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ABSTRACT

We present “The Concatenator,” a real time system

for audio-guided concatenative synthesis. Similarly to

Driedger et al.’s “musaicing” (or “audio mosaicing”) tech-

nique, we concatenate a set number of windows within

a corpus of audio to re-create the harmonic and percus-

sive aspects of a target audio stream. Unlike Driedger’s

NMF-based technique, however, we instead use an explic-

itly Bayesian point of view, where corpus window indices

are hidden states and the target audio stream is an observa-

tion. We use a particle filter to infer the best hidden corpus

states in real-time. Our transition model includes a tunable

parameter to control the time-continuity of corpus grains,

and our observation model allows users to prioritize how

quickly windows change to match the target. Because the

computational complexity of the system is independent of

the corpus size, our system scales to corpora that are hours

long, which is an important feature in the age of vast audio

data collections. Within The Concatenator module itself,

composers can vary grain length, fit to target, and pitch

shift in real time while reacting to the sounds they hear, en-

abling them to rapidly iterate ideas. To conclude our work,

we evaluate our system with extensive quantitative tests of

the effects of parameters, as well as a qualitative evaluation

with artistic insights. Based on the quality of the results,

we believe the real-time capability unlocks new avenues

for musical expression and control, suitable for live perfor-

mance and modular synthesis integration, which further-

more represents an essential breakthrough in concatenative

synthesis technology.

1. INTRODUCTION

Concatenative synthesis, or audio mosaicing, is a data-

driven approach to arrange granular fragments of audio

samples, particularly using data sourced from the spectral-

temporal features of a target sound. While granular syn-

thesis systems typically rely on combinations of aleatoric

parameterization, deterministic automation, and traditional

synthesis modulation to achieve complex and evolving tex-

tures from sound fragments [1], concatenative synthesis al-
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gorithms utilize Music Information Retrieval technology to

decide parameters such as the index, amplitude, and pitch

of each sound fragment.

Modern music producers are inundated by audio data.

Services like Splice offer hundreds of thousands of sam-

ples readily available on the cloud, and Kontakt multi-

sample libraries can often take up over 10gb of disk space

to capture a single instrument. Music Producers generate

plenty of their own audio data as well: stems, multi-tracks,

long-form recordings, and mix variations account for a

large portion of many a music producer’s audio collection.

Recent software such as XO by XLN Audio, Sononym,

and Ableton Live 12 offer automatic organization of audio

files based on various tags and descriptors, but these im-

plementations of MIR technology are more utilitarian than

creative in their design and application. Meanwhile, con-

catenative synthesis options remain sparse since its con-

ceptual inception [2]: Reformer by Krotos is designed to

create foley designs, apps like Samplebrain and CataRT

[3, 4] are lacking in critical musical areas such as pitch

tracking, with the more advanced options having limited

accessibility for artists, requiring prior knowledge of Max

(FluCoMa, MuBu) or Python (Audioguide).

The Concatenator advances concatenative synthesis in 3

major ways: 1) it is capable of accurately reproducing har-

monic and percussive sounds using arbitrary corpora 2) in

real-time at scale, 3) affording new levels of control and ac-

cessibility. Furthermore, unlike neural audio systems [5],

it requires no training and can adapt to arbitrary corpora

at runtime. The speed, ease, and scope of The Concatena-

tor offers a fresh paradigm for music producers to interact

creatively with their ever-expanding excess of audio data,

leading to what we believe is a breakthrough in the field.

2. RELATED WORK

We build on important works in Bayesian inference, par-

ticle filters, concatenative synthesis, and applied nonnega-

tive matrix factorization (NMF), which we briefly describe

Driedger’s Technique. From an artistic point of view,

the most similar technique to ours is Driedger et al.’s 2015

“Let It Bee” concatenative musaicing technique [6], which

uses NMF to learn activations of spectral window tem-

plates in a corpus collection so that their combination will

match a target spectrogram. This technique was a fruitful

innovation in sound design for electronic music produc-

tion, as featured heavily on Zero Point by Rob Clouth [7],
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using custom software also authored by Clouth. The al-

gorithm was also implemented in an open source python

script in 2018 [8], and in Max by the FluCoMa project in

2021 (fluid.bufnmfcross) [9], which made NMF-inspired

audio mosaicing accessible enough to contribute towards

the production of at least two more albums heavily featur-

ing the technique: Edenic Mosaics by Encanti (2021) [10]

and Hate Devours Its Host by Valance Drakes (2023) [11].

