
DEEP RECOMBINANT TRANSFORMER: ENHANCING LOOP
COMPATIBILITY IN DIGITAL MUSIC PRODUCTION

Muhammad Taimoor Haseeb*

MBZUAI

Ahmad Hammoudeh*

MBZUAI

Gus Xia

MBZUAI

ABSTRACT

The widespread availability of music loops has revo-

lutionized music production. However, combining loops

requires a nuanced understanding of musical compatibil-

ity that can be difficult to learn and time-consuming. This

study concentrates on the ’vertical problem’ of music loop

compatibility, which pertains to layering different loops to

create a harmonious blend. The main limitation to apply-

ing deep learning in this domain is the absence of a large,

high-quality, labeled dataset containing both positive and

negative pairs. To address this, we synthesize high-quality

audio from multi-track MIDI datasets containing indepen-

dent instrument stems, and then extract loops to serve as

positive pairs. This provides models with instrument-level

information when learning compatibility. Moreover, we

improve the generation of negative examples by matching

the key and tempo of candidate loops, and then employing

AutoMashUpper [1] to identify incompatible loops. Cre-

ating a large dataset allows us to introduce and examine

the application of Transformer architectures for address-

ing vertical loop compatibility. Experimental results show

that our method outperforms the previous state-of-the-art,

achieving an 18.6% higher accuracy across multiple gen-

res. Subjective assessments rate our model higher in seam-

lessly and creatively combining loops, underscoring our

method’s effectiveness. We name our approach the Deep

Recombinant Transformer and provide audio samples 1 .

1. INTRODUCTION

The widespread availability of music loops used in Dig-

ital Audio Workstations (DAWs) has revolutionized mu-

sic production. For example, Umbrella by Rihanna, com-

posed using the "Vintage Funk Kit 03" GarageBand loop,

transformed a royalty-free sample into a Grammy-winning

global hit [2]. However, combining loops requires a nu-

anced understanding of musical compatibility and mostly

relies on manual selection. Furthermore, the vast number

of available loops presents a daunting challenge in decid-

ing which loops pair well, leading to a combinatorial prob-

* The first two authors contributed equally.
1 Samples available at: https://conference-demo-2024.github.io/demo/

© M. T. Haseeb, A. Hammoudeh, and G. Xia. Licensed un-

der a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: M. T. Haseeb, A. Hammoudeh, and G. Xia, “DEEP

RECOMBINANT TRANSFORMER: ENHANCING LOOP COMPATI-

BILITY IN DIGITAL MUSIC PRODUCTION”, in Proc. of the 25th Int.

Society for Music Information Retrieval Conf., United States, 2024.

lem. Finding compatible loops was recognized as one of

the grand challenges in MIR research [3].

The loop compatibility problem can be broken down

into two sub-problems: the vertical problem and the hor-

izontal problem. The vertical problem pertains to the lay-

ering of different loops — and understanding how rhythm,

melody, and harmony interact within a single moment of

music — to create a harmonious blend. Conversely, the

horizontal problem addresses the sequencing of loops over

time, ensuring that transitions between different loops are

smooth and maintain the overall coherence of the musical

piece. This research focuses on the vertical problem.

A major limitation to applying deep learning to this

domain has been the absence of high-quality, labeled,

datasets. Previous works propose source separating ex-

isting music, extracting loops from each stem, and creat-

ing positive pairs [4,5]. Source separation models produce

these four stems: vocal, bass, drum, and other. The outputs

of source separation models are not perfect and often suffer

from noise and distortion. Moreover, the "other" category

can include a wide range of sounds — for example, entire

string sections — and can be too noisy for the model to

learn what makes two loops compatible. To generate nega-

tive samples, loop reversal, beat shifting, or key and tempo

modifications are made to a loop in a positive pair. Altering

loop characteristics to generate negative samples risks mis-

leading models to distinguish these superficial differences

rather than learning true musical incompatibility.

