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ABSTRACT

Recent advances in Deep Learning have propelled the de-

velopment of fields such as Optical Music Recognition

(OMR), which is responsible for extracting the content

from music score images. Despite progress in the field,

existing literature scarcely addresses core issues like per-

formance in real-world scenarios, user experience, main-

tainability of multiple pipelines, reusability of architec-

tures and data, among others. These factors result in high

costs for both users and developers of such systems. Fur-

thermore, research has often been conducted under certain

constraints, such as using a single musical texture or type

of notation, which may not align with the end-user require-

ments of OMR systems. For the first time, our study in-

volves a comprehensive and extensive experimental setup

to explore new ideas towards the development of a uni-

versal OMR system—capable of transcribing all textures

and notation types. Our investigation provides valuable in-

sights into several aspects, such as the ability of a model to

leverage knowledge from different domains despite signif-

icant differences in music notation types.

1. INTRODUCTION

Optical Music Recognition (OMR) is a field of research

focused on converting written music documents into

machine-readable formats, such as Humdrum **kern,

MEI, or MusicXML [1–3]. This technology holds sig-

nificant promise for digital musicology, libraries, and

academia, facilitating the digitization of scores for fur-

ther musical analysis, large-scale information retrieval, and

making vast musical archives more accessible [4].

Historically, the development of OMR has evolved from

relying on basic heuristic methods to a more dynamic ap-

plication of Deep Learning (DL) techniques [5]. This shift

brought new advances to the field, leading to substantial

improvements in the accuracy of music score transcrip-
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tion [6–9]. However, despite these advances, OMR mod-

els still face significant challenges in generalization. The

DL methodologies, while robust in specific contexts, often

struggle to perform consistently across diverse data dis-

tributions [10]. This is particularly evident when dealing

with a variety of music notations and textures, from an-

cient Neumic chants to modern polyphonic compositions.

Most existing OMR works focus on a narrow range of mu-

sic types (often just one), which limits their usability for

more comprehensive archival tasks [11].

In response to these limitations, this paper proposes the

conceptualization of a universal OMR system capable of

processing all types of musical notations and textures. 1

The long-term objective is to develop a versatile technol-

ogy that can adapt to any musical document, regardless of

its historical period or stylistic characteristics.

This paper takes the first steps towards such a system

by exploring a few alternatives to achieve this goal. In

particular, we carry out a specific case study focused on

diverse notation types, involving medieval square nota-

tion, Mensural notation, and Common Western Modern

Notation (CWMN) corpora. We consider whether it is

more feasible to develop separate OMR models for each

notation or to create a single, all-encompassing model.

This dichotomy has not been thoroughly studied before.

Separate OMR models for each notation maximize accu-

racy by addressing specific characteristics, but require ex-

tensive resources and individual updates. Conversely, a

single, all-encompassing model enhances scalability and

maintenance efficiency, benefiting from shared knowledge

across notations—a potential advantage in deep learning—

although it may struggle with variability. Additionally, we

include an intermediate case in which a part of the model

is common and only one specialized module is created for

each notation, thereby representing a trade-off between the

previous pros and cons.

This paper is organized as follows: Section 2 offers

background information on OMR. In Section 3, we outline

our methodology for analyzing the question at hand and the

different training scenarios to leverage the system’s per-

formance. Section 4 details the experimental setup, while

1 In this work, we will focus on Western notations that share some
fundamental characteristics, such as indicating duration with the shape
of the music-notation symbols and pitch with their position over a set of
staff lines. These also follow a left-to-right reading order.
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Section 5 presents the work results and analysis. Finally,

we conclude the paper in Section 6, along with potential

avenues for future research.

2. RELATED WORK

Modern research in OMR using DL methodologies has led

to several successful approaches [4,5,12]. Notably, one ap-

proach that stands out is the so-called “end-to-end” formu-

lation. This approach provides a holistic method where im-

ages of music notation are directly inputted into the model,

which then predicts their content. The end-to-end formu-

lation represents the state of the art in related areas such as

text or speech recognition and is now considered by several

works in OMR [11, 13–15].

