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ABSTRACT

Optical music recognition (OMR) aims to convert music

notation into digital formats. One approach to tackle OMR

is through a multi-stage pipeline, where the system first

detects visual music notation elements in the image (ob-

ject detection) and then assembles them into a music nota-

tion (notation assembly). Most previous work on notation

assembly unrealistically assumes perfect object detection.

In this study, we focus on the MUSCIMA++ v2.0 dataset,

which represents musical notation as a graph with pairwise

relationships among detected music objects, and we con-

sider both stages together. First, we introduce a music ob-

ject detector based on YOLOv8, which improves detection

performance. Second, we introduce a supervised training

pipeline that completes the notation assembly stage based

on detection output. We find that this model is able to out-

perform existing models trained on perfect detection out-

put, showing the benefit of considering the detection and

assembly stages in a more holistic way. These findings,

together with our novel evaluation metric, are important

steps toward a more complete OMR solution.

1. INTRODUCTION

Optical music recognition (OMR) focuses on converting

music notation into digital formats amenable to playback

and editing. OMR systems are generally divided into two

categories: end-to-end systems (which directly convert the

image into music notation) and multi-stage systems. Pro-

posed and refined by [1–3], a standard multi-stage system

consists of four stages: preprocessing, music object de-

tection, notation assembly, and encoding. In this study, we

focus on the object detection and notation assembly stages.

MUSCIMA++ [4] suggests representing music notation

as a graph where each pair of musical symbols is linked

by a binary relationship, allowing for clear notation re-

construction. The authors created a dataset of handwritten

scores with a bounding box for each music object and a

human-annotated graph of object relationships in each im-

age. Notation assembly on MUSCIMA++ can be framed
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as a set of binary classification decisions to predict the pair-

wise relationships between music symbols. Most prior re-

search has explored notation assembly with the assumption

of perfect detection output [5], but such assumptions can

introduce unwanted biases that deteriorate the performance

of the notation assembly system when applied as part of a

pipeline. Pacha et al. [6] evaluate a notation assembler on

realistic detector output, finding some degradation relative

to gold-standard objects, but they do not seek to mitigate

the problem.

To improve notation assembly robustness, we propose

a training method to complete notation assembly on top

of (imperfect) object detection output directly. To have

a strong detector to start with, we train YOLOv8 [7] and

perform a set of preprocessing steps to adapt the model to

the MUSCIMA++ v2.0 dataset. Our detector outperforms

previous detectors on MUSCIMA++ v2.0 [8] by 2.4%, es-

tablishing a solid foundation for notation assembly.

Traditional evaluation methods, which perform notation

assembly over all pairs of ground-truth objects and report

an F1 score or a precision-recall curve, become inade-

quate when the input objects come from imperfect detec-

tion. We propose an end-to-end evaluation metric, called

Match+AUC, that accounts for both detection errors and

assembly errors by first matching detected objects with

their ground-truth counterparts before assessing notation

assembly accuracy. It complements metrics that evaluate

pipeline components individually.

Our code for reproducing all of the experiments

is publicly available at https://github.com/

guang-yng/completeOMR.

2. MULTI-STAGE OMR

We focus on the MUSCIMA++ v2.0 dataset [4] and follow

its multi-stage pipeline for the OMR system. This dataset

includes 140 high-resolution annotated images out of 1000

images from the CVC-MUSCIMA dataset [9]. It contains

91,254 symbol-level annotations and 82,247 relationship

annotations between symbol pairs by human annotators.

These annotations span 163 distinct classes of music sym-

bols. Figure 2 shows an example from this dataset.

As the MUSCIMA++ dataset provides symbol-level

pairwise relationships, it allows study of two stages of the

pipeline: (i) detection and (ii) assembly. In (i), given an

image as input, an object detector is used to extract all mu-

sic symbols in the image, denoted as the set V = {vi}i,
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Figure 1. An overview of our OMR pipeline, highlighting key components: object detection, notation assembly, and

evaluation metric. Detailed explanations of each component can be found in Subsections 3.1, 3.2, and 3.3 respectively.

Figure 2. Example of a music image (binarized) extracted

from the MUSCIMA++ dataset.

where vi = (bi, ci) is a tuple of a bounding box and a

class label. Each pair of music symbols (vi, vj) is then fed

into (ii) the notation assembly model to predict whether or

not there exists a relationship between them. The notation

assembly stage can be framed as an edge prediction prob-

lem where the model needs to output a set of edges E to

get a directed graph G = (V,E). MUSCIMA++ defines a

grammar over all possible music symbol classes so that the

direction of an edge is uniquely determined by the class la-

bels (ci, cj) of the vertices (vi, vj). Consequently, the edge

prediction problem can be reduced to predicting an undi-

rected graph. The authors of [4] argue that such a graph

G enables straightforward reconstruction of the full sym-

bolic music notation, so we do not consider the decoding

process after (i) and (ii) in this work.