Our proposed solution to the above mentioned problems

is to generate positive examples using MIDI datasets con-

taining independent stems for each instrument, synthesiz-

ing them into audio, and extracting loops. This provides

models with more granular information about each instru-

ment when learning loop compatibility. Similarly, we find

that while AutoMashUpper (AMU) demonstrates mod-

est success in identifying compatible loops, its strength

lies in accurately identifying incompatible loops after we

match the tempo, key, and phase of query and target loops

— thereby providing more realistic negative samples for

model training [1]. Obtaining a large, high-quality, labeled

dataset allows us to introduce and examine the application

of Transformer-based architectures for addressing the ver-

tical loop compatibility problem.

Our method outperforms the previous state-of-the-art

for loop compatibility by 18.6% higher accuracy, proving

its versatility and robustness across 13 genres through rig-

orous evaluations. Our contributions are as follows:

1. A novel method to generate a large, high-quality,

labeled dataset for models to learn musical compati-

bility by providing positive and negative loop pairs that

890



share identical keys, tempos, and phases.

2. Transformer-based architectures to enhance accu-

racy for instrument-level music loop compatibility.

3. Extensive objective and subjective assessments

demonstrating our method’s effectiveness.

2. RELATED WORK

Two approaches exist in the literature: rule-based and

learning-based. Rule-based methods establish a set of rules

to generate a compatibility score. In contrast, learning-

based methods require positive and negative examples to

train models for compatibility prediction. We review both.

2.1 Rule-Based Methods

Davies et al. set the groundwork for loop compatibility [6].

Their model, AutoMashUpper, computes mashability esti-

mation by evaluating a weighted average of harmonic and

rhythmic compatibility, and spectral balance across key-

adjusted sections within a loop database. Best matching

loops are aligned through time stretching and pitch shift-

ing to match the query loop. Davies et al. introduce fur-

ther improvements in a subsequent study, enhancing their

system’s capabilities [1]. Key improvements include the

development of a faster algorithm for assessing harmonic

similarity, integration of rhythm and loudness for masha-

bility evaluation, and a subjective evaluation to assess the

overall mashability of music pieces. Later works use this

as a baseline to compare loop compatibility performance.

Lee et al. introduce a framework incorporating both

vertical and horizontal dimensions of musical segments to

create harmonious mashups [7]. Features include tempo,

beat-synchronous chromagram, chord signatures, Mel Fre-

quency Cepstral Coefficients, and volume levels. The sys-

tem uses a Group of Background Units (GBU) from a spe-

cific track, typically comprising multiple background units

that adhere to prevalent structures found in popular mu-

sic genres, forming the foundational layer of a mashup. It

evaluates potential lead units to layer atop the established

GBUs, which pivots on three factors: Harmonic Matching

which determines the harmonic compatibility between lead

and background units, Harmonic Change Balance mon-

itors the rate of harmonic transitions between to reduce

monotony, while Volume Weighting calibrates the audi-

bility of lead units. The framework computes a vertical

mashability score for each candidate pair and selects those

with the highest compatibility. Tsuzuki et al. overlay vo-

cal tracks from other artists who have performed the same

piece, aligning them with the instrumental track [8].

Bernardes et al. assess the harmonic compatibility of

musical tracks through small- and large-scale structures

[9]. Small-scale compatibility is determined by blending

dissonance and perceptual relatedness, derived from the

Tonal Interval Space [10], resilient to instrumental timbral

variations. Large-scale compatibility is based on key es-

timations, aiding in overarching harmonic planning. Soft-

ware showcases these metrics through interactive visual-

ization to aid in finding harmonically compatible tracks.

Maças et al. present MixMash by building on this method

[9, 11]. MixMash enhances user interaction through a

force-directed graph that visualizes multidimensional mu-

sical attributes like hierarchical harmonic compatibility,

onset density, spectral region, and timbral similarity. The

visualization represents tracks as nodes with varying dis-

tances and connections indicating their compatibility.