Some works have successfully addressed end-to-end

OMR for monophonic staff images, likely because most

ancient notations depict monophonic staves. Specific ef-

forts are underway to address other textures such as ho-

mophonic scores [6], polyphonic music [7, 16], and vo-

cal pieces [8, 17]. However, despite recent advances in

the field, there is still no approach for building a univer-

sal OMR system capable of handling all this variability of

music notation types and textures simultaneously.

The fundamental challenge lies in an unsolved problem

in DL models: they perform well when there are regular

statistics and abundant data to train on, allowing them to

learn the regularities in the distribution properly [10]. This

is not the case in the OMR problem, where rich labeled

data is scarce and the graphical feature variability is exten-

sive, making it a complex task.

Due to the inherent characteristics of DL methodolo-

gies, the existing literature work with analogous or highly

similar train-test distributions [11]. Consequently, since

there is a lack of research focusing on the development

of universal OMR systems capable of processing any in-

put score regardless of its content, we propose the first

study aimed at developing, understanding, and evaluating a

universal OMR system for dealing with different notation

types simultaneously.

3. METHODOLOGY

Our objective is to explore an initial approach towards de-

veloping a universal OMR system. Specifically, we con-

sider the case of accounting for different notation types.

To achieve this, we consider three different scenarios: (i) a

single model per dataset; (ii) a model leveraging all avail-

able data; and (iii) a hybrid model, for which some parts

are common across all cases, but there are also specific

layers tailored to each notation type. We opt for a deep

end-to-end model as representative of the state-of-the-art

in OMR. Below, we provide a detailed explanation of how

this model works and then explain the different approaches

selected to address the task.

3.1 Learning framework

The end-to-end OMR model seeks to directly retrieve the

music notation from a single staff image. As in recent lit-

erature [11,13,14], we assume that a certain preprocessing

stage has already separated the staves of the score [18].

Based on other works addressing the OMR challenge

[13], a Convolutional Recurrent Neural Network (CRNN)

scheme is considered for the end-to-end pipeline. The

CRNN architecture incorporates an encoder: a block of

convolutional layers that learns a set of features from the

input image. Then, it includes a decoder: group of re-

current stages that model the temporal dependencies of

the feature-learning block. Finally, a fully connected net-

work with a softmax activation is used to retrieve a pos-

teriogram, which is decoded to obtain the predicted mu-

sical symbols 2 . The Connectionist Temporal Classifica-

tion (CTC) training procedure [19] is used to achieve an

end-to-end scheme, as it allows training the network using

unsegmented sequential data.

For training, let T ⊂ X × Σ∗ be a set of data where

sample xi ∈ X of single staff image is related to symbol

sequence zi =
(

zi1, zi2, . . . , zi|zi|

)

∈ Σ∗, where Σ repre-

sents the symbol vocabulary used for encoding the music

score. Note that the use of CTC to model the transcription

task requires the inclusion of an additional “blank” symbol

in the Σ vocabulary, i.e., Σ′ = Σ ∪ {blank}.

At prediction, for a given music staff image input xi ∈

X , the model outputs a posteriogram pi ∈ R
|Σ′|×K , where

K represents the number of frames provided by the re-

current stage. Finally, the predicted sequence ẑi is ob-

tained resorting to a greedy policy that retrieves the most

probable symbol per frame in pi, later a subsequent map-

ping function merges consecutive repeated symbols and re-

moves blank labels.

3.2 Approaches to OMR for different notation types

In order to explore diverse learning frameworks to assess

the transcription performance, we pose three different sce-

narios that differ in how data is fed to the model and

the training strategies for the model layers. An overview

of these scenarios is described as follows (illustrated in

Figure 1):

Only: In this scenario, one model is trained for each

single dataset. This is the baseline of our experiments

and it will allow us to compare properly the different ap-

proaches selected. It should be emphasized that this train-

ing scenario will employ a set of resources and time as-

sociated with each corpora. This methodology stands as

the current state of the art, as recent research resorted to

training individual models as described in Sec.2.

