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ABSTRACT

In recent years, the quality and public interest in music

generation systems have grown, encouraging research into

various ways to control these systems. We propose a novel

method for controlling surprisal in music generation using

sequence models. To achieve this goal, we define a metric

called Instantaneous Information Content (IIC). The IIC

serves as a proxy function for the perceived musical sur-

prisal (as estimated from a probabilistic model) and can

be calculated at any point within a music piece. This en-

ables the comparison of surprisal across different musical

content even if the musical events occur in irregular time

intervals. We use beam search to generate musical material

whose IIC curve closely approximates a given target IIC.

We experimentally show that the IIC correlates with har-

monic and rhythmic complexity and note density. The cor-

relation decreases with the length of the musical context

used for estimating the IIC. Finally, we conduct a qual-

itative user study to test if human listeners can identify

the IIC curves that have been used as targets when gen-

erating the respective musical material. We provide code

for creating IIC interpolations and IIC visualizations on

https://github.com/muthissar/iic.

1. INTRODUCTION

In music generation, controlling the generation process

with user inputs is essential for creating flexible systems

that support a creative human/machine co-creation pro-

cess [1]. Typically, controls are based on low-level features

with a direct musical interpretation, for instance, the pitch

of a generative synthesizer [2], or meter, harmony, and in-

strumentation for symbolic generation [3]. A high-level

musical feature that has received little attention in gen-

erative composition systems is musical surprisal — how

surprising a musical event is to a listener, given the past

musical context. The surprisal tends to be high when the
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music is complex, when a pitch deviates from the prevail-

ing tonality, or when there is a variation in rhythm [4, 5].

As such, musical surprisal shares similarities with musi-

cal complexity, however, it is importantly also affected by

learning: Repeating complex musical content can lead to

decreased surprisal on the repetitions as a result of learn-

ing [6]. In contrast, the musical content and the complexity

remain unchanged across repetitions.

Studies suggest that the amount of musical surprisal

needs to be balanced for music to be deemed preferable

[7, 8], which is typically achieved by balancing regularity

and novelty [9]. Being able to control surprisal in gener-

ated music might help users create compositions that bal-

ance regularity and novelty and thus suit listeners’ pref-

erences. In addition, if this can be controlled, rather low

surprisal could be used indirectly to induce repetitions in

machine-generated music and high surprisal to produce

novel parts, possibly with high perceived complexity.

In [10], it was proposed to quantify the surprisal of a

musical event by its Information Content (IC) conditioned

on past musical events. For that, a sequence of musical

events is modeled as a stochastic process, where the con-

ditional distribution and, hence, the conditional IC can be

estimated. As such, a surprising event is an event that is

unlikely to occur under the estimated distribution given

the past musical context. In the works of [11], the au-

thors find correlations between the IC of a variable-order

Markov model (called IDyOM) [12] and perceived surprise

in a controlled pitch anticipation experiment. A correlation

between high IC and tonal and rhythmic complexity was

shown in [4, 5].

This indicates that the IC of trained sequence models

can be used as a proxy for human perception of musi-

cal surprisal and that its measurement can identify musical

complexity and regularities. This paper proposes a novel

framework for generating music with user control over the

IC. Specifically, we define an Instantaneous Information

Content (IIC) measure, which can be calculated at any time

point based on the IC of musical events in the recent past

and approximates a causal information density. We use the

IIC as a fitness score to direct a beam search toward gen-

erating samples following a given IIC target curve. Our

sampling strategy can be used with any pretrained auto-

regressive generative music model. We demonstrate our

approach in symbolic classical music generation using a
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pretrained PIA model [13] and show quantitatively that our

approach can generate samples that follow IIC curves ex-

tracted from real data. We conducted a qualitative study

to test if humans can identify simple IIC curves used for

generation. Finally, we analyze relationships between IIC

and harmonic, rhythmic, and note density complexity.