We now detail the mathematics of Driedger et al.’s tech-

nique, as we borrow a few ideas in our work. Driedger et

al. learn H in the equation V ≈ WH , where V is an

M × T target spectrogram with M frequency bins and

T times, W is an M × N set of N spectral corpus tem-

plates that are treated as fixed, and H is a matrix of N ×T
learned activations. For instance, W could be the windows

of a collection of buzzing bees and V could be an excerpt

from The Beatles’ “Let It Be” (hence the title). Driedger et

al. use the Kullback-Liebler (KL) divergence loss, an in-

stance of the more general β-divergence [12], to measure

the goodness of fit of WH to V . This loss function is

D(V ||WH) =
∑

V ⊙ log

(

V

WH

)

− V +WH (1)

where ⊙, /, +, and − are all applied element-wise, and

the sum is taken over all elements of the resulting matrix.

As Lee/Seung show, choosing the right step size turns gra-

dient descent of Equation 1, with respect to W and H , into

multiplicative update rules that guarantee monotonic con-

vergence. Driedger et al. keep W fixed to force the final

audio to use exact copies of the templates, so only the up-

date rule for H is relevant. At iteration ℓ, this is:

Hℓ
kt ← Hℓ−1

kt

(∑

m WmkVmt/(WHℓ−1)mt
∑

m Wmk

)

(2)

Crucially, though, Driedger et al. note that the update

rules in Equation 2 alone will lose the timbral character of

the templates in W . They hence disrupt ordinary KL gra-

dient descent by performing several increasingly impactful

modifications to H before Equation 2 in each step, which

are eventually set in stone after L total iterations. First,

they avoid repeated windows to avoid a “jittering” effect,

allowing a particular window k to only activate once in

some r-length interval based on where it’s the strongest:

(Hr)
ℓ
kt ←

{

Hℓ−1
kt Hℓ−1

kt > Hℓ−1
ks , |t− s| ≤ r

Hℓ−1
kt (1− ℓ+1

L
) otherwise

}

(3)

They also promote sparsity similarly by shrinking all but

the top p activations in each column of Hr to create Hℓ
p.

Finally, they encourage time continuous activations by do-

ing “diagonal enhancement,” or by doing a windowed sum

down each diagonal of Hp, assuming the columns of W
are also in a time order.

(Hc)
ℓ
kt =

c
∑

i=−c

(Hp)
ℓ
k+i,t+i (4)

Since this encourages the algorithm to mash up chunks

of W in a time order, it effectively encourages sound grains

from the templates than the length of a single window that

ordinary NMF would take. Finally, Driedger et al. apply

Equation 2 to Hℓ
c instead of Hℓ−1 to obtain Hℓ.

These disruptions remove the guarantee that Equation 1

will be minimized, or that it will even monotonically de-

crease, but Driedger et al.’s key insight is that the loss func-

tion is merely a guide to choose reasonable activations; a

suboptimal fit leaves room to better preserve timbral char-

acteristics. We take a similar perspective.

Driedger Tweaks. The idea of spectrogram decompo-

sition used for concatenative musaicing goes back to the

work of [13]. Beyond that, the authors of [12] provide

some improvements to Driedger et al.’s technique, includ-

ing mixing corpus windows directly rather than performing

phase retrieval on WH . One issue with Driedger et al.’s

technique is the sources have to be augmented with pitch

shifts to span additional pitches in the target, increasing

memory consumption and runtime. The authors of [14,15]

avoid this by using 2D deconvolutional NMF [16] on the

Constant-Q transform, whereby pitch shifts are modeled as

constant shifts of the activations instead of the templates,

saving memory. The other convoluational axis models time

history and time shifts, avoiding the need for the diagonal

enhancement of Equation 4. The authors apply 2D NMF

to both the source and target, so they do not preserve the

original sound grains. However, for our preferred style, we

want to take the source grains exactly as they are.