All: For this scenario, all available notation types in this

work are merged to train a single model. As commented

in the introduction, our long-term objective is to create a

universal OMR capable of retrieving all types of notation

and textures. This option allows us to explore the capabil-

ities and drawbacks of integrating all possibilities in the

same model.

2 In this work, a musical symbol is represented as the conjunction of
the glyph or shape and the position within the staff.
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Figure 1: Graphical scheme of the three different approaches considered for this work using the CRNN architecture as the

backbone. Only: a model trained per notation type individually. All: a model trained with all the notation types available

for this work. Specific Decoder: once the All scenario is finished, the encoder (already trained) is frozen to train specific

decoders for each notation type.

Specific Decoder: Recent DL approaches pictured the ad-

equacy of learning via a general feature extractor (en-

coder) [20]. Similarly, we leverage the encoder block of

the All approach weights as our starting point. By do-

ing so, we establish an already-evaluated feature extractor

shared across all corpora. Having the features extracted,

we then fine-tune a notation-specific decoder block based

on the unique underlying musical context.

The selection of these scenarios helps to study perfor-

mance but also other important aspects such as maintain-

ability, reusability, or resource leveraging, which are valu-

able for real-case systems and have been barely analyzed

in OMR literature.

4. EXPERIMENTAL SETUP

According to the choices made for the experimental road

map, we first introduce the studied evaluation metrics.

Later we give further details about the learning model hy-

perparameters selected and the training techniques used.

Eventually, we describe the data collections used for train

and evaluation.

4.1 Evaluation

Current OMR systems are designed to serve as a tool.

Bearing this in mind, it should be more than interesting

to compute the amount of effort it would take a user to cor-

rect the errors made by the system. However, there is not

a clear way of properly measuring this case. This is why

when evaluating an OMR system we resort to the Symbol

Error Rate (SER). Given a prediction ẑi and the ground

truth musical symbol sequence zi, SER is calculated as the

average number of elementary editing operations (inser-

tions, deletions, or substitutions) required to convert pre-

diction ẑi into reference zi, normalized by the length of

the latter. Formally, this is expressed as:

SER (%) =

∑|S|
i=1

ED (ẑi, zi)
∑|S|

i=1
|zi|

(1)

where S is a set of test data, ED : Z × Z → N0 denotes

the string edit distance, and ẑi and zi respectively represent

the estimated and target sequences.

4.2 Neural model configuration

The CRNN hyperparameters used in this study are based

on the ones used in previous works [11,13]. Authors adopt

a 4 Convolutional layer block with batch normalization

2D, Leaky ReLu activation, and max-pooling 2D down-

sampling. Feature maps extracted from the encoder, i.e.

the Convolutional Neural Network (CNN) block, are in-

troduced into 2 Bidirectional Long Short-Time Memory
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(BLSTM) layers with 256 hidden units each and a dropout

value of d = 50% followed by a fully connected network

with |Σ′| units. The architecture described results in a

model with 5.3M parameters.

All the models were trained with a batch size of 16

samples—it is important to mention that given the different

sizes of the datasets, all the generated batches had the same

proportion of samples from each dataset so the network

did not adjust to the bigger dataset, i.e., dataset interleav-

ing. The ADAM [21] optimizer was considered, a fixed

learning rate of 10−3, and weight decay of 10−6. We iter-

ate over 200 epochs using image augmentation techniques

(blur, rotation, contrast, erosion, brightness, etc.), ensur-

ing the robustness of the model, keeping the weights of

the model that minimize the SER evaluation metric in the

validation partition. The early stopping technique is used

with a patience of 20 epochs. Lastly, all experiments were

run using the Python language (v3.10.13) with the PyTorch

and PyTorch Lightning frameworks on a single NVIDIA

GeForce RTX 4090 card with 24GB of GPU memory.

