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ABSTRACT

This paper describes a streaming audio-to-MIDI transcrip-

tion method that can sequentially translate a piano record-

ing into a sequence of note-on and note-off events. The

sequence-to-sequence learning nature of this task may call

for using a Transformer model, which has been used for

offline transcription and could be extended for stream-

ing transcription with a causal restriction of the attention

mechanism. We assume that the decoder of this model

suffers from the performance limitation. Although time-

frequency features useful for onset detection are consid-

erably different from those for offset detection, the sin-

gle decoder is trained to output a mixed sequence of on-

set and offset events without guarantee of the correspon-

dence between the onset and offset events of the same

note. To overcome this limitation, we propose a streaming

encoder-decoder model that uses a convolutional encoder

aggregating local acoustic features, followed by an autore-

gressive transformer decoder detecting a variable number

of onset events and another decoder detecting the offset

events of the active pitches with validation of the sustain

pedal at each time frame. Experiments using the MAE-

STRO dataset showed that the proposed streaming method

performed comparably with or even better than the state-

of-the-art offline methods while significantly reducing the

computational cost.

1. INTRODUCTION

Automatic music transcription (AMT) is a central topic in

the field of music information retrieval (MIR), which refers

to converting a music recording into a symbolic musical

score (MusicXML format) or a piano-roll representation

(MIDI format) [1]. It has remarkably been improved with

the technical progress of deep learning techniques and the

public availability of large-scale music datasets. In this pa-

per, we focus on streaming audio-to-MIDI AMT because it

remains relatively unexplored unlike streaming automatic
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Figure 1. An overview of the proposed streaming audio-

to-MIDI piano transcription method aware of onset-offset

correspondence.

speech recognition (ASR) [2–4] and forms the basis of

real-time music applications such as performance evalu-

ation and interactive jam session. The previous research in

[5] applied auto-regressive convolutional recurrent neural

network (CRNN) frame-by-frame for piano transcription.

The auto-regressive CRNN model can be easily adapted

for the online scenario [6]. But the transcription perfor-

mance for note offsets still has significant room for im-

provement.

Inspired by the sequence-to-sequence learning for ASR,

many studies on AMT have recently attempted to use the

Transformer [7] by serializing the polyphonic information

of the estimation target [8,9]. AMT is essentially different

with ASR in a sense that the onsets, durations, and pitches

of musical notes should be estimated, while the tempo-

ral information of output tokens (e.g., words and charac-

ters) is not considered in ASR. For audio-to-MIDI piano

transcription, one may define the input and output of the

Transformer as a sequence of raw audio features (e.g., mel

and constant-Q spectrograms) and a sequence of note-on

906



and note-off events sorted in time and pitch, respectively.

The performance of this naive approach, however, is po-

tentially limited. Despite the significant differences in fea-

tures needed for detecting onsets and offsets, the Trans-

former decoder estimates these events in a mixed manner.

In addition, the correspondence between the onset and off-

set events of the same note is not guaranteed.

For streaming AMT, one can use the causal Trans-

former that restricts the self-attentive region to a certain

number of past frames, which could reduce the compu-

tational cost of the basic self-attention mechanism that

increases quadratically with the input length. Nonethe-

less, due to the strong coupling between note events,

Transformer-based transcription methods often underper-

form the state-of-the-art frame-level methods [10, 11], es-

pecially in offset detection and velocity estimation.

To overcome these limitations, we propose a stream-

ing audio-to-MIDI piano transcription method based on

a novel encoder-decoder architecture (Fig. 1). The en-

coder is implemented with a convolutional neural network

(CNN) that sequentially aggregates latent features from lo-

cal regions of an input piano recording. The two Trans-

former decoders that operate framewise are then separately

used for detecting a variable number of onset events and

offset events for the active pitches with guarantee of onset-

offset correspondence. For further improvement, the off-

set decoder is trained to judge the activation of the sustain

pedal in a way of multitask learning.

The main contribution of this study is to develop an ef-

ficient streaming encoder-decoder model and pave a way

for interactive and responsive applications based on real-

time music transcription. We experimentally show that our

method performs comparably with a state-of-the-art offline

transcription method and outperforms existing sequence-

to-sequence transcription methods.