2. METHODS

In the following, we describe a method for IC-controlled

token sequence generation. Let IC∗ (t) be a target curve

with support in the time interval [0, T ], representing the

desired information content over time of a generated se-

quence of tokens x = x1, x2, ...xn ∈ X , with a dura-

tion of T seconds. ‘Tokens’ are not necessarily individ-

ual notes or note onsets but can be any token type com-

monly used in Transformer-based music generation sys-

tems (e.g., [13–15]). Also, note that we operate on the

physical time dimension, not symbolic (score) time mea-

sured, e.g., in beats or number of tokens.

Furthermore, let q be a generative sequence model and

p an autoregressive critic model, used for estimating the

the i’th token’s conditional token information content

IC (xi|x<i) = − log p (xi|x<i) , (1)

where x<i = x1, x2, ..., xi−1. In our context, p will be

a Transformer model. The proposed method creates new

samples using q with an information content that matches

the target curve as measured by p. Our method works as

follows: Firstly, we define the Instantaneous Information

Content (IIC) – a mapping from a (temporally irregular) to-

ken sequence and its information content values to a func-

tion representing the musical surprisal in the continuous

time domain. Secondly, we define an IC deviation – a met-

ric for comparing the similarity between a sequence’s IIC

curve and the target curve. Finally, we devise a method for

generating token sequences with q that minimize the IC
deviation.

2.1 Instantaneous Information Content

2.1.1 Temporal Localization of IC Estimates

To align the information content of musical events, mea-

sured on sequence tokens, with the time-domain target IC

(IC∗), we face a challenge: IC is calculated on sequence

elements, while IC∗ pertains to the time domain. Our so-

lution involves assigning each token a temporal position

using a mapping function f , effectively “temporally local-

izing” or aligning tokens within the musical timeline. Note

that f can be constructed by analyzing the specific detok-

enization method associated with x’s tokenization that in-

volves turning a sequence of tokens into a time-based mu-

sic representation like MIDI 1 . In section 3.1, we present

an example of such f using the tokenization of [13].

Temporal Localization allows us to map IC tokeniza-

tions to their respective time points in the music. This is

crucial, especially for analyzing tokenizations of symbolic

1 https://midi.org/midi-1-0-detailed-specification

music commonly used with Transformers [13–15], where

the decoded musical events do not uniformly align in time.

Through this approach, IC measured on tokens can be di-

rectly compared with the time-domain IC∗, facilitating a

coherent analysis across different domains of musical rep-

resentation.

2.1.2 Interpolation

Let f : N × X → R be a localization function, mapping

the i’th token of sequence x ∈ X to the time domain. The

IIC at time t in a piece (represented by token sequence x),

is a real number computed by a time interpolation of x’s

token ICs:

IIC(t,x) =
∑

f(i,x)<t

λ (t− f (i,x) , i) · IC (xi|x<i) . (2)

λ (t, i) defines a weighting of the information of the i’th
token and the constraint f(i,x) < t ensures causality. As

a result, the IIC at any time step t is a weighted sum of IC

values of past events, using a weighting kernel λ.

The choice of the critic model p in combination with

the weight function λ defines different perceptual models

of the instantaneous information content. We propose to

choose λ so that the recent past is weighted higher than the

remote past. More specifically, we define λ as a window

function centered around t and equal to zero at time steps

greater than t. In this initial work, we chose a Hann win-

dow for the following reasons: As it is (half) bell-shaped,

it is insensitive to inaccuracies in the temporal localization

of recent events. It is smooth at the boundaries, preventing

sudden drops as events “leave” the window.

Using the IIC, we quantify the segment surprisal of seg-

ment [t1, t2] by the L1 norm of the IIC with support re-

stricted to [t1, t2] by calculating:

∥

∥IIC |t2t1
∥

∥

1
=

∫ t2

t1

|IIC (t,x)| dt. (3)

In section 3.5, we compare segment surprisal with

segment-based complexity metrics.

2.2 IC Deviation

Given a sample x, the IC deviation of IIC(·,x) from the

target IC∗ is defined as the L1 norm of their function dif-

ference:

∥IC∗ − IIC∥1 =

∫ T

0

|IC∗ (t)− IIC (t,x)| dt. (4)

Which is equal to zero if IC∗ = IIC(·,x) almost every-

where, implying that minimizing eq. (4), aligns the target

curve IC∗ with the IIC curve. In practice, we compute

eq. (4) by the Riemann sum:

∥IC∗ − IIC∥1 ≈

m
∑

i=1

|IC∗ (ti)− IIC (ti,x)|∆t, (5)

where m∆t = T .
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Figure 1. The temporal localization function f and

the weight function λ, involved in computing the IIC of

x1, x2, ..., a sequence of three notes, at time t1.