In previous works, the two stages are considered sep-

arately, either focusing on object detection, without fully

analyzing its effect on downstream notation assembly [8,

10, 11]; or focusing on notation assembly and assuming

perfect detection input during training [5, 6]. This raises

the question of whether the best object detector is a good

fit for the best notation assembly model. To investigate, we

developed an end-to-end metric that evaluates the perfor-

mance of the entire pipeline, as explained in Section 3.3.

We found that, compared with our approach where both

stages are considered together—specifically, where the no-

tation assembly model is trained using the output of the

object detector—treating the two stages separately leads to

poorer results.

3. METHODOLOGY

We describe our method for each stage, and how we

connect the two stages together and evaluate the entire

pipeline. Figure 1 shows an overview of our methods.

3.1 Music Symbol Detection

A music object detection system analyzes an image to

identify each music object it contains, providing both

the bounding box and class label for every detected ob-

ject [10]. Traditionally, this process would begin with an

initial stage of image preprocessing, typically aimed at re-

moving staff lines, followed by a second stage focusing on

the segmentation and classification of symbols. Thanks to

recent advances in computer vision, there are mature so-

lutions for image preprocessing and staff line removal, al-

lowing us to treat it as a largely solved problem [12–14].

In our case, MUSCIMA++ provides us with staff line re-

moved images as input, so we directly build our detectors

on top of these images.

Following the work of Zhang et al. [8], we adopted

a convolutional neural network-based approach for page-

level object detection of handwritten music notes, opt-

ing for this approach over segmentation-based methods,

because segmentation-based methods often struggle with

overlapping symbols. We choose YOLOv8 [7], which is

the latest version of YOLO [15], due to its superior per-

formance on traditional computer vision tasks. Compared

to YOLOv4 [16], which is used by [8], YOLOv8 has a

new loss function and a new anchor-free detection head,

achieving higher performance on various detection tasks.

YOLOv8 has not yet, to our knowledge, been applied to

OMR. Furthermore, since the images of handwritten music

notation in MUSCIMA++ have high resolution and mu-

sic objects are drastically different from the objects con-

sidered in computer vision research, directly applying the

training strategy of YOLOv8 doesn’t work well. We fol-

low [2, 8, 17] to crop images into small snippets during

the training stage to alleviate this issue. Specifically, we

randomly crop the images during training and compactly

segment the image during inference. More details are pre-
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Figure 3. Frequencies of different classes in the dataset,

from most- to least-frequent. A long-tailed distribution

with 48 classes on the right of the red line that never appear.

The y-axis shows the value of ln (frequency + 1). The top-

5 classes are stem, nodeheadFull, ledgerLine,

beam, and staffSpace.

sented in Section 4.1.2.

The MUSCIMA++ v2.0 dataset includes 163 object

classes in total, covering a large variety of notation. How-

ever, most of the classes scarcely appear and barely affect

the replayability of the OMR output (e.g., the construc-

tion of a MIDI file encoding the score). The distribution

of classes is shown in Figure 3; 48 classes never appear in

the entire dataset. Given this, we manually remove these

48 classes along with some other rare classes, leading to a

subset of 73 attested “essential” classes that are observed

in the dataset. To get a direct comparison with previous

methods, while also keeping a focus on essential classes,

we report results using both the full class set and essential

classes only. Meanwhile, we also report results on the 20

“primitive” classes selected for evaluation by [8].

3.2 Notation Assembly

The notation assembly model takes a pair of nodes as in-

put, and gives a binary output indicating whether there is a

relationship between them. An intuitive method is to first

concatenate the features of two nodes, and then pass the

pair as a single feature vector through a series of layers of

a multi-layer perceptron (MLP). A sigmoid function σ is

applied at the end to output the probability that there exists

a relationship.

êij = σ(ϕMLP([vi, vj ])) (1)

As notation assembly is essentially binary classifica-

tion, we use binary cross-entropy as our loss function:

LBCE(êij) = −eij log(êij)− (1− eij) log(1− êij).