Other Concatenative Techniques. Schwarz created an

offline concatenative synthesis system dubbed “Caterpil-

lar” that uses the Viterbi algorithm [2], which he later ap-

proximated with a real time system, “CataRT” that uses a

greedy approach instead of the Viterbi algorithm [3,4]. Si-

mon’s “audio analogies” is quite similar [17], but instead

of a user controlled traversal through timbral space, they

use features from some source (e.g. midi audio) to guide

synthesis to a target with a different timbre (e.g. real au-

dio of someone playing a trumpet). Caterpillar and audio

analogies are both sequentially Bayesian in nature, where

the hidden state is the template to concatenate, and the “ob-

servation” is a user-controlled trajectory or features from a

source timbre, respectively. The prior transition probabil-

ities are based on temporal continuity. However, they use

the Viterbi algorithm, which is computationally intensive

and which needs all time history, so it cannot be applied in

real time. By contrast, a particle filter is a scalable Monte

Carlo method for sequential Bayesian inference [18–20].

It is less common in MIR, but it has found use in a few real

time MIR applications such as multi-pitch tracking [21],

tempo tracking [22, 23], and beat tracking [24].

3. THE CONCATENATOR

The NMF technique of Driedger is not suitable for real-

time applications; the gradient update rules of Equation 2

scale linearly in the length of the corpus, leaving all but

minutes long corpora usable (Section 3.3), and the equa-

tions to suppress repeated windows and promote time con-
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Random Initialization

Input Audio (Target) Output AudioCorpus

3a. Aggregate Top 0.1P Particles

3b. Do KL on Top p Activations

p=2, P=45

Figure 1. The Concatenator maintains P “particles,” each of which represents p specific corpus windows. Each window

moves forward by 1 timestep in the corpus with probability pd, or otherwise jumps randomly. Then, particles each mix

their windows to best match the target, and particles with the top 10% best fits to the target vote on a final set of p windows.

tinuity at each entry of H require knowledge of all activa-

tions in H , including future activations. Instead, The Con-

catenator does many tiny KL-based NMF problems (Equa-

tion 2) online in “particles” based on random sampling at

each timestep. The particles then vote on a final set of

activations to use at that timestep (Figure 1) 1 . The ran-

dom sampling trades off historical context to choose longer

grains, with fit to the target audio streaming in. We provide

the mathematical and implementation specifics below.

3.1 Sequential Bayesian Formulation And State Space

Formally, The Concatenator uses a sequential Bayesian

formulation, where the tth column of the target spectro-

gram V is the “observation,” at time t. The hidden state

indexes p out of N possible windows in the corpus spec-

trogram W . We use a particle filter to efficiently infer the

the best such windows (Section 3.2). Henceforth, we refer

to the observations as vectors v⃗t to emphasize that the data

is streaming, and we focus on one timestep t at a time.

State space. To keep the state space simple, we de-

couple which windows are active from their activation

weights; we only model the former as the hidden state,

while we infer the weights as a best fit under the KL-loss

(Equation 1). To control for polyphony directly, we use a

p-sparse nonnegative integer-valued vector s⃗t ∈ N
p as the

hidden state. This vector indexes the p corpus windows

that are active at time t, where p is fixed ahead of time.

For convenience of implementation, template indices can

repeat and are in no particular order:

s⃗t[k] ∈ {0, 1, ..., N − 1} , k = 0, 1, ..., p− 1 (5)

We then infer the associated nonnegative weights h⃗t[k]
for each activation to give the approximation Λ⃗t at time t:

Λ⃗t[m] =

p−1
∑

k=0

h⃗t[k]Wm,s⃗t[k] (6)

1 CC musical instrument images adapted from vectorportal.com

In particular, given W , s⃗t, and v⃗t, we apply the update

rules of Equation 2 for a pre-specified number L of itera-

tions, using the corresponding columns s⃗t of W

h⃗t

ℓ
[k]← h⃗t

ℓ−1
[k]





∑

m(Wm,s⃗t[k])(v⃗t[m])/(Λ⃗t

ℓ−1
[m])

∑

m Wm,s⃗t[k]





(7)