2.3 Information Content Conditioned Sampling

We can now rank sequences of different lengths accord-

ing to their proximity to the target IC∗ using eq. (5). We

use this to guide a beam search to follow the target curve.

The beam search is done in iterations. At each iteration,

we generate k continuations of the best-performing sam-

ple from the last iteration (initially the empty sequence)

in parallel. We stop expanding the continuation when the

duration of the newly generated content exceeds a prede-

fined step size t′. We then evaluate eq. (5) and keep only

the continuation with the lowest IC deviation for the next

iteration 2 . We stop when the generation’s duration is T .

3. EXPERIMENTS

3.1 Model and Data

All experiments are performed with a PIA Transformer

model [13], a symbolic music generation system pretrained

on expressive classical piano performances. The model

was trained on data consisting of 1,184 MIDI files of ex-

pressive music recorded with high precision on a Yamaha

Disklavier [16], as well as a larger dataset of 10,855 MIDI

files containing automatically transcribed piano perfor-

mances [17]. For evaluation, we use the dataset of [18],

consisting of performances of 36 Mozart piano sonata

movements. The midi files are tokenized using a struc-

tured MIDI encoding [13], where midi notes, sorted by

their onset times, are serialized successively using four to-

kens Pitch,Velocity ,Duration,Timeshift in that order.

Therefore, every fourth token represents the same token

type. Pitch is an integer describing the 88-note pitch

values on the piano. Velocity is an integer describing

the 128 possible midi velocity values. Duration is an

integer representing quantized note duration in seconds:

2 Practically, in beam search iteration i, we evaluate the integral of
eq. (4) from 0 to it′.

{0.02, 0.04, ..., 1.0, 1.1, ..., 5.0, 6.0, ..., 19.0}. Timeshift

is an integer encoding the inter-onset intervals (IOI,

i.e., the time durations between subsequent note onsets).

Timeshift is quantized similarly to the duration token,

with the addition of an extra symbol representing a time

shift of zero, allowing the model to understand that notes

less than 0.02 seconds apart are to be played concurrently.

In contrast to the PIA model described in [13], which does

non-causal inpainting, we use a causal Transformer based

on the Perceiver IO architecture [19] and do continuation

generation 3 . We make these modifications such that the

IC calculations ignore future observations. We use the

same pretrained model both as the generator model q and

the critic model p and leave the exploration of other critic

models for future work.

3.2 IIC

The elements involved in computing the IIC are given in

fig. 1. For IIC calculations, we choose to consider only

the surprisal of Pitch and Timeshift tokens, such that the

token’s IC represents the surprisal of pitches and IOI. We

ignore Velocity and Duration tokens because they con-

tribute less to the perception of surprise, being mostly re-

lated to the performance dimensions dynamics and articu-

lation. This is achieved in the IIC calculation by setting

λ(t, i) = 0 for i = 2, 6, 10, ... and i = 3, 7, 11, ... in

eq. (2). We choose f such that the pitch token contributes

to the surprisal function at its note onset time 4 , and the

timeshift token contributes to its surprisal at the onset of

the following note (as an IOI is perceived at the onset of

the next note). The remaining weights are then defined by

the scaled half Hann window

λ(t, i) =

{

ci
1
L
cos2(πt

L
) for 0 < t < L

2 ,

0 otherwise
, (6)

where ci is a weight that takes on two different values for

the pitch and timeshift tokens, respectively. ci is used to

weigh the IC of pitches and timeshifts, respectively. For

both token types to have equal importance, we estimate a

normalization constant empirically by calculating a mean

IC over all tokens of the evaluation dataset. The window

length is chosen to be L = 4 so that the weight is zero after

2 seconds.