4.3 Datasets

As introduced in Sec.1, music manuscripts depict a great

challenge for transcription methods. Their variety in con-

tent and appearance poses a still unsolved question. In

order to study the adequacy of a universal OMR system,

we gathered data sources taking into account their variabil-

ity in terms of notation, graphical appearance, and musical

context, aiming to reflect Western musical diversity. A set

of 40 different works has been collected that have been

grouped to simplify the experimentation and insights re-

ported. Among them, we find square notation, white Men-

sural notation, and CWMN. A brief description of some

dataset features and staves can be found in Table 1 and

Fig. 2.

Table 1: Dataset descriptions in terms of notation type,

pages, music fragments (staves), and vocabulary sizes.

Notation

type
Dataset

Number of

pages

Music

fragments

Vocabulary

size

Square AUSTRIA 685 4 850 270

Mensural

BNE 4 125 27 746 709

SEILS 151 1 136 206

GUATEMALA 385 3 263 316

CAPITAN 97 828 373

CWMN

FMT 348 1 305 425

CATEDRALES 52 308 245

CAMERA-PRIMUS – 15 000 1 443

Diverse cases have been considered looking for differ-

ent printers, copyists, authors, and periods considering the

more variability the better. The list of datasets used is clas-

sified by notation type and ordered temporally below.

4.3.1 Square Notation

Square notation is written on a staff with four lines and

three spaces. In this notation, ascending notes are shown

as stacked squares, while descending notes are written with

(a) AUSTRIA

(b) BNE

(c) SEILS

(d) GUATEMALA

(e) CAPITAN

(f) FMT

(g) CATEDRALES

(h) CAMERA-PRIMUS

Figure 2: Samples of staves of the different datasets em-

ployed in the experimentation.

diamonds. This system of notation appears in liturgical

chant books.

AUSTRIA. The Austria dataset contains 685 printed

pages of 15th-century manuscripts in German Gothic

square notation. Provided by the Austrian Centre for Dig-

ital Humanities and Cultural Heritage. 3

4.3.2 White Mensural Notation

Notation system used in polyphonic European vocal mu-

sic. Mensural notation can use different note shapes to de-

note rhythmic durations. It is written on a staff with five

lines and four spaces.

BNE. The “Biblioteca Nacional de España (BNE)”

dataset corresponds to the pages from the corpus obtained

from the collection of mensural books of the Biblioteca

Digital Hispánica. 4 It comprises multiple authors and

printers, e.g., F. Guerrero, H. of G. Scoto or Antonio Gar-

dano, with a size of 4 125 pages. License: public.

SEILS. The “Second Edition of the Il Lauro Secco

(SEILS)” dataset consists of 151 printed pages of the “Il

3 https://www.oeaw.ac.at/ (accessed April 8th, 2024)
4 https://www.bne.es/es/catalogos/

biblioteca-digital-hispanica (accessed April 8th, 2024)
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Lauro Secco” collection corresponding to an anthology

of 16th-century Italian madrigals in white Mensural nota-

tion [22]. License: public.

GUATEMALA. The Guatemala dataset incorporates 383

handwritten pages from a polyphonic choir book, part of

a larger collection held at the “Archivo Histórico Arquid-

iocesano de Guatemala” [23]. License: private.

CAPITAN. The Capitan dataset contains 100 handwritten

pages of 17th-century manuscripts in late white Mensural

notation extracted from collections found in the “Catedral

del Pilar” in Zaragoza [24]. License: private.

4.3.3 Common Western Modern Notation

Current notation system, written in five lines and four

spaces. It is capable of indicating to the musician all the

parameters to properly interpret the piece, such as dynam-

ics or tempo changes. 5

FMT. This collection consists of four groups of hand-

written score sheets of popular Spanish songs transcribed

by musicologists between 1944 and 1960. taken from the

"Fondo de Música Tradicional IMF-CSIC" 6 , with a total

of 348 images. License: public.