Transition Model. We use the KL-loss (Equation 1)

to measure the spectral fit of Λt to v⃗t. As in Driedger et

al. [6] (Equation 4), however, we are willing to sacrifice

fit to take longer grains from the corpus W . To that end,

we define the prior state transition probability in the as

a Factorial Hidden Markov Model (FHMM) [25]. Each s⃗t
satisfies the Markov property and is conditionally indepen-

dent of all previous steps given ⃗st−1, but each component

k of s⃗t[k] also transitions independently of other compo-

nents, leading to the following transition probability:

pT (s⃗t = b⃗| ⃗st−1 = a⃗) =

p−1
∏

k=0

{

pd b⃗[k] = a⃗[k] + 1
1−pd

N−1 otherwise

}

(8)

where pd ∈ [0, 1] is the “probability of remaining time-

continuous.” Intuitively, if pd > 0.5, then we are more

likely to continue to use a time-continuous activation than

we are to jump to a new random activation, which pro-

motes longer contiguous sound grains from the corpus,

even at the expense of a lower fit to the spectral template 2 .

As such, pd a parameter that can be tuned by the artist and

set closer to 1 to promote longer grains. We generally find

pd ∈ [0.9, 0.99] to be effective (Section 4.1).

We must also specify the observation probability,

which pulls the states closer to matching v⃗t, even if they

have to jump away from time continuity; otherwise, the

2 This has a similar effect to “extend matches” functionality in Sturm’s
MatConcat [26] when a match isn’t found. In our Bayesian framework,
such extensions happen on a continuum based on fit to target.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

884



result would sound nothing like the target. Though each

component transitions independently, they all contribute

jointly to an observation, which makes inference trickier

than it is for traditional HMMs.

3.2 Sampling, Observing, And Synthesizing

We now describe how to apply Bayesian inference to find

the sequence of corpus windows s⃗t and their activation

weights h⃗t that maximize the posterior probability given

the transition model in Equation 8 and the observation

model below. While the authors of [27] use a similar

FHMM applied to multi-pitch tracking, inferring the hid-

den states via message passing algorithms known as “Max-

Sum” [28] and “Junction Tree” [29], we need a faster tech-

nique which is also real-time, and which has tunable accu-

racy that degrades gracefully with restricted computational

resources. To that end, we turn to a particle filter.

Our particle filter consists of P particles, each of which

is a p-dimensional state vector (Equation 5) that we refer

to as s⃗i. The particles traverse the corpus over time, and

they each have a weight wi that keeps track of the posterior

probability of its accumulated motion over all timesteps

(we now dispense with the time index t on s⃗i and wi since

t will be clear from context). Since each particle is its own

estimate of a state that best describes what templates to

choose, our goal is to sample them in such a way that (at

least some of) the particles are close to capturing activa-

tions that maximize the posterior probability given all v⃗t.
Tracking Weights. All particles begin with even

weights wi = 1/P . At the beginning of each time step, we

sample new indices for each s⃗i according to Equation 8.

Then, we multiply each weight by the observation prob-

ability pO. Given the KL loss di between the ith particle’s

spectral approximation Λ⃗i (Equation 6) and v⃗t after L iter-

ations of Equation 7, for each particle i, pO is:

pO[i] =
e−τdi

∑

j e
−τdj

(9)

In other words, the observation probability is a softmax

over KL-based goodness of fits of s⃗i to v⃗t, and the softmax

has a “temperature” τ . We use a negative exponential since

a larger di loss indicates a poorer fit using windows s⃗i and

hence, should be a lower probability. Intuitively, a higher

τ will emphasize particles that fit the observation better,

putting more importance on the observation relative than

the transition probability. This is tunable and has a similar

effect to varying pd in the transition, as we will explore

more in Section 4.1. After multiplying each wi by pO[i],
we normalize the weights so that they sum to 1.

Resampling. The above is a naive particle filter, but it

suffers from “sample impoverishment,” where a few par-

ticles stand out with high weights and the rest are stuck

with vanishing weights, leaving the system unable to adapt

to new observations. To ameliorate this, we compute a

standard definition of the “effective number of particles”

neff = 1/(
∑

i w
2
i ), which is maximized when all par-

ticles have equal weight 1/P . If neff goes below 0.1P
at a particular time step, we resample the particles with

stochastic universal sampling [30,31], an O(P ) resampling

technique, and reset all weights to 1/P before continuing.