3.3 Beam Search Parametrization Study

Using the beam search strategy described in section 2.3,

we run initial experiments to determine the effect of pa-

rameters associated with the beam search on the similar-

ity between generated samples and target curves IC∗ ex-

tracted from real music. Specifically, we randomly select

400 snippets of the MIDI files (10 seconds long) and cre-

ate the IIC curve associated with those snippets. Then, we

generate four new samples using our beam search and eval-

uate the IC deviation between the IIC curve induced by the

3 The model generates sequences using an initial context of real music.
4 The note onset times are found by accumulating the time values as-

sociated with previous Timeshift tokens.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

924



real data and the generated data. We discretize the integral

in the IC deviation (see eq. (5)) with ∆t = 0.1s.

To investigate the effect of the step size t′, we fix the

number of continuations generated in parallel to k = 16
to reduce computation. To investigate the importance of

the number of parallel generated samples k, we use a fixed

step size of t′ = 0.3s.

We find that in cases where the generation model q and

the critic model p are the same (p = q), it is challenging

to sample a single continuation xi, xi+1, ..., xi+m (using

q) that has a high segment surprisal ∥IIC |
f(xi+m)
f(xi)

∥1 (mea-

sured by p), precisely because the probability of sampling

such a continuation is low.

To sample low-probability tokens more efficiently, we

propose a heuristic that alters the entropy 5 of the gener-

ating distribution H(q) using a temperature parameter dy-

namically set using the IIC. Specifically, in iteration i−1 of

the beam search, we measure IC∗(it′), the target IC at the

time where the generation of the continuations halts next

time, and calculate a target entropy:

Htarget = min

(

IC∗(it′)

CH

, Hmax

)

, (7)

where CH is a constant parameter to be estimated and

Hmax is the entropy of the uniform distribution. We then

fix q’s entropy to the target entropy Htarget by search-

ing for a temperature r such that Htarget = H(q) =
H(softmax (l/r)) with binary search, where l are the log-

its of the neural network. Note that temperature is only

used for the generator q and not for the critic model p.

3.4 Qualitative Evaluation

We conducted an online user study to investigate if the IIC

curves computed on generated and real music correspond

to users’ experience of being musically surprised.

Firstly, we present the participant with a musical section

generated by our method using one of five target curves.

The participant is then tasked to select the IIC curve that

best describes their perceived surprise when listening to the

section. Secondly, we present the user with a segment of

real music and IIC curves extracted from real music, one of

which corresponds to the music segment. The user’s task

is to identify the corresponding curve.

The experiment is conducted on a website that, after an

initial experiment description, asks the user for their years

of musical training (more or less than five years). Then,

it shows an example of a generated piano music section

and the surprisal curve used as a target for the generation

(together with a textual explanation).

The participant is then presented with five pages, like

the one in fig. 2. Each presents a musical section generated

using one of five simple target curves. The participant is

asked to identify which of the five curves they think has

been used to generate the section. The final page contains

a 10-second segment of real piano music from the evalua-

tion set and two IIC curves, one corresponding to the piano

5 Entropy is the expectation of IC.

music and the other to a randomly selected 10-second seg-

ment from the evaluation dataset.

The samples for the first five pages are generated as fol-

lows: As contexts for the model, we select the first 13 mea-

sures of Mozart K.331, 1st mvt. and the first 16 measures

of K.332, 2nd mvt. from the evaluation dataset and gener-

ate 200 samples for every combination of the two musical

contexts and the five IIC curves shown on the page, with

CH = 50, t′ = 0.3s and k = 128 (i.e., the optimal beam

search parameters, as shown in table 1). For each combi-

nation, we then select the 25 samples with the lowest IC

deviation for the user study. For the final page of the user

study related to real performances, we select 300 different

10-second segments from the evaluation dataset and com-

pute the IIC curves. The results of the user study will be

presented and discussed in section 4.2

3.5 Analysis of IIC

As discussed in the introduction, IC and surprisal might

be related to aspects of musical complexity, but learning

effects may lead to a decrease in surprisal in passages

with repeated musical content. To investigate these rela-

tionships, we designed an experiment to determine if the

IIC correlates with harmonic complexity, as quantified by

tonal tension (cloud diameter) [20], where the IIC is calcu-

lated using progressively larger segments of musical con-

text. Tonal tension is calculated for a segment of music by

considering its most dissonant pitch class interval, where

an interval dissonance is measured as the distance between

the interval pitches embedded in a specific Euclidian space

where the position is based on the circle of fifths [21].