2.2 Learning-Based Methods

A major limitation in using Deep Neural Networks to eval-

uate the compatibility of musical loops has been the lack

of adequately labeled datasets. Chen et al. are the first

to use neural network models [4]. First, they propose an

innovative pipeline to generate a labeled dataset using the

Free Music Archive. To create positive samples they em-

ploy an unsupervised MSS algorithm that isolates looped

content [12]. Negative samples are created by editing a

loop in a positive loop pair by doing one of three things:

reversing, randomly shifting beats, or rearranging beats of

one of the loops. They propose using two architectures,

a Convolution Network (CNN) and a Siamese Network

(SNN), to learn compatibility between two loops. While

both models outperform traditional rule-based systems, the

CNN model demonstrates superior performance. Subse-

quent studies have identified limitations in the proposed

data acquisition process. Specifically, it employs multi-

ple heuristics for source separation and does not ensure the

outputs consist of distinct instruments, e.g. a positive train-

ing example could comprise two similar drum loops [5]. In

addition, they restrict their work to hip-hop without explor-

ing how well this approach generalizes to other genres. Fi-

nally, they use a two-second input which may not capture

the complexity and variability of longer musical pieces.

Huang et al. introduce an alternative method for assem-

bling a training dataset by developing their own supervised

music source separation model, which splits tracks into

four distinct stems: vocal, bass, drum, and other. While it

is an innovative approach, it leaves serious gaps in dataset

quality. The outputs of source separation models are not

perfect and often suffer from noise and distortion. In ad-

dition, the "other" category can include a wide range of

sounds — e.g. guitars, pianos, trumpets, saxophones, vio-

lins, cellos, ambient sounds, synthesizers, reverb, choirs,

flutes, clarinets, and even entire string sections. Since

professional-grade musical loops contain distinct sounds

— a guitar riff, a saxophone lick, a violin jig, etc. — using

"other" may be too noisy for the model to learn what makes

two instrument loops compatible. Similarly, as observed

by Chen et al., bass and drum loops seamlessly adapt

across most genres and styles when matched for tempo and

key, and are somewhat trivial to learn for the model. On

the other hand, they generate negative samples by vary-

ing the basic characteristics of a loop — key, tempo, or

phase shifts. Even though it guarantees incompatibility,

simply altering the basic loop characteristics to generate

negative examples risks misleading the model to learn to

distinguish these superficial differences rather than under-

standing true musical incompatibility. Instead, we propose

training models to determine compatibility between loops

sharing identical tempo, key, and phase to mirror choices

made in actual music production — a significantly more

challenging task. While there are some similarities, Huang

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

891



Figure 1. Our dataset generation pipeline takes multi-track MIDI music as input and generates a labeled loop dataset.

et al. do not extract loops and instead use complete stems

to train a model on mash-ups involving combinations of

vocal and backing track stems; whereas our research delves

into the compatibility of instrumental music loops. There-

fore, we use Chen et al. as a baseline for our work.

Broadly, despite their utility, these methods do not cap-

ture the complex interplay of musical elements, underscor-

ing the necessity for more advanced methods. With the

availability of a larger dataset, we introduce and examine

the application of Transformer-based architectures for ad-

dressing the vertical loop compatibility problem.

3. DATA GENERATION PIPELINE

We introduce a novel self-supervised method to create a

large, high-quality, labeled dataset to provide instrument-

level granularity. Our method also ensures identical basic

attributes — such as tempo, key, and phase — amongst

incompatible pairs to compel models to learn compatibility

and not focus on such superficial differences.

3.1 Generating Positive Examples

Synthesized datasets have shown promise in enhancing

model performance across various music information re-

trieval tasks, including transcription, understanding com-

positional semantics, sound synthesis, and instrument

recognition [13]. In the absence of an instrument-level la-

beled dataset, we modify the data collection pipeline pro-

posed by Chen et al. to instead create loops from synthe-

sized data [4]. Similar to Flakh, we generate our dataset

by taking songs from the Lakh dataset, rendering MIDI

files using sample-based synthesizer and then extracting

loops [13, 14]. For this task, we used FluidSynth 2 .

