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ABSTRACT

Schenkerian Analysis (SchA) is a uniquely expressive
method of music analysis, combining elements of melody,
harmony, counterpoint, and form to describe the hierarchi-
cal structure supporting a work of music. However, despite
its powerful analytical utility and potential to improve mu-
sic understanding and generation, SchA has rarely been
utilized by the computer music community. This is in
large part due to the paucity of available high-quality data
in a computer-readable format. With a larger corpus of
Schenkerian data, it may be possible to infuse machine
learning models with a deeper understanding of musical
structure, thus leading to more “human” results. To en-
courage further research in Schenkerian analysis and its
potential benefits for music informatics and generation,
this paper presents three main contributions: 1) a new
and growing dataset of SchAs, the largest in human- and
computer-readable formats to date (>140 excerpts), 2) a
novel software for visualization and collection of SchA
data, and 3) a novel, flexible representation of SchA as a
heterogeneous-edge graph data structure.

1. INTRODUCTION

With the continuously growing availability of “big data,”
machine learning models and algorithms have made enor-
mous strides in many fields, such as computer vision and
language modeling. Recent approaches to music infor-
mation retrieval (MIR) and music generation tasks are in-
creasingly fueled by massive datasets as well, particularly
when working with raw audio. For instance, for genera-
tion tasks, Meta’s MusicGen is trained on approximately
20,000 hours of licensed music [1], OpenAI’s Jukebox

on 1.2 million songs [2], and Google’s Noise2Music on
340,000 hours of music [3]. Castellon et al. show how
these large generation models produce useful representa-
tions for downstream MIR tasks [4]. Won et al. perform
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multimodal metric learning for tag-based music retrieval
using approximately 158,000 tracks [5].

Despite this promising body of work, many areas of
music research do not have access to such data and are
therefore under-researched and underappreciated, particu-
larly in the realm of symbolic music or Schenkarian Anal-
ysis (SchA). By infusing an understanding of Schenke-
rian musical structure, generative machine learning models
may be able to learn more artistic, theoretically-informed
structural features beyond simple form and metric features
when making inference. Unfortunately, there is currently
only one sizeable publicly available dataset for SchA in
computer-readable format, and it is relatively small with
41 excerpts [6].

Schenkerian analysis provides a powerful, flexible, and
broadly-used analytical framework for understanding mu-
sical melodic-harmonic structure in a sensitive, “human”
way. Rather than viewing a piece of music as a series of
vertical chunks or horizontal melodies, SchA instead ana-
lyzes music as an artistic “unfolding” of harmony through
time, taking into account elements of melody, harmony,
form, and counterpoint. Schenker’s theories have inspired
numerous performers and composers [7–9], helping them
to understand their own interpretations of musical struc-
ture, which in turn may inform their own performance
and/or composition. An understanding of Schenkerian
structure helps performers determine what notes deserve
emphasis and which may be more transient. A composer
can learn to imitate and develop structures they have seen
in other pieces of music they admire.

Because Schenkerian theory requires a significant
amount of background knowledge in music theory and
practice and has a difficult learning curve, it is often over-
looked or misunderstood. For instance, SchA is often
deemed too narrow due to its origins in repertoire of West-
ern common practice tonal music. However, aspects of
Schenkerian theory have shown strong analytical power in
works of popular, rock, jazz, and even African folk mu-
sic, Chinese opera, and 20th century western atonal mu-
sic [10–13]. To be clear, we see SchA as a broad and evolv-
ing field with various analytical tools that can be applied to
a wide array of musical genres, not as a static theory solely
designed for common practice tonality.

It is our belief that research in computational SchA
can enable performers and composers to more easily an-
alyze music and guide the process of understanding mu-
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sical structure. Computational SchA can also aid the ex-
pert human analyst by offering several potential solutions,
speeding up their ability to parse through a piece of music
or potentially unveiling unusual and interesting analytical
insights. The computer would not replace the human ex-
pert; rather, it would help the analyst find reasonable so-
lutions more quickly, which would be immensely helpful
when conducting large-scale corpus studies. Furthermore,
inclusion of SchA in MIR and generation tasks may greatly
improve results. This injection of computational models
with musical theory and/or structure has shown benefits in
numerous MIR and generation tasks [14–17].

This paper introduces three main contributions. The
first is a new and growing SchA dataset, the largest in
human- and computer-readable format to date (>140 ex-
cerpts). Second, we present a novel notation software for

SchA in an effort to ease data collection and visualization.
Lastly, we describe a representation of SchA as a graphi-
cal data structure and graph pooling problem.