This leads to “survival of the fittest” where particles with

a higher weight are more likely to be replicated and those

with a lower weight are more likely to be eliminated.

Synthesizing audio. After updating the weights, we

take a weighted average of the windows in the top 0.1P
particles, with the option to further boost windows that fol-

low continuously from those chosen in previous steps. We

also ignore windows that would be repeated from up to r
timesteps in the past (analogous to Driedger’s Equation 3).

We then let s⃗t be the top p such windows by weight, and

we compute the corresponding activations h⃗t. These steps

can be done in O(Pp) time with hash tables and linear

time selection. Finally, we mix together the corresponding

waveforms from the corpus (as in [12]) and apply a Hann

window to overlap-add this audio to the output stream.

3.3 Computational Complexity

The dominant cost of both The Concatenator and of

Driedger is computing activations via KL iterations. Given

N corpus templates, T times in the target, and a spectral

dimension of M , for L KL iterations, the time complex-

ity of Driedger (Equation 2) is O(LMNT ). This is a lin-

ear dependency on the corpus length. So if, for example,

Driedger’s technique takes a minute on a target sourcing a

corpus that’s a minute in length, it will take 2 hours a 2-

hour corpus on that same target. To improve this scaling,

the authors of [12] do a greedy nearest neighbors search in

the corpus, but this requires tuning and may miss important

windows. In fact, our random sampling naturally scales in

an even more favorable way. Specifically, given P par-

ticles and p windows per particle, the time complexity of

our analogous Equation 7 is only O(LPMpT ), which does

not scale with the corpus size N at all (though P may need

to scale with N for the best results (Section 4.1)). As an

example, for a 60 minute corpus a window length of 2048

(M = 1025, hop=1024) at a sample rate of 44.1khz, using

P = 1000 and p = 5, this is a speedup of nearly 30x over

Driedger. Moreover, propagating particles and applying

the observation model are also embarrassingly paralleliz-

able at the particle level, which we leverage in our imple-

mentation. Finally, while Driedger et al. use L = 20 [6],

we find that L = 10 is sufficient in our context.

3.4 Bells And Whistles (Pun Intended)

Regularizing Quiet Moments in The Corpus. One pitfall

using KL-based NMF is that if enough activations are near

silence, Equation 7 becomes numerically unstable and the

weights h⃗i can approach ∞. To address this, we modify

the KL-loss to include a masked L2 penalty for h⃗i for the

ith particle for the target v⃗t at time t. Given the correspond-

ing approximation Λ⃗i (Equation 6), the modified loss is

D(v⃗t||Λ⃗i) =

(

∑

v⃗t ⊙ log

(

v⃗t

Λ⃗i

)

− v⃗t + Λ⃗i

)

+
||α ⊙ h⃗i||

2

2

2
(10)
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where, abusing notation, α is a mask that is a fixed value

(we use 0.1) if the corresponding corpus window is less

than -50dB and 0 otherwise. Equation 7 then turns into

h⃗i

ℓ
[k]← h⃗i

ℓ−1
[k]





∑

m(Wm,s⃗i[k])(v⃗t[m])/(Λ⃗i

ℓ−1
[m])

(
∑

m Wm,s⃗i[k]) +α[k]h⃗i

ℓ−1

[k]





(11)

Intuitively, if si[k] is a quiet corpus window, α[k] =

0.1, which shrinks h⃗i

ℓ−1
[k] down 3 .

Pitch Shifting. Though we don’t use this in Section 4,

we implemented Driedger et al.’s technique to increase the

pitch coverage of the corpus; that is, we can replicate the

corpus in its entirety for different pitch shifts that are cho-

sen up-front. This only incurs a preprocessing cost since

the complexity of The Concatenator is independent of cor-

pus length (Section 3.3), which does not impact real-time

performance once the system starts. However, our sys-

tem could choose a different trade-off of space and time

complexity by augmenting the state space as the Cartesian

product of window indices and pitch shifts. Pitch shifts

could be computed on the corpus audio on demand when-

ever a state with a nonzero pitch shift is chosen.