The Lakh MIDI dataset, with over 175,000 unique

MIDI files, provides detailed musical score data for various

instruments that can be synthesized due to distinct track

segmentation. We chose files with significant parts for pi-

ano, bass, guitar, and drums. A total of 20,371 files are

identified, of which 15,000 were taken at random and ren-

dered [13]. Each MIDI file is split into individual instru-

ment tracks, matched with appropriate patches based on

program numbers, and rendered into audio. As observed

by Chen et al., when adjusted for tempo and key, drum

and bass loops tend to be universally compatible. There-

fore, all drum and bass MIDI tracks were removed from

synthesis and subsequent creation of positive and negative

2 Available at: http://www.fluidsynth.org/

pairs [4]. The collected set of 15,000 songs spans 13 gen-

res and 47 instruments. We then use the same method

as Chen et al. to extract loops from each rendered au-

dio [4]. Of the 15,000 songs, 12,193 songs have at least

one valid loop pair. Specifically, of these 12,193 songs, we

obtained 126,746 loops and 90,376 valid positive pairs of

loops. This provides our training models with more granu-

lar information about each instrument loop while learning

what constitutes compatibility. Files were separated into

training (72,301 loop pairs), validation (9,037 loop pairs),

and testing (9,038 loop pairs) — leaving us with a total of

251 hours of positive examples, with roughly equal repre-

sentation of instruments and genres in each set. To ensure

consistency, we standardize the duration of each loop to 10

seconds by either repeating or trimming the loops.

3.2 Generating Negative Examples

Generating pairs of negative loops is a difficult task. One

naive approach could be to randomly select combinations

from our loop set. However, this does not guarantee incom-

patibility. Unlike what’s been proposed in similar works,

we argue that simply altering the basic loop characteris-

tics to guarantee the generation of negative examples risks

misleading the model to learn to distinguish these superfi-

cial differences rather than understanding true musical in-

compatibility. Instead, to reflect real-life music produc-

tion choices, we train models to determine incompatibil-

ity between loops sharing identical tempo, key, and phase.

We find that while AutoMashUpper demonstrates modest

success in identifying compatible loops, its strength lies

in identifying incompatible loops within the same tempo,

key, and phase, thus furnishing reliable negative labels for

compatibility modeling. Inversely applying the original

method focuses on least compatible pairs. Harmonic in-

compatibility finds significant chord progression clashes,

rhythmic incompatibility leads to off-sync combinations,

and spectral imbalance points to lopsided energy distribu-

tions, cultivating disturbances and noise.

We adopt AMU to a subset of loops by drawing, with-

out replacement, 1,500 positive pairs (3,000 loops) from

varied genres and instruments. For each loop in this col-

lection, we calculate its incompatibility against every other

loop by adjusting the target loop’s keys and tempos to

match the query loop and then calculating weighted sums

of harmonic, rhythmic, and spectral compatibility between

the source and target. For this task, we use a Python im-

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

892



plementation 3 of the Krumhansl-Schmuckler key-finding

algorithm [15], Rubber Band 4 for sound stretching and

pitch-shifting, and weights proposed by Bernardo — 0.4

for both harmonic and rhythmic, and 0.2 for spectral com-

patibility — to derive an overall compatibility score be-

tween loop pairs [16]. After obtaining all scores, the 35

least compatible loops are paired with each loop in the

set. We exclude any duplicate pairs, culminating in 95,281

unique negative pairs. More than 1,000 negative pairs are

tested at random by the research team to confirm incom-

patibility. The final pairs are then partitioned into training

(76,225 loop pairs), validation (9,528 loop pairs), and test-

ing segments (9,528 loop pairs), leaving us with a total of

264 hours of negative examples. The negative set can be

significantly expanded by drawing more pairs at the start.

Data Type # Loops # Loop Pairs # Hours

Training 101,397 148,526 412

Validation 12,674 18,565 51.5

Test 12,675 18,566 51.5

In Total 126,746 185,657 515

Table 1. Overview of data, including positive and negative

examples, across training, validation, and test subsets.

4. MODEL ARCHITECTURE

Recent advancements in self-attention networks, particu-

larly the Transformer architecture, provide a new perspec-

tive for solving the vertical loop compatibility challenge

[17]. In this study, a large labeled dataset allows us to in-

troduce and examine the application of Transformer-based

architectures. Specifically, we use the same model ar-

chitecture as MusicTaggingTransformer (MTT), proposed

by Won et al., for its robustness on other MIR tasks

[18]. We refer to this adapted Transformer architec-

ture as the Deep Recombinant Transformer (DRT). Ini-

tial pre-processing employs MelSpectrogram transforma-

tion and AmplitudeToDB conversion of the input, which

comprises the summed audio signals of two candidate

loops. This is followed by Res2DMaxPoolModule for

downsampling, with subsequent convolutional layers and

max-pooling operations for detailed feature extraction.