2. RELATED WORK

This section reviews related work on automatic music tran-

scription and sequence-to-sequence transcription.

2.1 Automatic Piano Transcription

Automatic piano transcription (APT) is the most popular

form of AMT. Early methods rely on handcrafted features

and rule-based algorithms [12–15], while modern meth-

ods use deep learning models such as CNNs [16–19], re-

current neural networks (RNNs) [20, 21], and transform-

ers [22, 23]. In APT, the framewise transcription has still

been the mainstream approach due to its superior perfor-

mance and accuracy [10, 24]. In this approach, audio fea-

tures such as short-time Fourier transform (STFT) spectro-

grams are mapped to a binary matrix of dimensions T ×N

indicating the presence of pitches over time frames, where

T represents the number of frames and N the number

of pitches. Early transcription methods, mostly based on

CNNs, perform comparably at the frame level but under-

perform in term of note-level.

Onsets and Frames [19] is a major breakthrough in APT

that learns to sequentially predict note onsets and pitches in

a multitask framework. To improve the performance, a mu-

sic language model (MLM) based on a bidirectional long

short-term memory (BiLSTM) network is used for model-

ing the temporal dependency of musical notes. This study

has triggered many extensions. Kong et al. [25], for exam-

ple, proposed a high-resolution piano transcription (HPT)

model that simultaneously deals with onset, offset, veloc-

ity, and frame prediction tasks. The predicted velocities are

used as conditional information to predict onsets, and the

predicted onsets and offsets are used to predict frame-wise

pitches, forming a hierarchical structure.

Our previous work [24] proposed HPPNet that uses har-

monic dilated convolution for constant-Q transform (CQT)

spectrograms and an enhanced frequency grouped LSTM

(FG-LSTM) as a MLM. This model exhibits improved

performance in both frame-level and note-level predic-

tions. To capture long-term temporal and spectral depen-

dencies, Toyama et al. [10] proposed a two-level hierar-

chical frequency-time transformer (hFT-Transformer) and

achieved the state-of-the-art performance on the prediction

of note with offset and velocity.

2.2 Sequence-to-Sequence Transcription

Sequence-to-sequence models are able to learn a mapping

between input and output sequences of variable lengths

and have actively been investigated in many fields such as

natural language processing (NLP) and automatic speech

recognition (ASR). Such models have recently been imple-

mented with the Transformer or the self-attention mecha-

nism due to its excellent performance. Awiszus et al. [26],

for example, proposed a piano transcription model based

on an LSTM and a Transformer for frame-level multi-pitch

estimation. The performance of this method, however, is

limited due to the lack of training data and using improper

relative time shifts.

Inspired by this study, Hawthorne et al. [8] proposed a

note-level piano transcription model that uses Transformer

encoder and decoder in a way similar to the T5 model [27].

The encoder extracts latent features from an input spectro-

gram and the decoder refers to the input in an autoregres-

sive manner, and the token with the highest probability

is selected at each frame. This method achieved promis-

ing performance on the MAESTRO dataset and was later

extended to multi-track music transcription [9]. However,

this sequence-to-sequence transcription method still faces

limitations. It encodes all types of note events and absolute

time location of each event into a single sequence. This

increases the complexity of sequence-to-sequence trans-

formation and also constrains the length of the input se-

quence.

3. PROPOSED METHOD

This section explains the proposed method of streaming

audio-to-MIDI piano transcription based on a single en-

coder and onset and offset decoders.
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3.1 Streaming Transcription

As shown in Algorithm 1, the model takes a spectrogram

X ∈ R
T×Fi as input, where T represents the number of

frames and Fi represents the number of frequency bins. It

outputs an onset sequence list Y and an offset sequence list

Y, where each element Yt in Y represents the detected on-

sets sequence of frame t with sequence length kt, and each

element Yt in Y represents the detected offsets sequence

with sequence length nt in frame t.

The model consists of one encoder and two decoders

(Fig. 2). The encoder is implemented with a CNN that

efficiently extracts and aggregates local features from the

audio spectrogram X. The two separate decoders are then

used at each frame for detecting a variable number of on-

set times and judging the offset of the detected notes by

focusing on different aspects of the latent features.