The following subsections describe SchA in more de-
tail, as well as the relevant history of computational SchA.
Section 2 describes our novel dataset and data collection
tool. Finally, Section 3 describes how SchA may be repre-
sented as a graph data structure.

1.1 Hierarchical Music Analysis

Music is often composed and understood in terms of hi-
erarchical structures such as phrase and rhythmic struc-
ture [18, 19], form structure [20, 21], and linear/harmonic
structure [22, 23]. In this paper, we focus on the Schenke-
rian model of harmonic-melodic structure. As mentioned
earlier, SchA aims to reveal how harmonies are “unfolded”
through linear motion on various levels of structure. Figure
1 shows the relationship between a fugue’s subject melody
and its underlying harmony, as well as the hierarchy of
melodic tones.

Figure 1: The primary author’s analysis of J.S. Bach’s F
major fugue subject from Das Wohltemperierte Klavier I.

The annotated score on the upper line shows how notes
relate on various levels of structure, forming two theoret-
ical outer voices. Longer stems indicate deeper levels of
structure. The reduction on the bottom line exemplifies
the underlying harmony that is unfolded by the subject
melody. Green-stemmed notes correspond with the deep
outer voices of the reduction.

SchA has shown that similar harmonic and motivic fea-
tures often exist on multiple levels of hierarchy, revealing
music’s “fractal” nature [24]. For instance, in Figure 1,
the foreground melody within the first full measure (D4-
C4-B♭3) can be seen as a parallelism of the deep level
melody spanning the entire excerpt (C4-B♭3-A3); the two
melodies have a similar motivic descending third in step-
wise motion. One can also see the first full measure lead-
ing into the second measure as a V♭ − I motion in the key
of V, paralleling the deep level V♮ − I shown in the re-
duction. While these examples are on a very small scale,
one can see more complex harmonic and motivic structures
unfolded through entire pieces. For instance, see Example
12 in [24] describing Schubert’s Erlkönig or Example 2
in [25] describing The Beatles’ Something.

Because these same music-theoretical ideas and motifs
permeate multiple levels of structure, the use of a carefully-
designed machine learning model may reveal such struc-
ture in a layered approach. With the rise of machine learn-
ing in data science, this calls into importance the need for
computer-readable SchA datasets for model training.

1.2 Previous Work and Data for Computational

Schenkerian Analysis

The majority of past attempts at computational SchA [26–
30] were based on heuristics and rule-based algorithms,
and therefore did not require a true computer-readable
dataset for SchA. To our knowledge, Marsden [31] was the
first to venture towards a machine learning approach, using
a humble corpus of six Mozart analyses. He developed a
“goodness metric” based on these six analyses to find the
best candidate analyses within a massive search space.

More recently, Kirlin designed a probabilistic model
for SchA that understands SchAs as maximal outerplanar
graphs (MOPs) and learns how likely certain notes prolong

others using random forests [32, 33]. He defines prolon-
gation as “a situation where an analyst determines that a
group of notes is elaborating a group of more structurally
fundamental notes.” For instance, the syntax follows the
pattern X(Y )Z, where the note(s) of Y prolong the mo-
tion from note X to note Z.

One potential drawback of Kirlin’s model is that it al-
ways considers one musical voice as one theoretical voice.
Looking back at Figure 1, for example, we see there is
clearly a deep level bass motion from E3 to F3, support-
ing the upper voice, which follows the motion C4-B♭3-A3.
The sixteenth notes of m. 2 act to fill the gap between the
lower and upper theoretical voices. An MOP reduction of
the melody would force all notes to be understood as a sin-
gle theoretical voice, thus obscuring the underlying coun-
terpoint of the passage. For this reason, we represent SchA
as a more general graph data structure, described further in
Section 3.

For his model, Kirlin released the first large-scale
computer-readable dataset of symbolic music with cor-
responding expert Schenkerian analyses, Schenker41 [6].
This collection consists of 41 excerpts from the common
practice period of European art music, with analyses from
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(a) JSON representation. (b) Graphical representation.

Figure 2: Screenshots of a toy Schenkerian analysis in JSON and graphical form as generated by our notation software.

three textbooks [23, 34–36] and an independent, anony-
mous expert in Schenkerian analysis. Kirlin also created
the first computer-readable format for Schenkerian analy-
sis, which describes all prolongations present in an analy-
sis. The text-based format can also encode linear progres-
sions, omitted repetitions, and harmonic context.