Finally, for a fixed corpus with or without pitch shifts,

the user can control a slider that pitch shifts the target in

real time, so that the chosen windows move relatively to

the audio input. This could be used, for example, to har-

monize to singing in an interval that’s a fifth away.

3.5 How Many Particles?

In practice, few particles are surprisingly effective at cap-

turing windows that fit the target, which we explain with

a simple probabilistic argument. Given a corpus with N
sound grains (including pitch shifts) and P particles that

each capture p windows, suppose also that we have a hypo-

thetical “ideal particle” s⃗t with the p best windows at time

t, which are completely disjoint from all current particles;

the only way to jump to the best windows is to randomly

resample with probability (1 − pd). Since we use a small

hop length relative to the sample rate (1024/44100 ≈ 23

ms), we have a few timesteps to jump without a large effect

on the final audio. Also, there are usually several windows

in the corpus that sound acceptably similar to windows in

s⃗t. Let δ be the maximum tolerable offset before or after

in time for choosing the best windows, and let w be a fac-

tor of acceptable windows (e.g. w = 11 would consider

each window in x⃗ and its ten most similar in the corpus).

Assuming all offsets of acceptable windows are disjoint,

then the probability of jumping to at least one of the top

k windows of s⃗t, or to one of their acceptably close corre-

sponding offsets, is:

1−

(

pd + (1− pd)
(N − 1− wk)

N − 1

)(2δ+1)pP

(12)

For example, for pd = 0.95, δ = 2 and w = 11, and

N = 10000 (≈ 4min corpus), the probabilities are 0.747,

3 For a derivation of similar additive constraints on NMF, refer to [32]

P=100, p=5

Figure 2. Increasing polyphony leads to a better fit (ratios

< 1), and increasing particles leads to a better fit, espe-

cially for larger corpora like the Woodwinds (≈1.6hrs).

0.936, 0.983 for k = 1, 2, 3, respectively. These probabili-

ties all degrade when N gets larger for a larger corpus, but

in that case, it is likely that the acceptable w is also larger.

Furthermore, once one of the particles catches on to

a good window in the corpus, it is promoted with a high

weight and gets carried on to a longer grain. This is simi-

lar to how the “patch match” technique in computer graph-

ics [33, 34] computes nearest neighbors of many nearby

patches by starting with a random initialization of nearest

neighbors, and then well-matched to patches correct the

nearest neighbors of spatially adjacent patches [33].

4. EVALUATION

4.1 Quantitative Evaluation

To empirically assess reliability, we do an extensive MIR-

style evaluation, which is much more comprehensive than

standard evaluation in other concatenative synthesis works.

Effect of Parameters. First, to complement our anal-

ysis in Section 3.5, we want to empirically examine how

many particles are needed for different sized corpora. We

also want guarantee the impact of important parameters

in our system for artistic control. We select 3 corpora:

Driedger’s buzzing bees (small, 66 seconds), a corpus used

in Edenic Mosaics [10] known as “EdenVIP2,” which con-

sists of various real-world percussive sounds (medium,

10.5 minutes), and all Woodwind clips from the pre-2012

UIowa MIS dataset [35] (large,≈1.6 hours). Then, we ran-

domly subsample 1000 30 second clips from the Free Mu-

sic Archive (FMA)-small dataset [36], each of which we

use as a target for the three different corpora for various

parameter choices. We use a sample rate of 44.1khz for all

corpora, we use stereo audio for the bees and EdenVIP2,

and we use mono audio for the Woodwinds.

First, we assess the effect of particles on fit; we fix

pd = 0.95, temperature τ = 10, and r = 3, using

L = 10 iterations for all KL operations, and we take

P ∈ {100, 1000, 10000}. We also compare to Driedger

et al.’s technique with c = 3 and r = 3 using L = 50 itera-

tions, though we omit comparisons with Woodwinds due to

computational cost (Section 3.3). In all cases, we use fre-

quencies from 0 to 8000hz with a sample rate of 44100hz,

a window length of 2048 samples, and a hop length of 1024

samples. Since the spectral similarity of different targets to

a particular corpus varies widely, we report the ratio of the
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Figure 3. Increasing pd increases the average grain length

since windows are less likely to jump at each timestep.