The core Transformer architecture is equipped with 256-

dimensional attention vectors across four layers and eight

heads, PreNorm, Residual structures, and GELU-activated

Feed Forward networks for processing. A unique class

([CLS]) token, alongside positional embedding, is added to

the feature set for sequence analysis. The output from the

Transformer is directed through a sigmoid function, map-

ping the high-dimensional feature vectors to a binary out-

come space, and delineating the likelihood of each audio

sample belonging to a specific category. Then, we com-

pute the binary cross entropy loss (BCELoss) to update the

parameters of the whole model. Model’s output is between

0 and 1, with values closer to 1 indicating a higher proba-

bility that the pair of loops are compatible, and closer to

0 when they are not. Therefore, we can use its output

3 https://pypi.org/project/pymusickit/
4 https://breakfastquay.com/rubberband/

Figure 2. Architecture of Deep Recombinant Transformer.

to estimate the compatibility of any two loops. Dropout

(0.1) and batch normalization strategies are implemented

to mitigate over-fitting and ensure robust model general-

ization. This integration of convolutional and Transformer

elements captures both local and global audio features for

deep and context-aware analysis. To investigate the adapt-

ability and performance of the Transformer architecture for

this task, our study explores two distinct configurations:

one variant employs two-encoder layers, while the other

utilizes four-encoder layers. This enables us to evaluate

the impact of architectural depth on model performance.

5. EXPERIMENT SETUP AND EVALUATION

We evaluate the performance of Transformer architectures

in identifying compatible loops against the state-of-the-art.

Following this, we focus on understanding the impact of

our new dataset on model performance. Finally, we con-

duct a subjective assessment.

5.1 Effect of Using a Transformer

First, we compare the performance of Transformers against

CNN-based architectures. We train and evaluate two con-

figurations for the Transformer architecture — two and

four encoder layers. For comparison, we explore the per-

formance of the original CNN-based NLC 5 model pro-

posed by Chen et al. Initially, we adhere to the original

NLC specification, applying it to two-second audio seg-

ments extracted from our 10-second dataset. However, we

also train a modified NLC on a 10-second long input for a

fair comparison. Moreover, acknowledging that extended

audio contexts may require a deeper CNN architecture, we

also train Short-chunk CNN Res [19], a deeper CNN ar-

chitecture, due to its strong performance on MIR-related

classification tasks. We perform hyperparameter optimiza-

tion for each architecture using unseen validation sets.

5 https://github.com/mir-aidj/neural-loop-combiner

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

893



The first type of evaluation entails a classification task.

It assesses a model’s ability to distinguish compatible

loops from incompatible ones. We report accuracy and F1

scores for each model. Table 2 summarizes these results.

Model Accuracy ↑ F1 Score ↑

NLC (2 seconds) 62.25 68.76

NLC (10 seconds) 60.50 70.76

Short Chunk CNN Res 70.50 77.13

DRT (2 Attn Layers) 78.60 82.02

DRT (4 Attn Layers) 80.90 83.66

Table 2. Comparative performance on loop compatibility

classification task for models trained using our dataset.

Model
Avg. ↓

Rank

Top ↑

10

Top ↑

30

Top ↑

50

NLC (2 seconds) 43.4 0.25 0.44 0.56

NLC (10 seconds) 51.2 0.13 0.25 0.52

Short Chunk CNN Res 38.3 0.07 0.46 0.77

DRT (2 Attn Layers) 25.7 0.15 0.69 1.00

DRT (4 Attn Layers) 16.2 0.44 0.75 1.00

Table 3. Comparative performance on loop ranking task

for models trained using our dataset, using average rank

and accuracy in the top-k positions across 100 queries.

Another performance evaluation reported in the re-

search involves ranking candidate loops by compatibility

with a particular query loop [4, 5]. This assessment is es-

pecially important for a model’s practical use, which seeks

to find loops that match a specific query from a large col-

lection of loops. Using AMU, and the unseen test set, we

create a collection of candidate loops for each query loop,

ensuring that precisely one of these candidates pairs pos-

itively with the query. The model’s performance is mea-

sured by where the "target loop" ranks in the list, with a

higher position indicating better performance. Following

the benchmark set by Chen et al., we also assess the com-

patibility of exactly 100 candidate loops balanced across

genres and instruments. Each model is evaluated for accu-

racy within the top 10, 30, and 50 positions, as well as the

mean rank. Table 3 shows these aggregated averages.