CATEDRALES. The Catedrales dataset contains 52 pages

of printed liturgical examples from Málaga, Granada, and

Sevilla cathedral archives [25]. License: public.

CAMERA-PRIMUS. The Printed Images of Music

Staves (PrIMuS) dataset is a hybrid corpus, i.e., the mu-

sical content comprehends the RISM Database 7 but the

images have been obtained using the digital engraver tool

Verovio [26]. To the generated images multiple distor-

tions and textures are applied to simulate the look and

conditions of the real sources. Although the original

dataset consists of almost 100 000 samples, we have ran-

domly selected 15 000 to make it more suitable for our

experimentation [27]. License: public.

All the datasets presented use an agnostic out-

put encoding which represents a musical symbol as

glyph:position_in_staff. This encoding helps

transcribe the tokens given their graphical appearance

rather than their musical meaning, which can be ambigu-

ous in many situations for the model to learn, making it

unsuitable for OMR. Additionally, the agnostic encoding

facilitates a straightforward conversion to standard formats

such as MusicXML, MEI, or Humdrum **kern [28].

5. RESULTS

Table 2 presents the test results obtained with the proposed

experimental scheme in terms of the SER (%) metric.

The Only scenario acts as our baseline. Here training,

validation, and testing splits comprise exclusively samples

5 For evaluation, pitch, rhythm and articulation are considered.
6 https://musicatradicional.eu/es/home (accessed

April 8th, 2024)
7 https://rism.info/ (accessed April 8th, 2024).

Table 2: Results in terms of the SER(%) metric for the

training scenarios Only, All and Specific Decoder.

Dataset
Only

(baseline)
All

Specific

Decoder

AUSTRIA 3.77 3.87 3.78

BNE 3.25 3.67 3.31

SEILS 2.71 1.88 1.94

GUATEMALA 2.22 1.87 1.88

CAPITAN 8.60 6.80 7.91

FMT 8.98 5.72 7.11

CATEDRALES 17.34 8.49 17.94

CAMERA-PRIMUS 1.54 3.07 1.60

from each individual dataset. We observe varying perfor-

mances across different datasets. Notably, the SER met-

ric ranges from 1.54% for the CAMERA-PRIMUS dataset

to 17.34% for the CATEDRALES dataset. This indicates

significant variability in model performance depending on

the dataset size, notation, and graphical features, being the

higher values the ones associated with CWMN, where we

find more complex musical symbols and context.

When training on the All scenario, the model demon-

strates performance improvements compared to the Only

scenario for most datasets. This proves the validity of uni-

fying training pipelines for different notations as the model

learns to extract more robust features from the images,

which helps in datasets with fewer samples while sacri-

ficing very little accuracy in other datasets, e.g., BNE or

CAMERA-PRIMUS. It is worth highlighting the great im-

provement in the CATEDRALES dataset reducing the SER

from 17.34% to 8.49%. On the other hand, we lose accu-

racy in datasets such as AUSTRIA (from 3.77% to 3.87%),

BNE (from 3.25% to 3.67%), and CAMERA-PRIMUS

(from 1.54% to 3.07%). This situation reports valuable in-

sights given that on bigger datasets like BNE or CAMERA-

PRIMUS with enough data to be trained individually we

lose performance, but if we are willing to sacrifice that per-

formance we improve in several datasets. AUSTRIA poses

a different situation, due to being the only square notation

dataset, the labeling is slightly different to the other cor-

pora increasing the SER metric when merging it with the

other datasets. 8

After training on the All scenario, experiment outcomes

show the adequacy of merging different datasets to better

learn the data features. Thus, in the Specific Decoder sce-

nario, the All encoder, or CNN, is frozen, and specific de-

coders were trained for each dataset individually. This ap-

proach is aimed at capturing dataset-specific features and

learning the underlying musical language of each dataset.