We adopt the input feature design in [5], where each vi
is represented by its 4-dimensional bounding box and the

class label. The class label is passed to an embedding layer

with x dimensions. Therefore, the input to MLP will be a

(4 + x)× 2 dimensional vector.

Existing work assumes perfect detection output; there-

fore, the input bounding box and class label are the ground-

truth information. While previous work has attempted to

manually perturb the bounding box as a test of robust-

ness, such perturbations don’t reflect the kind of errors that

might arise in a practical object detector.

To ensure our notation assembly system can adapt to

errors introduced in the detection stage, we propose a su-

pervised training pipeline that directly trains the assem-

bly model on detection output Ṽ . Since most of the time

Ṽ ̸= V , we can’t directly use the ground truth E as the

supervision signal.

To deal with this issue, we construct a maximum weight

matching M in the bipartite graph GM = (Ṽ , V ) and build

Ê for supervising our notation assembly model. We de-

scribe the detail of our matching procedure in Section 3.3,

where it is also employed in evaluation. We adopt the

edges from the ground truth according to our matching.

Given a pair (ṽi, vk) ∈ M and an edge (vk, vh) ∈ E, we

add (ṽi, ṽj) to Ê if (ṽj , vh) ∈ M . Our method essentially

builds a training set for the detection output that is in the

same format as the ground-truth, allowing seamless train-

ing and evaluation.

3.3 End-to-End Evaluation

The main challenge of OMR evaluation is finding the edit

distance between two music scores under some particu-

lar representation (e.g., XML format [18]). Hajič [19]

argued that intrinsic evaluation is needed to decouple re-

search of OMR methods from individual downstream use-

cases, since specific notation formats change much faster

than music notation itself. Some works have taken steps

to analyze the complexity of standard music notation [20]

and propose common music representation formats [21].

As a general system consisting several modules, we

seek to also evaluate our OMR pipeline holistically, with-

out a specific focus on what the downstream processing

will be. We therefore propose a novel matching-based

evaluation metric to assess predictions that include errors

from the detection stage. For the same reason we had to

adapt ground-truth edges to create training data for the

notation assembly model (Ṽ ̸= V ), we cannot straight-

forwardly use the ground-truth graph to evaluate notation

assembly. Our metric finds a matching between a test in-

stance’s predicted objects and those in the ground-truth ob-

ject detection, and then uses this as a bridge to evaluate the

edges returned by the notation assembly module.

The results reported by Pacha et al. [6] are the sole

benchmark for assessing a notation assembly model using

detected symbols. To address the matching issue between

Ṽ and V , Pacha et al. employ a rule-based method, consid-

ering two objects identical if they belong to the same class

and their intersection over union is at least 50%. However,

this greedy matching approach is inadequate, as inaccura-

cies in symbol detection cannot be compensated for by the

notation assembly model. Furthermore, Pacha et al. use

conventional precision/recall metrics with a hard decision

boundary, which fails to capture the overall performance
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Figure 4. An example of detected objects and pre-

dicted graph, alongside ground truth. At the right is

the constructed bipartite graph (zero-weight edges not

shown). Thick edges represent the matching function

M induced by the matching algorithm. In our nota-

tion, E = {(v2, v1), (v3, v1), (v4, v1)} and the match-

ing function maps v1 to ṽ1, v2 to ṽ2 and v4 to ṽ4.

Therefore, Ê = {(ṽ2, ṽ1), (ṽ4, ṽ1)}. Because Ẽ =
{(ṽ2, ṽ1), (ṽ2, ṽ4), (ṽ3, ṽ1), (ṽ4, ṽ1)}, we get a precision of

0.5 and recall of 1.0.

of the model comprehensively. To resolve these issues, we

propose a complementary metric based on a global optimal

matching and area under the precision-recall curve.

Formally, we denote Ṽ = {ṽ1, ṽ2, · · · , ṽñ} as the set of

symbols obtained from an object detection model, where

ṽi = (b̃i,pi) is a tuple of a bounding box b̃i ∈ R
4 and

a probability distribution vector pi ∈ R
C over all sym-

bol classes. A notation assembly prediction on Ṽ would

be an edge set Ẽ = {ẽ1, ẽ2, · · · , ẽm̃} where each edge

ẽi is a tuple of two vertices. Similarly, we denote the

ground truth notation graph as G = (V,E) with V =
{v1, v2, · · · , vn}, vi = (bi, ci), E = {e1, e2, · · · , em},

where bi ∈ R
4 is a bounding box and ci ∈ {1, 2, · · · , C}

is a symbol class label.