The results indicate that the four attention layer Music-

TaggingTransformer demonstrates superior performance

across loop compatibility classification and ranking tasks.

We also observe that models, though not explicitly trained

for it, perform well in identifying compatible drum and

bass loops, confirming these are relatively trivial to learn.

5.2 Effect of Using Our Dataset

Generating negative examples by altering loop character-

istics can mislead models toward learning superficial dif-

ferences instead of true musical incompatibility. To objec-

tively evaluate this, we create a control dataset using the

negative sampling methodology proposed by Chen et al.

In this control dataset, the positive pairs remain the same,

while for negative pairs we reverse, randomly shift beats,

or re-arrange beats of one of the loops. Although reversing

performed best in the original study, the performance dif-

ferences across the three strategies were small. To account

for potential non-transferability to our dataset, we include

an equal representation of all three methods in our con-

trol set. We retrain the three best-performing architectures

from Table 2, and evaluate them, on this control dataset.

The classification results are summarized in Table 4 while

the retrieval results are summarized in Table 5.

Model Accuracy ↑ F1 Score ↑

NLC (2 seconds) 66.4 71.4

Short Chunk CNN Res 88.9 89.3

DRT (4 Attn Layers) 88.2 88.7

Table 4. Comparative performance on loop compatibility

classification task for models trained using control dataset.

Model
Avg. ↓

Rank

Top ↑

10

Top ↑

30

Top ↑

50

NLC (2 seconds) 13.25 0.57 0.75 1.00

Short Chunk CNN Res 1.0 1.00 1.00 1.00

DRT (4 Attn Layers) 1.0 1.00 1.00 1.00

Table 5. Comparative performance on loop ranking task

for models trained using control dataset, using average

rank and accuracy in the top-k positions across 100 queries

While all models show improved performance across

both tasks, we perform another set of evaluations to deter-

mine if these on-paper performance gains are transferable

to real-life production scenarios. Here, we evaluate these

models, trained on the control set, against the test set gen-

erated by our proposed method — where pairs sharing the

same tempo, key, and phases are analyzed for compatibil-

ity. These results are presented in Tables 6 and 7.

Model Accuracy ↑ F1 Score ↑

NLC (2 seconds) 50.95 62.49

Short Chunk CNN Res 53.30 67.52

DRT (4 Attn Layers) 54.15 67.93

Table 6. Classification performance of models trained on

control set (Table 4), but evaluated on our original test (Ta-

ble 1) containing loops pairs with identical tempo and keys.

Model
Avg. ↓

Rank

Top ↑

10

Top ↑

30

Top ↑

50

NLC (2 seconds) 50.7 0.13 0.31 0.50

Short Chunk CNN Res 39.4 0.00 0.30 0.85

DRT (4 Attn Layers) 35.8 0.14 0.40 0.67

Table 7. Ranking performance on our original test set us-

ing average rank and accuracy in the top-k positions.

While the models trained on the controlled dataset have

better performance (Tables 4 and 5) than models trained

on our dataset (Tables 2 and 3), they do not generalize for

negative samples that are more in line with real-world pro-

duction choices (Tables 6 and 7). This is because real-life

comparison involves two loops that are identical in tempo,

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

894



key, and phase, without being reversed or subjected to ran-

dom beat shifts. Since these models have not encountered

such incompatible samples during training, their perfor-

mance tends to degrade in the production setting.

5.3 Subjective Assessment

Study Methodology: We perform a subjective analysis

using Apple loops from GarageBand to evaluate the ef-

fectiveness of our proposed method and demonstrate its

applicability to high-quality production loops. Based on

superior objective performance, three models are selected

for this user study: NLC (2 seconds), Short Chunk CNN

Res, and DRT (4 Attn Layers). Two variants of each model

were included, the first trained on our proposed dataset,

and the second trained on the control dataset. For this sub-

jective assessment, we employed a methodology similar to

that used by Zhao et al. [20]. We paired one query loop

against 99 candidates, within the query loop’s genre, and

formulated audio test clips by combining the query loop

with the highest-ranked match. Each set contained eight

query-target pairs: top matches proposed by each variant

of the three models, a human musician-generated pair, and

a randomly selected target loop to serve as a control group.