More specifically, at each frame t, the encoder takes as

input the audio spectrogram around frame t with a recep-

tive field of a fixed size M and outputs a hidden embedding

sequence Ht ∈ R
Fh×D in the frequency domain with a se-

quence length of Fh and the hidden embedding size of D.

In addition, positional encodings are incorporated into the

encoder hidden states Ht. Then the decoders receive Ht

with the cross attention (encoder-decoder attention).

For onset detection, the onset sequence Yt at frame t

is initialized with the beginning-of-sequence token (BOS).

The onset events are then detected using the onset de-

coder Decoderon iteratively until the end-of-sequence to-

ken (EOS) is obtained, considering the current encoder

hidden state Ht, the onset sequences Y1:t−1 detected in

previous times, the current onset sequence at frame t, and

decoder positional encodings. The detected onset events

are finally added to the active onsets set A. The process is

repeated throughout the input sequence X.

The offset events are detected using the offset decoder

Decoderoff , considering the current encoder hidden state

Ht, the active onsets set A, and decoder positional encod-

ings. Then active onsets corresponding to the detected off-

sets are removed from A indicating the end of notes. It

should be emphasized that the offset decoder does not per-

form sequence prediction. Instead, it predicts the offset for

each onset that has been activated in the past time steps all

at once.

3.2 Encoder

The encoder is based on the harmonic dilated convolution

originally used for HPPNet [24] and uses the same con-

figuration proposed for the acoustic model of HPPNet. It

extracts local acoustic features with a fixed receptive field

and feeds them to the decoders. There are three sets of

convolutional layers with different kernel sizes: three lay-

ers with a kernel size of 7 × 7, one harmonic dilated con-

volution layer with a kernel size of 1 × 3, and five layers

with a kernel size of 5× 3. The resulting receptive field in

the time dimension is M = 39.

For streaming piano transcription, we use the shifting

window approach for sequentially feeding an input spec-

trogram to the encoder. Instead of feeding the entire spec-

Algorithm 1 Streaming piano transcription. The length

of output onset sequence equals to the number of the de-

tected onsets, while the length of offset sequence has an

additional output for pedal offset indexed as 0.

1: Input: Source sequence X = (x1, x2, ..., xT )
2: Output:

3: Onset sequence Y = (Y 1:k1

1 , Y 1:k2

2 , ..., Y 1:kT

T )

4: Offset sequence Y = (Y
0:n1

1 , Y
0:n2

2 , ..., Y
0:nT

T )
5: Parameters:

6: Receptive field of encoder: M

7: Initialize positional encodings: PEenc and PEdec

8: Initialize active onsets set: A = {}
9: for t = 1 to T do

10: Ht ← Encoder(Xt−M

2
:t+M

2

)
11: Ht ← Ht +PEenc

12: // Offset decoder

13: nt ← A.size()
14: Y t ← Decoderoff (Ht,A,PEdec)
15: Delete onsets in A corresponding to offsets in Y t

16: // Onset decoder

17: kt ← 0
18: Y kt

t ← BOS

19: y ← BOS

20: while y != EOS do

21: y ← Decoderon(Ht, Y1:t−1, Y
0:kt

t ,PEdec)
22: if y == EOS then

23: break

24: end if

25: kt ← kt + 1
26: Y kt

t ← y

27: end while

28: A.add(Yt)
29: end for

trogram at once, we segment it into smaller chunks or win-

dows to simulate real-time processing. These windows are

shifted along the time axis, allowing the model to gradu-

ally analyze incoming audio data. We define the size of

each window based on the desired temporal context for

transcription. Typically, smaller window sizes facilitate

faster processing but may sacrifice some contextual infor-

mation, whereas larger window sizes provide more context

but may introduce latency. To ensure continuity of tran-

scription and avoid information loss at window boundaries,

we apply overlap between consecutive windows.

3.3 Decoder

Both the onset and offset decoders are the same as the de-

coder of T5 [27] (Fig. 2). In the decoder architecture, the

embedding size is set to Ddec = 256, and decoder layers

to L = 6, attention head number to Nhead = 8. The multi-

layer perceptron (MLP) dimension is set to Dmlp = 1024.