We first construct a complete weighted bipartite (Ṽ , V )
where the weight for edge (ṽi, vj) is wij = IoU(b̃i,bj) ·
pi,cj . Here, IoU is the intersection-over-union between the

area occupied by the two boxes, defined as:

IoU(bi,bj) =
Area(bi ∩ bj)

Area(bi ∪ bj)
.

Based on this bipartite graph, we find the maximum

weighted matching M using the implementation described

in [22] and filter the “weak" matching edges with weight

wij less than a threshold Tmatch to get the matching func-

tion M : V → Ṽ ∪ {∅}:

M(vj) =

{

ṽi, if (ṽi, vj) ∈ M and wij > Tmatch,

∅, otherwise.

Here, Tmatch is a filtering threshold for matching and we

set it to 0.05 without tuning.

After getting the matching function, the ground truth

assembly edges are naturally mapped back to edges be-

tween predicted vertices. The mapped edge set Ê =
{(M(vi),M(vj)) | (vi, vj) ∈ E,M(vi) ̸= ∅,M(vj) ̸=
∅} represents a ground truth edge set on detected vertices,

which can be used to evaluate predictions Ẽ to get a preci-

sion and recall. An example is shown in Figure 4.

Most notation assembly models predict a probability of

the existence of an edge (vi, vj), and the probability is

further compared with a threshold Tpredict to determine

whether (vi, vj) belongs to the prediction set Ẽ. By ad-

justing the model prediction threshold Tpredict, we can get

a series of predictions {Ẽ1, Ẽ2, · · · } and therefore derive a

series of precision-recall pairs, which are used to estimate

the area-under-the-curve (AUC) score. We refer to the full

evaluation metric as “Match+AUC.”

“Match+AUC” is an end-to-end evaluation metric for

the OMR pipeline with following advantages:

• “Match+AUC” accounts for model performance in both

the object detection and notation assembly stages. To be

specific, given an object detector’s output, a notation as-

sembly model will achieve a higher score if it predicts no

edges among redundant objects, since connecting redun-

dant nodes into the assembly graph would greatly affect

the final output music score. Also, for the same assembly

model, a worse object detector would generate a large

amount of redundant and inaccurate objects, making it

very hard for the assembly model to distinguish them.

• Instead of a hard rule-based matching used in past meth-

ods, “Match+AUC” creates a comprehensive match-

ing among detected symbols and ground truth symbols,

making the final score more accurate and sensitive.

• “Match+AUC” evaluates the model using the area un-

der the precision-recall curve, which summarizes perfor-

mance across a range of threshold choices that could be

made by a downstream module or a system user.

We believe that our novel “Match+AUC” is a compelling

tool for analyzing OMR pipelines that is complementary

to existing approaches.

4. IMPLEMENTATION DETAILS

4.1 Music Symbol Detection

4.1.1 Model Details

We finetune the “large” version of YOLOv8 (YOLOv8l),

an object detection model pre-trained on the COCO

dataset [23], on MUSCIMA++ v2.0 for music object de-

tection. The model consists of 43.7M parameters and is

capable of detecting object bounding boxes and generating

corresponding class distributions. The input image size of

our model is set to 640.

4.1.2 Training

We used the MUSCIMA++ v2.0 dataset to train and evalu-

ate the music symbol detection model [4]. The images are

binarized (pixels are 0/1-valued) and in a size of approxi-

mately 3500 × 2000 pixels. For simplicity, we use images

with staff lines removed. Additionally, following the ex-

act method described in [6], we split the dataset into 60%

training data, 20% validation data, and 20% test data. To

effectively train YOLOv8 on these dense images involv-

ing many small annotations, which include augmentation

dots and piano pedal markings, we have to reduce the im-

age size. Therefore, following the methods used by [8],
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Figure 5. Example of music symbol detection segments

for inference. The thick red line indicates the primary

cropped area, while the thick blue line represents an ex-

tended cropped section designed to include partial symbols

that may extend beyond the main cropped area. For better

visualization, we only show the extended area of one im-

age crop. Image crops on the right and bottom border of

the page are padded to fit into YOLOv8.

given a large music score image, we randomly sample 14

1216× 1216 crops and further resize them in to 640× 640
to fit the YOLOv8 input requirement.

We fine-tune the YOLOv8 model for 500 epochs with

a batch size of 8. We use the AdamW optimizer with a

learning rate of 5.5×10−5 and a momentum of 0.9, which

are automatically set by the YOLOv8 codebase [7]. During

training, we use the early stopping strategy with a patience

of 100 epochs. We keep the checkpoint with the highest

validation performance as our final model.