Each audio sample was of equal length (10 seconds). A

total of 6 such sets were created. The subjects were asked

to rate each sample on a 5-point Likert scale according to

the following criteria:

• Seamlessness: Naturalness of the loop combination.

• Creativity: Originality and inventive quality.

The study engaged a total of 37 participants. To qualify,

participants were required to have a baseline engagement

with music, defined as listening to at least five hours of

music per week, to ensure sufficient exposure to music to

provide informed feedback. Each survey participant lis-

tened to exactly three of the sets chosen at random (24 au-

dio combinations, or 240 seconds of audio). To ensure di-

verse and representative survey respondents, we employed

demographic filtering to include different ages, genders,

and cultural backgrounds. The sequence of the presenta-

tion was randomized to eliminate any potential bias, and

the origins of the pairs were not disclosed to participants.

Figure 3. Subjective evaluation results for composition

seamlessness computed using within-subject ANOVA.

Results and Analysis: Figures 3 and 4 display our find-

ings from the subjective evaluation. The y-axis represents

Figure 4. Subjective evaluation results for composition

creativity computed using within-subject ANOVA.

the mean scores and the error bars denote the Standard De-

viation calculated through a within-subject ANOVA [21].

Our model demonstrated superior performance over the

control, achieving statistical significance (p<0.05) for both

measures. The proposed DRT architecture, trained on our

dataset, surpassed other models by a significant perfor-

mance difference (p < 0.001). The participant responses in

the survey demonstrated high reliability, as evidenced by

a Cronbach’s α of 0.812 [22]. Overall, the scores for our

approach were on par with human music compositions.

6. CONCLUSION

We explored the vertical loop compatibility problem in

music production. One major limitation to applying deep

neural networks in this domain has been the absence of

labeled datasets. We presented a novel self-supervised

method for generating a large, high-quality, labeled dataset

from a multi-track MIDI dataset, containing separate in-

strument tracks, and synthesizing them into audio to ex-

tract loops. This provides our training models with more

granular information about each instrument across dif-

ferent genres and provides negative pairs with matching

tempo, key, and phase to force models to learn true mu-

sical compatibility. A large dataset allows us to introduce

and examine Transformer-based architectures. Our archi-

tecture employs a larger context window of ten seconds

allowing a holistic input representation and consequently

better compatibility prediction. Experimental results show

that our method outperforms the previous state-of-the-art,

achieving an 18.6% higher accuracy across multiple gen-

res. Subjective assessments rate our model higher in seam-

lessly and creatively combining music loops.

Nevertheless, implementing Transformer architectures

demands significant computational resources. Also, while

AMU performs well in identifying incompatible pairs, it

does not guarantee incompatibility and may contain leak-

age. Finally, synthesized audio from MIDI may not fully

capture the richness of professionally recorded music. This

could limit the model’s learning scope, especially regard-

ing timbral and expressive nuances which otherwise may

be important to learn. Future work may involve ex-

perimenting with more efficient architectures, collecting

human-labeled datasets, and synthesizing MIDI using pro-

fessional virtual instruments for better dataset quality.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

895



7. REFERENCES

[1] M. E. Davies, P. Hamel, K. Yoshii, and M. Goto, “Au-

tomashupper: Automatic creation of multi-song music

mashups,” IEEE/ACM Transactions on Audio, Speech,

and Language Processing, vol. 22, no. 12, pp. 1726–

1737, August 2014.

[2] G. Sorcinelli, “From garageband loop to grammy

award: A look back at rihanna’s "umbrella",” Micro-

Chop, Oct 2016.

[3] M. Goto, “Grand challenges in music infor-

mation research,” in Multimodal Music Pro-

cessing, ser. Dagstuhl Follow-Ups, M. Müller,

M. Goto, and M. Schedl, Eds. Dagstuhl, Ger-

many: Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, 2012, vol. 3, pp. 217–226. [Online]. Avail-

able: https://drops-dev.dagstuhl.de/entities/document/

10.4230/DFU.Vol3.11041.217

[4] B.-Y. Chen, J. B. L. Smith, and Y.-H. Yang, “Neu-

ral loop combiner: Neural network models for as-

sessing the compatibility of loops,” arXiv preprint

arXiv:2008.02011, 2020.

