ✗ ✗ 14.6 61 42.3* 15* 23.5 34 26.8*
✓ ✓ ✗ 16.3 55 41.6* 16* 24.5 36 27.3*
✓ ✓ ✓ 15.7 57 43.5* 14* 26.3 31 28.5*

Table 4: Ablations. For each model, subsequent rows show the effect of introducing an additional step in our proposed

Augment, Drop & Swap pipeline. We highlight best results for each model (underlined) and amongst all models (bold). *

denotes values that may be inflated due to in-distribution bias.

and Augmented View Dropout emerge as the most influ-

ential, while the benefits of TextSwap are more prominent

for model configurations where encoders have higher lev-

els of pre-training, hinting at the necessity to increase the

complexity of negatives later in training. This suggests

that our Augment, Drop & Swap recipe provides a data-

efficient strategy to improve music-text modelling under

a variety of model configurations, at no additional com-

putational cost. Importantly, this trend generalises across

evaluation datasets, suggesting that it is beneficial to model

robustness, and demonstrates that the lack of large-scale

paired data in the music domain can be alleviated through

augmentation-based techniques which enhance data qual-

ity instead of quantity. Finally, comparing retrieval scores

of different family of models (TTMR, CLAP and DuET-

MC), we note consistent differences between datasets, with

CLAP-based models invariably showing a significant jump

in performance on the MusicCaps dataset compared to

MTC and SDD. We hypothesise that this may be a result

of in-distribution bias, since there are several instances of

non-music or noisy, low-quality recordings in MC. Since

CLAP is trained to recognise everyday sounds, this points

at a smaller shift from its training distribution, compared to

SDD and MTC, which are exclusively composed of music

recordings. We posit that further mismatches in the train-

ing and test distributions exist along the text dimension and

investigate this through human evaluation.

Are metrics aligned with human preference? We re-

cruit 35 participants to evaluate DuET-MC, CLAP and

TTMR in a head-to-head pairwise comparison. Partic-

ipants are presented with up to 24 text prompts, where

each is a caption taken from one of the three evaluation

datasets, and are asked to choose which one of two music

tracks best aligns to the description. Through this qual-

itative evaluation, we find that DuET-MC does substan-

tially better than TTMR, losing against it only 30.9% of

the times, and largely mirroring our findings from Section

5.2. Surprisingly, the win and tie rate vs CLAP drops in-

stead to 37.3% and 38.5% respectively. Looking at the

breakdown of scores by dataset, this advantage in CLAP

is predominantly observed on MC and MTC, while DuET-

MC outperforms CLAP on SDD. Interestingly, DuET-MC

is preferred or considered equivalent to the ground truth

38.9% of the times on MTC compared to 15.4 and 17.9%

on the other two datasets. This points to significant dif-

ferences in the level of alignment between caption and au-

dio in the different datasets, signalling that evaluating on

several datasets is paramount to understanding real-world

performance. Additionally, it leads to an observation that

complements our automatic evaluation in Table 4: the dis-

crepancy between DuET-MC’s performance on MTC com-

pared to MC and SDD may be ascribed to a higher degree

of vagueness in MTC captions, which, as revealed through

our qualitative evaluation, admit instead alternative match-

ing tracks to those in the ground truth.

6. CONCLUSIONS

In this work we presented Augment, Drop & Swap, a train-

ing recipe for efficient music-text representation learning

informed by our findings on training music-text contrastive

models in resource-constrained scenarios. Through our

experiments, we provide a practical guide to this fam-

ily of models, and foreground their real-world use by fo-

cusing on multilingual support, computationally efficient

techniques, and cross-dataset evaluation. Showing that

data curation has a significant effect at modest data scales,

we design each step in our pipeline to tackle specific as-

pects of the text used in training, such as descriptiveness

and specificity, via data augmentations, leading to views

that are more effective in multimodal contrastive learning.

Through automatic and qualitative evaluations, we show

the usefulness of our approach and reveal insights on the

relation between measured performance and distribution

shifts in the test data.
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