4.1.3 Inference

Since our detector is trained on cropped data, during the

inference stage, we also need to segment the large im-

ages into smaller segments. However, partial objects at

the edges of these crops would be hard to detect since the

model can’t see the full object. To resolve this issue, we

extend every crop with a margin, which serves as a context

for each image. The cropping is visualized in an example

in Figure 5. We then perform symbol detection on each ex-

tended crop and consolidate the detection results. To make

sure the objects on the edges are only detected once, over-

lapping bounding boxes are filtered based on their Inter-

section over Union (IoU) overlap rate.

4.2 Notation Assembly

4.2.1 Model Details

We use a 4-layer MLP for ϕMLP, where the two hidden

layers both have hidden dimension 32. The embedding di-

mension for the symbol class is also set to be 32. We use

ReLU [24] as the activation function.

4.2.2 Training

Again we used the MUSCIMA++ v2.0 dataset to train and

evaluate the notation assembly model [4]. Following previ-

ous work [5, 6], we balance the positive and negative pairs

in the training set by filtering out the pairs of nodes that

are too distant from each other since they are unlikely to

be connected. Before feeding the bounding box coordi-

nates to the model, we normalize them by the image width

while keeping the aspect ratio fixed, so that all of the x-

coordinate values fit in the range of [−1, 1].
We train our models for 200 epochs with batch size 256,

and use Adam optimizer with a learning rate of 0.0001. We

evaluate our model every 20 epochs and pick the check-

point with highest validation Match+AUC as our final

model. All of the experiments are conducted with three

different random seeds.

In our experiments, we consider three methods for train-

ing the notation assembly model:

• A baseline, which uses the ground-truth object lists pro-

vided in the MUSCIMA++ dataset to train the notation

assembly model. This is the setup used in [5].

• A pipeline, which runs the music object detection model

on the images to construct the training set for the nota-

tion assembly model, as discussed in Section 3.2.

• A “soft” variant of the pipeline, where we replace the

embedding layer for the symbol class with a linear layer

that maps the symbol class probabilities outputted from

the music object detection model to a 32-dimensional

vector. Note that this linear layer will have the same pa-

rameter count (number of classes multiplied by the hid-

den dimension) as the replaced embedding layer.

4.2.3 Inference

Since we consider both stages together, the input to the no-

tation assembly stage should correspond to the output of

the object detection stage. As described in Section 3.2, the

detection output is converted into (V ′, E′). We then pass

each pair of nodes to the notation assembly model, and

feed the result into our evaluation function. We hypothe-

size that this realistic setup introduces a distribution shift

to the model that was trained on the ground-truth objects

and we will make the comparison in Section 5.

5. EXPERIMENTS

In this section, we first report the performance of our mu-

sic symbol detection model. Then, we compare the per-

formance of different notation assembly training pipelines

using the evaluation metric described in Section 3.3.

5.1 Music Symbol Detection

Following the evaluation protocols of the Pascal VOC chal-

lenge [25], which is used by previous methods [8, 10, 11],

we present both the mean average precision (mAP) and the

weighted mean average precision, as detailed in Table 1.

To elaborate, a predicted bounding box b̃i is thought to

be a true positive only if IoU(b̃i,bj) > 0.5 for some

ground truth box bj . Then, average precision (AP) com-

putes the area under the precision-recall curve, providing

a single value that encapsulates the model’s precision and

recall performance. The weighted/unweighted mean Aver-

age Precision (mAP) extends the concept of AP by calcu-

lating the average AP values across multiple object classes,
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Models # Classes mAP (%) Weighted mAP (%)

YOLOv8 + cropping (ours) 163 (all) 84.79 92.67
YOLOv8 + cropping (ours) 73 (essential) 85.67 89.96

YOLOv8 + cropping (ours) 20 94.22 95.72

YOLOv4 + CBAM [8] 20 91.8 94.56†

PP-YOLO-V2 [8] 20 91.1 –
YOLO-X [8] 20 90.4 –
YOLOv4 [8] 20 89.1 –
Faster R-CNN [8] 20 86.2 –

Table 1. Object detection results on test set. “mAP” is mean average precision. We compared it with results reported

by [8]. The lower block is included for comparability with the 20-class setting from past work. †: Value computed from

average precision per class reported in [8].

Models # Classes
Match+AUC

Average S.D.