[5] J. Huang, J. C. Wang, J. B. Smith, X. Song, and

Y. Wang, “Modeling the compatibility of stem tracks to

generate music mashups,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 35, no. 1,

May 2021, pp. 187–195.

[6] M. E. P. Davies, P. Hamel, K. Yoshii, and M. Goto,

“Automashupper: An automatic multi-song mashup

system,” in International Society for Music Informa-

tion Retrieval Conference, 2013. [Online]. Available:

https://api.semanticscholar.org/CorpusID:28117

[7] C.-L. Lee, Y.-T. Lin, Z.-R. Yao, F.-Y. Lee, and J.-L.

Wu, “Automatic mashup creation by considering both

vertical and horizontal mashabilities,” in International

Society for Music Information Retrieval Conference,

2015. [Online]. Available: https://api.semanticscholar.

org/CorpusID:17802326

[8] K. Tsuzuki, T. Nakano, M. Goto, T. Yamada, and

S. Makino, “Unisoner: An interactive interface for

derivative chorus creation from various singing voices

on the web,” in ICMC, 2014.

[9] G. Bernardes, M. Davies, and C. Guedes, “A hierar-

chical harmonic mixing method,” in Music Technology

with Swing, ser. Lecture Notes in Computer Sci-

ence, M. Aramaki, M. Davies, R. Kronland-Martinet,

and S. Ystad, Eds., vol. 11265. Cham: Springer,

Cham, 2018, cMMR 2017. [Online]. Available:

https://doi.org/10.1007/978-3-030-01692-0_11

[10] G. Bernardes, D. Cocharro, M. Caetano, C. Guedes,

and M. Davies, “A multi-level tonal interval space for

modelling pitch relatedness and musical consonance,”

Journal of New Music Research, vol. 45, pp. 1–14, May

2016.

[11] C. Maçãs, A. Rodrigues, G. Bernardes, and

P. Machado, “Mixmash: A visualisation system

for musical mashup creation,” in 2018 22nd Inter-

national Conference Information Visualisation (IV),

2018, pp. 471–477.

[12] J. B. L. Smith, Y. Kawasaki, and M. Goto, “Unmixer:

An interface for extracting and remixing loops,” in IS-

MIR, 2019, pp. 824–831.

[13] E. Manilow, G. Wichern, P. Seetharaman, and J. L.

Roux, “Cutting music source separation some slakh: A

dataset to study the impact of training data quality and

quantity,” in 2019 IEEE Workshop on Applications of

Signal Processing to Audio and Acoustics (WASPAA).

IEEE, 2019, pp. 45–49.

[14] C. Raffel, “Learning-based methods for comparing se-

quences, with applications to audio-to-midi alignment

and matching,” Ph.D. dissertation, PhD Thesis, 2016.

[15] C. L. Krumhansl, “Cognitive foundations of musical

pitch,” 2001.

[16] G. Bernardo and G. Bernardes, “Leveraging com-

patibility and diversity in computer-aided music

mashup creation,” Personal and Ubiquitous Comput-

ing, vol. 27, no. 5, pp. 1793–1809, 2023.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, Kaiser, and I. Polosukhin,

“Attention is all you need,” Advances in neural infor-

mation processing systems, vol. 30, 2017.

[18] M. Won, K. Choi, and X. Serra, “Semi-supervised

music tagging transformer,” arXiv preprint

arXiv:2111.13457, 2021.

[19] M. Won, A. Ferraro, D. Bogdanov, and X. Serra, “Eval-

uation of cnn-based automatic music tagging models,”

arXiv preprint arXiv:2006.00751, 2020.

[20] J. Zhao and G. Xia, “Accomontage: Accompaniment

arrangement via phrase selection and style transfer,”

2021.

[21] H. Scheffe, The Analysis of Variance. John Wiley

Sons, 1999, vol. 72.

[22] L. J. Cronbach, “Coefficient alpha and the internal

structure of tests,” Psychometrika, vol. 16, no. 3, pp.

297–334, Sep 1951.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

896