A maximum decoder sequence length Nseq = 64. The

length of the decoder output varies with the number of ac-

tivated onsets. During the training phase, we use padding

and masking to fix the output tokens length of offset de-

coder to 16.
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Figure 2. The implementation of the streaming transcrip-

tion model that uses one encoder for latent feature extrac-

tion and two decoders for onset and offset detection.

3.4 Consistent Decoding

Existing piano transcription models that applied onset and

offset detection [9, 25] often face issues with mismatched

detected onsets and offsets. This is due to the little con-

strains in the detection processes for onsets and offsets.

Although this issue can be addressed with post-processing

methods, we prefer to solve it end-to-end within the model.

Our proposed architecture makes a constriction to the off-

set decoder to detect offsets for detected onsets only, and

also detects sustain pedal release events to improve perfor-

mance of note offsets detection.

The onset decoder sequentially outputs onset events in

an autoregressive manner while the offset decoder detects

all the offset events at once for the active notes detected

by the onset decoder with judgement of the sustain pedal.

If the offset event for an active note is not detected at the

current frame, a special token BLANK is obtained as de-

scribed in Section 4.1.3. The onset decoder considers only

notes detected in the past and current frames. The sustain

pedal plays a crucial role in expressive piano performance

and considerably affects offset detection. The lifting time

of the sustain pedal is highly relevant to the absolute offset

times and thus determines the duration and decay charac-

teristics of musical notes.

The input of the onset decoder in each step at frame t

consists of the onset tokens detected in the previous step

and the onset tokens detected at previous frames. This

enables to capture long-term dependency between musical

notes. By incorporating information from previous frames,

the decoder can better understand the context of the current

onset detection and facilitate the recognition of typical pat-

terns and structures in the music sequence over time.

4. EVALUATION

This section reports a comparative experiment conducted

for evaluating the performance of the proposed and con-

ventional piano transcription methods.

Time Target Tokens

1 <EOS> <blank>
2 <EOS> <blank>
...
i <C4><D4><EOS> <blank>

i+1 <C4><D4><EOS> <blank><blank><blank>
i+2 <EOS> <blank><blank><blank>
...
j <E4><F4><EOS> <blank><C4_off><blank>
...
k <EOS> <pedal_off><D4_off><E4_off><F4_off>

Table 1. Target tokens for onset decoder(red) and offset

decoder(blue).

4.1 Experimental Conditions

We explain the dataset used for evaluation and the input

and output data of the proposed method.

4.1.1 Dataset

We used the MAESTRO dataset V3.0.0 [28] composed of

about 200 hours of virtuosic piano performances captured

with fine alignment between note events and audio record-

ings. The split of the dataset into training, validation, and

test sets was defined officially. The validation set was used

for selecting the best-performing trained model based on

its performance on unseen data. The dataset also provides

information about the states (on or off) of the sustain pedal.

The pedal information is crucial for accurately transcribing

piano performances as it affects the actual durations and

offset times of sustained notes.

4.1.2 Input

The original audio recordings were resampled with a sam-

pling rate of 16 kHz. To increase the variation of the train-

ing data and reduce the memory footprint, 10-sec segments

were randomly clipped from the recordings and the CQT

spectrograms were computed on the fly with the nnAudio

library [30]. We used the CQT for its capability of cap-

turing both higher and lower-frequency components in the

logarithmic frequency domain suitable for analyzing mu-

sic signals. The lowest frequency was set to 27.5 Hz cor-

responding to the lowest key of the standard 88-key piano.

One octave was divided into 48 frequency bins and the total

number of frequency bins was 352. This ensures a fine fre-

quency resolution over the entire audible frequency range.

The hop length was set to 320 samples (20 ms), taking

the balance between the time resolution and the compu-

tational efficiency. After obtaining the CQT spectrogram,

the amplitude values were converted to decibels (dB) using

transforms available in the torchaudio library.