MLP baseline (train on ground truth objects) 73 92.44± 0.24

+ pipelined training (ours) 73 93.09± 0.16

+ pipelined training + soft label (ours) 73 95.00 ± 0.18

MLP baseline (train on ground truth objects) 163 83.97± 3.04

+ pipelined training (ours) 163 85.76± 0.42

+ pipelined training + soft label (ours) 163 87.10 ± 1.19

Table 2. Multi-stage system results (test set) using our Match+AUC metric.

taking into account the number of occurrences of each

class in a weighted or unweighted manner. Our experi-

ments are conducted with the MUSCIMA++ v2.0 dataset,

while the authors of most previous methods [10, 11] have

only tested their models on MUSCIMA++ v1.0. This in-

troduces a misalignment between our results. Thanks to

Zhang et al. [8], who provided reproduced results of most

previous methods on MUSCIMA++ v2.0, we directly re-

port their reproduced results in the table.

Our model outperforms Zhang et al.’s method on their

selected 20 classes by 2.4% (mAP, absolute), likely due to

the improvements in YOLOv8 compared to v4.

5.2 Notation Assembly

In this section, we complete the multi-stage OMR system

by chaining different notation assembly models to the best

music object detection model we trained in Section 5.1.

We use the metric we designed in Section 3.3 to report the

end-to-end performance of the OMR system.

In Table 2, we compare the notation assembly systems

trained with baseline training, pipelined training, and soft

pipelined training as described in Section 4.2. We found

that pipelined training improves the Match+AUC score by

0.65% (essential) and 1.79% (all), absolute, and incorpo-

rating the soft class label further increases the performance

by 1.91% (essential) and 1.34% (all), absolute. Training

the notation assembly model on the detection model output

and using the soft label probability to represent the class in-

formation, we are able to improve the Match+AUC of the

OMR system by 3.13%. We hypothesize that pipelined

training helps the assembly model adapt to any inaccu-

racies our object detector has, and incorporating the soft

class labels enables the assembly model to consider alter-

native class labels, not just those chosen by the object de-

tector.

6. CONCLUSION AND FUTURE WORK

In our study, we reconsider a multi-stage OMR pipeline

built and evaluated using the MUSCIMA++ dataset. We

first propose a state-of-the-art music symbol detector, serv-

ing as a strong preprocessor for the notation assembly

stage. We then propose a training pipeline in which no-

tation assembly is learned from imperfect object detection

outputs (rather than ground-truth objects), which leads to

higher performance. Finally, we introduce an evaluation

score, Match+AUC, which can jointly consider the error in

both detection and assembly stages, allowing evaluation of

the two stages together.

Match+AUC is not restricted to being an evaluation

metric. Future research could explore the application of

Match+AUC within a joint training objective function for

both the object detection and notation assembly stages.

This approach would enable the entire model to be op-

timized for retrieving a globally optimal music notation

graph.

In this study, we focused on the object detection and no-

tation assembly stages in the OMR pipeline. Progress on

the encoding stage is also required for a complete OMR

solution; while the music notation graph arguably contains

the essential information for recovering a score [4], con-

version of such graphs into standard formats remains un-

solved.

7. ACKNOWLEDGMENTS

The authors wish to express our deepest gratitude to all

creators of the public OMR datasets for their dedication

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

935



and generosity in collecting and sharing these invaluable

resources. We extend our sincere thanks to Carlos Peñar-

rubia for his assistance in clarifying questions regarding

the reproduction of their method. We are also grateful to

Tim Althoff for his insightful comments on our evaluation

metric. Special thanks go to Victoria Ebert and Teerapat

Jenrungrot for providing us with essential materials in the

OMR field. Finally, we sincerely appreciate the construc-

tive reviews, which have significantly enhanced the rigor

and completeness of this paper.

8. REFERENCES

[1] D. Bainbridge and T. Bell, “The challenge of optical

music recognition,” Computers and the Humanities,

vol. 35, pp. 95–121, 05 2001. [Online]. Available:

https://doi.org/10.1023/A:1002485918032

[2] A. Rebelo, I. Fujinaga, F. Paszkiewicz, A. R. S.

Marcal, C. Guedes, and J. S. Cardoso, “Optical music

recognition: state-of-the-art and open issues,” Inter-

national Journal of Multimedia Information Retrieval,

vol. 1, no. 3, pp. 173–190, Oct. 2012. [Online].

Available: https://doi.org/10.1007/s13735-012-0004-6

[3] J. Calvo-Zaragoza, J. Hajič, Jr., and A. Pacha,
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