While some datasets exhibited improved performance

8 For the All scenario we have checked that the tokens predicted are
present in the target vocabulary. Without performance variation, such a
fact evinces the adequacy of using all data available to train a unique
model, to better learn the image features and the inherent difficulty of
music when applying OMR without focusing on a specific given dataset.
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(e.g., SEILS with a 1.94% SER in the Specific Decoder

compared to 2.71% SER in the Only setup), others experi-

enced only marginal improvements or even a slight degra-

dation in performance (BNE, GUATEMALA, CAPITAN,

FMT, CAMERA-PRIMUS). Since this approach could be

discarded at first glance for not being the best performing,

we make an in-depth explanation of the results obtained in

the latter scenario in Sec. 5.1.

5.1 Time-efficient model training

Another important factor to take into account when looking

at the experiment results is the time consumption, which is

a key factor to better understand the outcomes of this re-

search. Given the datasets presented in this work, we em-

ploy a total of 54 436 monophonic staff images with dif-

ferent notation types and graphical features. In Fig. 3,

we report the runtime of the experiments presented. When

using the training scenario specified as All and the con-

figuration explained, the time that took to train the model

was 1D 20H 36M 49S. If we evaluate the performance

obtained in the All scenario we could think that these are

the best approaches, as the SER metric poses improve-

ments even in datasets with few samples. However, in

real scenarios, this approach would have to be retrained

from scratch in case we want to integrate a new dataset 9 .

That is why the Specific Decoder scenario—where a com-

mon CNN is trained and specific decoders, i.e, BLSTMs,

are created for each dataset—emerges, given that once the

encoder block (CNN) is trained the average time to inte-

grate a new dataset, i.e., train its decoder block, is 1H 6M

11S. This time-efficient model training approach attends

more accurately to the end-user requirements in conjunc-

tion with better resource management.

This analysis strengthens our proposal of building a uni-

versal OMR system, that leverages all the existent musi-

cal data and is capable of transcribing multiple notation

types. In these experiments, we explore the end-to-end ar-

chitecture for every notation type, which clearly helps as

explained in Sec.5. This will allow creating a robust, main-

tainable, reusable system as a first step never done before

towards universal OMR.

6. CONCLUSIONS

This work stands out as the first to introduce the universal

OMR goal, which involves the design, construction, and

evaluation of a system capable of retrieving musical con-

tent from a document, taking into account different nota-

tion types and textures, such as monophonic, homophonic,

vocal, polyphonic, etc., and the end-user requirements in

real-case scenarios. To achieve this, we studied and com-

pared different settings of real and heterogeneous data cor-

pora to provide invaluable insights into these first steps to-

wards universal OMR.

The obtained results validate the capabilities of current

OMR state-of-the-art model architectures to transcribe real

9 Except if we use Continual Learning techniques [29], yet to be ex-
plored in OMR.
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Figure 3: Runtime of experiments presented in this work

in minutes for the All, Only (baseline) and Specific De-

coder scenarios.

documents with different notation types, as the SER(%)

rates match those observed in works that exclusively ad-

dress one notation (either square, Mensural, or CWMN).

Moreover, the use of a frozen trained encoder block as

a common feature extractor proves to be useful for sav-

ing resources, maintaining the system, and reducing train-

ing time, since in some cases it considerably improves

the overall transcription performance when there are not

enough samples.

Future work seeks to expand the presented assortment

by considering other textures such as homophony, vocal, or

polyphony, to provide further insights and analysis towards

universal transcription pipelines. Fine-tuning all or certain

layers of the encoder would also be relevant, given that

differences among datasets manifest in their visual repre-

sentation rather than in their output. Furthermore, given

the results obtained, another promising avenue is to inves-

tigate adequate encoding formats to properly represent mu-

sic from different centuries and textures.
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