4.1.3 Output

The vocabulary of output tokens used in our study was the

same as that used for the music transformer 3 (MT3) [8,

9] except that time location tokens were not used. This

contributes to reducing the length of the output sequence

and stabilizing the training. The output vocabulary consists

of the following tokens:
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Model Params
Frame-level Note-level (onset only) Note-level (onset + duration)

P (%) R (%) F1(%) P (%) R (%) F1(%) P (%) R (%) F1(%)

Onsets & Frames [28] 26M 92.11 88.41 90.15 98.27 92.61 95.32 82.95 78.24 80.50

Semi-CRFs [29] 9M 93.79 88.36 90.75 98.69 93.96 96.11 90.79 86.46 88.42

HPPNet-sp [24] 1.2M 92.79 93.59 93.15 98.45 95.95 97.18 84.88 82.76 83.80

hFT-Transformer [10] 5.5M 92.82 93.66 93.2493.2493.24 99.64 95.44 97.4497.4497.44 92.52 88.69 90.5390.5390.53

Streaming Seq2Seq (ours) 16M 91.91 91.73 91.75 98.30 94.83 96.52 91.08 87.89 89.44

Table 2. The transcription performances of the existing and proposed methods on MAESTRO V3.0.0 test set.

Model Segment Encoder Input

Seq-Length

Decoder Output

Seq-Length

Latency Note F1 Note w/ Offset

F1

Seq2Seq [8] 4088 ms 511 1024 4088 ms 96.01 83.94

Streaming Seq2Seq (ours) - 39 64 380 ms 96.5296.5296.52 89.4489.4489.44

Table 3. The transcription performances of sequence-to-sequence transcription models on MAESTRO V3.0.0 test set.

Onsets and offsets (128+128 tokens) Each token repre-

sents the presence of an onset or offset of the cor-

responding pitch given as a MIDI note number.

Pedal states (2 tokens) Two tokens representing the pres-

ence and absence of the sustain pedal.

BLANK (1 token) A special token representing silence or

absence of any musical event.

BOS and EOS (2 tokens) Special tokens representing the

beginning and end of the output sequence.

The onset decoder and offset decoder both need only

part of the vocabulary. But we kept the full vocabulary for

all decoders to maintain consistency in the model archi-

tecture, regardless of whether there is only one decoder or

multiple decoders. We set the length of each onset and off-

set events into 2 frames. During the transcription process,

if consecutive onsets or offsets were detected, we only kept

the first one and discard the duplicates. To estimate note

events from the output of the decoders we used a simple

greedy regression algorithm. We then selected the near-

est corresponding offsets after the onsets to determine the

duration of the notes. If offsets were not detected, we se-

lected the nearest pedal offset as the offsets for the notes or

a maximum duration of 4 seconds.

4.1.4 Training

We used the cross entropy loss for training the proposed

model. It represents the negative log-posterior probability

over output tokens for the ground-truth annotation. For op-

timization, we utilized the AdamW optimizer [31], which

is a variant of the Adam optimizer with weight decay regu-

larization. The mini-batch size was set to 16 and the learn-

ing rate was set to 6e-4. A dropout rate of 0.1 was applied

to the decoder layers to prevent overfitting. Training was

iterated for 200,000 steps with early stopping.

4.1.5 Metrics

The performance of piano transcription was evaluated with

the mir_eval library [32] in terms of the precision and re-

call rates and F1 score at the frame and note levels. In the

note-level evaluation, an estimated note was judged as cor-

rect if its onset time was detected correctly or if both the

onset time and duration were estimated correctly. The er-

ror tolerance in onset estimation was set to 50 msec as in

many studies. The error tolerance in duration estimation

was set to the larger of 50 msec or 20% of the ground-truth

duration. These metrics were averaged over the test set.

4.2 Experimental Results

We report the experimental results obtained through com-

parative and ablation studies.

4.2.1 Comparison with Existing Methods

We conducted a comprehensive experiment that compared

our method with state-of-the-art methods such as frame-

level and event-level transcription methods (Table 2). We

found that our method achieved competitive performance

and surpassed an event-level transcription method named

Semi-CRFs in terms of both the note-level F1-scores with

and without duration evaluation. This superiority indicates

the robustness of our method in capturing the musical onset

events and their corresponding offsets.

4.2.2 Sequence to Sequence Transcription

For comparison, we tested the generic transformer-based

sequence-to-sequence transcription model [8] (Table 3).