The Schenker41 dataset is an important first step to-
wards broader musical-hierarchical research in the MIR
community; however, there are some limitations. First of
all, the quality of the excerpts chosen are questionable.
Kirlin and Jensen recruited three expert Schenkerian an-
alysts to grade textbook analyses as well as their machine
learning model’s analyses in their 2015 paper (see Figure 8
in [37]). One would expect the textbook analyses to receive
grades of “A-” or greater, allowing wiggle room for dif-
ferences of opinion. However, many excerpts score lower
marks; some were even given failing grades. Given the
high proportion of dubious quality “ground truth” data, it
is necessary to produce a greater quantity of quality data
before successful, generalizable models can be trained.

There are also several Schenkerian symbols and con-
cepts that are not currently represented in the text-based
notation. For instance, unfoldings, voice exchanges, and
other hierarchical harmonic function information are ig-
nored. Concerning larger pieces, it is vital to understand
the harmonic structure in several layers; an F major triad
may stand as a local tonic “I” harmony in the foreground
that serves to expand a deeper subdominant “IV” of the
background, global key of C. Furthermore, more abstract
concepts, such as motivic parallelisms, implied tones, and
written commentary are eschewed for the sake of simplic-
ity.

2. DATASET AND NOTATION SOFTWARE FOR

SCHENKERIAN ANALYSIS

We thus introduce a new large-scale dataset of Schenke-
rian analyses in human- and computer-readable formats.
As of the writing of this paper, the dataset contains 145
analyses from four analysts for a broad range of com-
posers including J.S. Bach, Mendelssohn, Brahms, Bartók,
Shostakovich, Gentle Giant, and more. The majority of

analyses were created by the first author (Stephen Ni-
Hahn) with consultation from one of the other analysts,
who wishes to remain anonymous at this time. Ni-Hahn
currently has nearly a decade of experience with SchA
including a graduate degree in music theory. The other
three analysts are veteran Schenkerian scholars with sev-
eral decades of experience in the field. The dataset is not
static and aims to grow over time. Please contact Stephen
Ni-Hahn (stephen.hahn@duke.edu) for questions regard-
ing, and access to the dataset and notation software de-
scribed in this paper.

Currently, the vast majority of analyses in the dataset
describe the hierarchical relationships within fugue sub-
jects by Bach and Pachelbel. Fugue subjects are ideal for
preliminary trials with machine learning models since sub-
jects are generally brief, consist of a single instrumental
line (which may consist of multiple theoretical voices),
generally have clear functional relationships, and each
have a definite sense of closure by their end.

Rather than writing out each prolongation explicitly, we
produce prolongations as a by-product when assigning a
hierarchical depth to each note. For example, Figure 2
shows a toy example of an analysis in which the numbers
to the left of the note heads indicate depth. Higher depth
indicates deeper structure. To retrieve the prolongations,
we simply traverse the graph at each depth level (greater
than 0), connecting consecutive notes that are at the same
level or higher. Custom prolongations that do not occur
within this system may be added in a similar fashion to
Kirlin’s text format by describing the voice and index of
the start, middle, and end notes.

Figures 3 and 4 present simple statistics about our
dataset. Figure 3a shows the distribution of excerpt lengths
in terms of verticalities. A verticality is defined as a point
in time where one or both of a treble and bass note exist.
Note that this does not measure length of time or number of
measures; rather, the number of verticalities describes the
number of potentially unique depths in an excerpt. Figure
4 shows the distribution of intervals between consecutive
notes in the treble and bass voices at various depths. We
see that as depth increases, the distribution of treble in-
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(a) Distribution of excerpt length. (b) Dataset statistics regarding note depth.

Figure 3: Dataset statistics. Verticality is defined as a point in time where one or both of a treble and bass note exist.
“Inclusive” includes notes of higher depth when counting notes of lower depths. “Literal” counts the note depths as they
are defined. The final column describes the distribution of max depths over all excerpts. See Section 2 for more details.

tervals moves from smaller to larger intervals, while bass
intervals increasingly concentrate around 0 and 5. These
statistics suggest that surface level treble motions in our
dataset are mostly stepwise and span larger intervals at
deeper levels of structure. Furthermore, deep bass struc-
tures tend to hold steady and support the upper voice or
move along the circle of fifths by jumping 5 or 7 half steps.
Table 3b describes various statistics regarding the notes
and depths of our dataset. Columns labeled “inclusive”
mean that notes of higher depth are included when count-
ing notes of lower depths. For instance, a depth 4 note is
counted in the number of depth 0 notes, while the depth 4
note would not count towards the number of depth 5 notes.
The “literal” label counts the note depths as they are de-
fined. The final column describes the distribution of max
depths over all excerpts.