Figure 4. Increasing τ decreases the average grain length

since this prioritizes the observation probability.

KL loss in Equation 1 to the KL loss for The Concatenator

with P = 100, p = 5. Figure 2 shows the results. As ex-

pected, an increased polyphony leads to a better fit, as does

increasing particles for all but the Bees, though the effect

of increased particles is most pronounced for the largest

corpus of Woodwinds, which makes sense by Equation 12.

As we noted in Section 2, however, a very good fit may

lose the timbral characteristics of the corpus. A lower

p helps, but we also need to ensure that grains are long

enough. Therefore, we also examine mean grain length for

various parameters. Figure 3 shows the result of varying

pd for a fixed temperature τ = 10 and p = 5, and Figure 4

shows the result of varying the temperature τ for p = 5
and pd = 0.95. As expected, grain length goes up with

increased pd and down with increased τ . In practice, low-

ering τ and raising pd will lead to especially long grain

lengths, albeit with a lower target fit.

Reproducing Pitch. In addition to fits and grain

lengths, we quantify how well The Concatenator repro-

duces target pitch. Using the Woodwinds corpus, we cre-

ate targets out of all stems in the MDB-stem-synth dataset

[37]. We compare ground truth pitch annotations of the

stems to the pitches estimated with CREPE [38] on both

P
ro

p
o
rt

io
n
 C

o
rr

e
c
t

Within 2 HalfstepsWithin 1 Halfstep Within An Octave

Figure 5. The Concatenator reproduces reasonably correct

pitches in the 1.6 hour Woodwinds corpus with targets in

MDB-stem-synth, in real time (at P = 100, 1000), at all

but the lowest octave C1.

the raw target and the synthesized audio for various P , and

we break the results down by octave. Figure 5 reports the

proportion of pitches correctly identified at each 23ms hop

length to within different tolerances, over all stems. Even

though CREPE was not trained on concatenated audio, it

reports pitch nearly as clearly as on the raw target for most

octaves except for C1, which makes sense since the spec-

tral resolution is only 21.5hz. We can mitigate this in the

current system by increasing the window, at the expense

of temporal resolution. In the future, though, we would

like to try a streaming CQT that can better capture lower

frequencies. Finally, since the bassoon is the only instru-

ment out of 10 in the Woodwinds that has notes in the C2

octave, additional particles are needed for precise pitch in

that octave, which can be explained by w in Equation 12.

4.2 Qualitative Evaluation

This algorithm was tested in a variety of contexts to assess

its performance and accuracy for applications in music and

sound design. Our Corpora contained audio samples that

fell into the following categories: Test Tones, Percussion,

Full Mixes, Sample Libraries, Foley, and Driedger Com-

parisons. Our Targets were single audio files that were

designed to test how the Concatenator re-created varying

kinds of melody, counterpoint, full mixes, basses, drums,

vocals, noise, and prior examples used with the Driedger

algorithm. Our tests reveal that the Concatenator performs

highly accurately in pitch reproduction for most melodies,

two-part harmonies, and full mixes that contain prominent

melodic features, while struggling with accurate reproduc-

tion of more complex three-part harmony. Given the nature

of the particle filter, which rotates through new temporal

positions in the corpus at random, some notes are more ac-

curate than others, and some notes are dropped all together,

as expected from our quantitative analysis. While this ten-

dency might make the Concatenator unfit for replacing the

role of large multi-sample instruments, the vast majority

of pitches remain wholly accurate while the aleatoric vari-

ation of off-color audio grains may represent an entirely

desirable aesthetic quality of its own. Similarly for drums,

sometimes transients are incredibly accurate, while other

times they sound a little smeared. This tendency is due

to the particle filter’s random positioning, and can be im-

proved by increasing the particle amount.

4.3 Supplementary Material / Discussion

We include supplementary material at https://www.

ctralie.com/TheConcatenator. This includes a

python prototype for the real-time system that uses port

audio [39], audio examples for all corpus/target pairings in

Section 4.2, and a video showing artistic examples of what

the real time system enables in the loop with Ableton Live.

This is only the beginning. Since The Concatenator ex-

ists feedback loop, we expect artists will go much deeper,

likely well beyond the “obstacle course” we put it through.
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