Audio recordings were split into segments of 4088 msec to

be fed to the encoder. Since different segments were tran-

scribed independently, the long-term correlation between

note events is hard to learn from the data. Moreover, in-

creasing the segment length would exponentially increase

the computational complexity of the self-attention layers.

It would increase the number of absolute-time-location to-

kens and further complicates the estimation of time loca-

tions for note events.

Thanks to the streaming encoder-decoder architecture,

the proposed model kept the actual input length constant
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Decoder Onset Offset Pedal
Note-level (onset only) Note-level (onset+duration)

P (%) R (%) F1(%) P (%) R (%) F1(%)

1 ✓ ✓ ✓ 98.32 93.36 95.73 89.91 85.41 87.56

2 ✓ ✓ 98.23 94.75 96.44 88.11 85.00 86.51

2 ✓ ✓ ✓ 98.30 94.83 96.5296.5296.52 91.08 87.89 89.4489.4489.44

Table 4. Ablation study on MAESTRO V3.0.0 test set.

and significantly reduced the computational complexity of

the self-attention layers. The length of the encoder input

was set to 39 and the maximum length of the decoder out-

put was set to 64. This enables the processing of variable-

length audio recordings without the need for segmenta-

tion and offers the potential for real-time transcription.

Compared with the generic model, our streaming model

showed better performance in terms of the note-level F1-

scores with and without duration evaluation. This indi-

cates the potential application to streaming and sequence-

to-sequence music transcription scenarios.

4.2.3 Latency

The latency of a streaming model refers to the gap between

the actual time of an onset or offset event and the time of

the event output. Putting the actual computational speed

aside, the latency of a non-streaming model is equal to the

length of the input sequence because the whole sequence

needs to be processed for generating outputs. In contrast,

for streaming models, the latency is equal to the length of

future frames in the input data stream.

In Table 3, our streaming model had a latency of 380

msec. The CNN-based encoder takes 19 future frames

and 19 past frames as input. Even with a short input con-

text, the streaming model still achieved competitive perfor-

mance on piano transcription. This indicates that onset and

offset events could be detected without heavily relying on

long-term dependency of acoustic features.

4.2.4 Ablation Study

To verify the effectiveness of sustain pedal detection and

that of the separated decoders for onset and offset detec-

tion, we conducted an ablation study. Besides the proposed

model, we trained a model without pedal detection and an-

other model that uses a single decoder for onset, offset,

and pedal detection. The training and evaluation were per-

formed in the same way.

Table 4 shows the performances of the compared meth-

ods. We found that removing the pedal detection slightly

decreased the note-level F1-score without duration esti-

mation, but significantly degraded the note-level F1-score

with duration estimation. This suggests that pedal detec-

tion plays a crucial role in estimating note durations. Sim-

ilarly, using a single decoder for both onset and offset de-

tection degraded both the note-level F1-scores with and

without duration estimation, compared with the proposed

model. This demonstrated the effectiveness of incorporat-

ing pedal detection and a separated decoder for onset and

offset prediction for better piano transcription.

5. CONCLUSION

In this paper, we have presented a novel streaming audio-

to-MIDI piano transcription method. We tackled an open

problem of detecting note onset and offset events from a

piano recording in an online manner. Our method is based

on a streaming encoder-decoder architecture that combines

a convolutional encoder for aggregating local acoustic fea-

tures with separate transformer decoders for detecting on-

set and offset events at each time step while validating the

use of the sustain pedal.

In extensive experiments with the MAESTRO dataset,

our method attained competitive performance, compared

with the state-of-the-art offline methods. Our model also

outperformed the generic transformer-based sequence-to-

sequence model in terms of both accuracy and latency. The

ablation study showed the effectiveness of incorporating

pedal detection and that of using the separated decoders

for onset and offset detection. Our method uses a limited

number of incoming frames for detecting the onset and off-

set events and paved a way for latency-critical practical ap-

plications. We achieved a system latency of 380 msec and

plan to thoroughly investigated the trade-off between the

latency and the transcription performance. Additionally,

decoding every frame may not be necessary. Some scenar-

ios might not require such high temporal precision. The

setting of the time step also requires further exploration

for real-time scenarios.
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