Figure 4: Distribution of intervals between consecutive
notes at each depth.

2.1 Data Collection Tool

To facilitate easy collection and visualization of Schenke-
rian data, we introduce a new computer notation system for
Schenkerian analyses (see Figure 2 for a screenshot).

As of the writing of this paper, our software is capable
of notating up to four voice structures of any length. Sim-
ple commands allow the user to adjust the pitches, note
depths, harmonic/scale-degree label, notes considered part

of the Ursatz, etc. Slurs and beams of the outer theoretical
voices are automatically generated based on the depths of
the notes. We are currently working on ways to render cus-
tom markings, such as voice exchanges, unfoldings, and
linear progression beams.

Behind the scenes, the Schenkerian analysis is a simple
standardized object in JavaScript Object Notation (JSON),
which is highly generalizable, lightweight, and simple to

parse, and is capable of describing any obscurities within
a particular analysis. Our JSON object contains metadata
about the analysis, key information, and information on
each of four theoretical voices. Metadata describes the an-
alyst, composer, title, subtitle, and any associated written
description of the analysis. Furthermore, each theoretical
voice is encoded as a list of pitch names, depths, Ursatz in-
dices, scale degree/Roman numerals, flagged note indices,
sharp/flat/natural indices, and parenthetical indices. Ad-
ditionally, the JSON object stores “cross voice” symbols
such as voice exchange lines and lines indicating related
tones across larger spans of time.

Note that it is straightforward to translate between Kir-
lin’s OPC text notation and our JSON notation. To trans-
late from text to JSON, the notes can be parsed from the
musicxml and placed in their appropriate voice. Then
note depths may be determined by the location and rela-
tive length of their prolongation. Translating from JSON
to text is simpler, as one can traverse each depth and re-
trieve the prolongations.

The software is constructed using languages
Javascript/Typescript and the Vue web framework. It
is packaged using Electron Forge. Software access can be
requested by emailing the first author.

3. SCHENKERIAN ANALYSIS AS A

HETEROGENEOUS GRAPH DATA STRUCTURE

As mentioned in Section 1.2, Kirlin’s model simplifies
the difficult problem of performing SchA, using a lim-
ited version of Yust’s MOP representation for SchA. With
a greater amount of data, less compromising representa-
tions may be used for modeling. The following section
describes how a musical score may be represented as a
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algo2e 1 JSON to Clusters
Definitions

parts← {sop, alto, ten, bass}
nv ← the number of verticalities v (indexed by i) in an analysis
pi ← note of part p ∈ parts within vi

d
(p)
i ← depth of note pi
∀p ∈ parts, len(p) = len(d(p)) = nv .

Procedure CLUSTER(p, i)

if ∃j < i s.t. dpj > 0 then

j ← argmin
j
|i− j| s.t. j < i and d

(p)
j > 0

return {(p, j)} // Note in the same voice to the left
else if ∃j > i s.t. dpj > 0 then

j ← argmin
j
|i− j| s.t. j > i and d

(p)
j > 0

return {(p, j)} // Note in the same voice to the right
else

j1, j2 ← argmin
j1,j2

min(|i− j1|, |i− j2|) s.t. (i− j1) · (i− j2) ≤ 0 and d
(sop)
j1

> 0 and d
(bass)
j2

> 0

return {(sop, j1), (bass, j2)} // Closest two notes in outer voices in opposite directions to the inner voice note
end if

heterogeneous-edge directed graph data structure and how
SchA may be conceptualized as a graph clustering prob-
lem.

3.1 Graph Music Representation

In what follows, we represent music as a heterogeneous
directed graph G, where each node describes a note, and
various types of edges describe the relationships between
notes. Concretely, G is represented as (A, X), where
A ∈ {0, 1}h×n×n describes the set of h adjacency matri-
ces (one for each edge type) over n nodes, and X ∈ R

n×d

is the node feature matrix with d as the number of features.
These d features may be learned by a neural network, for
instance, to correspond with categorical and numerical mu-
sical features.

We adapt the encoding scheme proposed by Jeong et
al. [38] for the purpose of Schenkerian analysis. Nodes
may be encoded with any musical feature present in the
score, such as pitch class, octave, absolute duration, posi-
tion (absolute or relative), metric strength, etc. We suggest
the use of five main edge types: (i) forward edges connect
two consecutive notes within a voice, (ii) onset edges con-
nect notes that begin at the same time, (iii) sustain edges
connect notes that are played while the source note is held,
(iv) rest edges are like forward edges, but imply a rest oc-
curs between the two related notes, and (v) linear edges
connect each note with the next notes that occur at specific
intervals from the source.