We extracted one-second segments centered on the on-

sets of notes in the evaluation dataset. For i = 1, ..., 1000,

we then compute the Pearson correlation coefficient be-

tween the tonal tension and the segment surprisal (see

eq. (3)) of the first i segments within every performance.

In addition, we investigate complexity in terms of note

density, i.e., the number of notes per segment. To do so,

we use the same setup as for tonal tension but count the

number of notes within one-second segments.

Finally, we investigate rhythmical complexity using the

IOI histogram entropy of measures [22]. We choose this

measure over other structural rhythmical complexity mea-

sures [23–28] since it does not assume the rhythm to

be cyclic. We follow the same procedure as mentioned

above, but instead of selecting fixed-sized segments cen-

tered around note-onsets, we select segments of one mea-

sure based on the measure annotations [18]. More specifi-

cally, we match the notes of the performance with its score

notes and extract for each measure: 1) the normalized en-

tropy of the score notes IOI histogram and 2) the segment

IIC of the measure normalized with the length of the mea-

sure. The segment boundaries are estimated by the mean

onset time of the first and last note in subsequent measures.
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Figure 2. Example page of the user study with a generated musical section and five target curves to choose from.

t′ 0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s 0.8s 1.0s 2.0s

IC dev. 3.63 2.71 2.61 2.72 2.69 2.93 3.03 3.11 3.31 3.90

k 1 2 4 16 32 64 96 128

IC dev. 8.41 5.90 4.36 2.61 2.14 1.89 1.76 1.69

CH 10 20 30 40 50 60 70 80 120 No

IC dev. 8.33 4.11 2.67 2.21 2.15 2.15 2.25 2.45 3.12 2.61

Table 1. IC deviation between target curves IC∗ extracted from real music, and IIC curves from continuations generated

with different beam search parameters.

4. RESULTS

4.1 Beam Search Parameter Study

In table 1, we report the mean IC deviation of samples gen-

erated with different beam search step sizes t′, numbers

of continuations generated in parallel k and CH , constants

used for setting the softmax temperature dynamically. Big-

ger step sizes create longer continuations with high IC de-

viation variance, resulting in worse performance. The low-

est values (t′ = 0.1s, 0.2s) also worsen IC deviation, likely

because sampled notes exceed the timestep, causing inac-

curacies in the next beam search iteration. For the num-

ber of continuations generated in parallel k, we find that

the IC deviation always decreases with higher k. This is

not surprising as the model has more candidate continua-

tions to choose from. The decrease flattens out as seen by

the small IC deviation differences when k ≥ 64. For the

dynamic temperature, we find that CH = 50, 60 reduces

the IC deviation compared to using no temperature scaling

(marked with "No" in table 1).

4.2 Qualitative Results

The user study results reported as a binary classification

of finding the correct curve, among the curves described

in section 3.4, are presented in Table 2. 29 users partic-

ipated, 23 participants had more than 5 years of musical

training, and 6 participants had less than 5 years of ex-

perience. 152 generated samples and 21 samples of real

music were classified in total. Due to the imbalance in the

number of untrained and trained participants and since we

found little difference in the classification performance be-

tween the groups, we combined their results in the table.

The overall F1-score was reported as 0.52 for gener-

ated data and 0.71 for real data, which is reasonably above

the proportions 0.2 and 0.5, being the F1 scores of ran-

dom classifiers, with 5 and 2 classes respectively. The re-

sults for the individual curves show difficulty differences in

classifying the different curve types, with RAMP_DOWN

having the lowest F1-score of 0.41 and STEP_UP having

the highest F1-score of 0.71. We therefore investigate the

confusion of curves in Figure 3. We find that the confusion

of CONSTANT is evenly distributed on all curves, except

for STEP_UP, which is reasonable since CONSTANT does

not share any characteristics with the other curves. We fur-

thermore find that generations that start with the same IIC

value, either high or low, are confused. This is seen by the

confusion of RAMP_DOWN with STEP_DOWN and the

confusion of STEP_UP and RAMP_UP.
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IIC Curves

CONSTANT RAMP_DOWN STEP_UP RAMP_UP STEP_DOWN Gen. all curves Real

F1 0.53 0.41 0.71 0.48 0.49 0.52 0.71

#True 36 34 29 29 24 152 21

#Pred 36 33 31 30 22 152 21

Table 2. Results from the user study reported as F1-score of identifying the: IIC curve used for generation, the IIC curve

of real music.

CONST
ANT

RAMP_D
OWN

ST
EP

_U
P

RAMP_U
P

ST
EP

_D
OWN

Predicted Curve

CONSTANT

RAMP_DOWN

STEP_UP

RAMP_UP

STEP_DOWN

Tr
ue

 C
ur

ve

19 4 1 5 7

4 11 0 3 6

1 4 18 6 0

6 3 3 15 2

6 8 0 4 16

Confusion matrix user study

Figure 3. The confusion matrix for users identifying the

IC∗ curves used to generate the music examples.

4.3 Analysis of IIC

The correlations between IIC and the tonal tension tt, note

density d, and the IOI histogram entropy he were calcu-

lated on the first n segments of the 36 evaluation data

performances as described in section 3.5 and reported in

fig. 4. We report the results for IIC calculated using Pitch

only, Timeshift only, or both token types. For tt, d, and

heTimeshift , the correlations reported were found signifi-

cant using a significance level of 0.05, whereas for hePitch

and heBoth , the correlations are not significant.

The results show a moderate to high correlation of

IIC with all metrics at the beginning of the performances

(when n is small). However, these correlations decrease in

later parts of the performances (when n is high), likely due

to “learning” (simulated by longer context) over time.

The highest correlations are found for note density d.

This may be explained by the definition of IIC (see eq. (2))

as a weighted sum of token ICs since more tokens per seg-

ment simply lead to higher sums.

Considering the different token type combinations, we

find that tt is most correlated with IIC calculated using

only Pitch tokens and he using only Timeshift tokens.

This is reasonable, considering that very dissonant seg-

ments and very complex rhythms tend to be associated

with Pitch and Timeshift tokens, respectively, which are

infrequent in the training dataset, resulting in a high to-

ken IC. Interestingly, tt is also correlated with IIC calcu-

lated using only Timeshift tokens (encoding IOIs), which

100 101 102 103

First n segments

0.0

0.2

0.4

0.6

0.8

Correlation between IIC and musical complexity.

ttPitch

ttTimeshift

ttBoth

dPitch

dTimeshift

dBoth

hePitch

heTimeshift

heBoth

Figure 4. Correlation between IIC and tonal tension tt ,

note density d, and IOI histogram entropy (he).

might stem from the critic model facing greater uncertainty

in predicting any token type when confronted with a highly

harmonic complex context that is infrequent in the dataset.

The curves of Both and Pitch follow each other closely

for total tension and note density, indicating that using both

Timeshift and Pitch tokens does not significantly reduce

the complexity correlations. For rhythmical complexity,

using Both tokens instead of Timeshift tokens alone de-

creases the correlation more.

5. CONCLUSION

In this study, we introduced a novel framework for con-

trolling musical surprisal through Instantaneous Informa-

tion Content (IIC), which maps token-based surprisal to a

continuous time-domain function. Using a beam search

algorithm, we demonstrated that our approach can gener-

ate music that closely follows predefined IIC curves, effec-

tively aligning generated and target surprisal curves.

Our user study confirmed that participants could rea-

sonably identify target IIC curves from generated music,

indicating that our method captures perceptible aspects of

musical surprise. Furthermore, our analysis showed that

IIC correlates with measures of musical complexity such

as tonal tension and note density.

Future work will explore alternative critic models, like

personalized models, trained on music that is familiar to

the user or models with smaller context windows to more

directly control local musical complexity.
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