3.2 Schenkerian Analysis as Hierarchical Clustering

With this graphical representation of music, the process of
Schenkerian analysis may then be posed as a hierarchical
graph clustering problem. Figure 5 presents a toy example
of how Schenkerian analysis may be represented as a series

of hierarchical clusters. The clustering between two subse-
quent levels of Schenkerian analysis is expressed through
a clustering matrix, S(l) ∈ R

nl×nl+1 , where nl is the num-
ber of nodes in clustering layer l and nl+1 < nl is the
number of nodes after one iteration of clustering. We de-
fine n0 to be the total number of notes in the music.

Note that we can understand a clustering between any

two layers as a single matrix, denoted as S(li)→(lj) ∈
R

nli
×nlj ; i < j, where i and j are the index of the source

and destination layers respectively. This single matrix is
obtained by simply multiplying all sequential clustering
matrices. For example, in Figure 5, to retrieve the matrix
describing how all five nodes of the original score are clus-
tered into the two nodes of the final middleground layer,
we can multiply each clustering matrix together:

S(0)→(2) = S(0) · S(1) · S(2) =

[

1 1 1 1 0
0 0 0 0 1

]⊤

.

3.3 Converting Schenkerian Analyses from JSON to

Matrix Notation

Schenkerian analysis JSON data (collected using our tool
described in Section 2.1) requires extra processing to be
represented as hierarchical clusters. Here, we provide an
algorithm to convert our JSON data into a series of pro-
gressively smaller clustering matrices (see Algorithm 1).

Essentially, we first traverse the outer voices of the
JSON file, clustering notes of depth 0 into the closest note
of higher depth to the left in the same voice. If that note
does not exist, it defaults to the closest note of a higher
depth to the right. For inner voices, if they do not de-
scribe hierarchical depth (all 0 depth), they are clustered
50%-50% between the nearest bass and soprano below and
above or left to right, in that order. If the inner voice has
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Figure 5: Visualization of Schenkerian analysis as a series of clustering matrices. The bottom row shows a simple score
with Schenkerian annotation moving from all notes in the score to more abstracted versions of the score from left to right.
The middle row visualizes the music as a graph. The top row shows the ground truth cluster matrices that relate one layer
to the next; rows describe nodes before clustering, while columns describe nodes after clustering.

specified depth, it is treated similarly to the outer voices.
All depths are then decremented and the process begins
again for the next clustering matrix.

3.4 Implications of SchA Graph Clustering

The above formulation of SchA as a graph clustering prob-
lem facilitates more generalizable analysis. Whereas Kir-
lin’s MOP-based model focuses on a single melody as one
theoretical voice, a fuller graph representation allows for
greater flexibility via any number of theoretical voices.
There are, however, several drawbacks with this new ap-
proach. Because the clustering works with the notes of the
score, it is unclear how to handle cases where multiple the-
oretical voices converge on a single note. This issue may
also be present when handling inner voices of unspecified
depth. In our algorithm, we suggest splitting unspecified
inner voices 50%-50% between the outer voices, but other
approaches may also be reasonable.

Another advantage that the proposed graph clustering
representation has over the MOP representation is its abil-
ity to cluster multiple notes into one in a single layer. This
is particularly common when there are several repeated
notes. In a MOP, repeated notes must be given detailed hi-
erarchy, whereas a human expert would generally think of
such repetitions as structurally redundant. There are also
instances of prolongations that span more than one child,
where having only one child would not properly reflect the
music. For instance, if the melody over a C major tonic
triad (CEG) quickly plays out the upper tetrachord of the
scale, G-A-B-C, then the A and B are structurally equal;
they both bridge the gap from G to C. On the other hand,
allowing multiple children for every prolongation makes
the search space for potential solutions orders of magni-
tude larger.

As the amount of labeled SchA data grows and compu-
tational power improves, there is great potential for learn-
ing complex relationships via machine learning that may

be unattainable in previous analyses. Deep learning has en-
joyed considerable success on analyzing the Bach chorale
dataset [39–41], thus we are optimistic that SchA can also
be learned for broad datasets from different genres. The
proposed dataset, notation software and graph representa-
tion provides a promising step towards this goal.

4. CONCLUSION

In this paper, we introduce the largest corpus of Schenke-
rian analyses in computer-readable format to date. This
was largely made possible using our novel SchA notation
software, which is natural, interpretable, and enables easy
data collection and visualization. Finally, we describe and
discuss a novel representation for SchA as a graph clus-
tering problem that allows representation of any possible
Schenkerian analysis, avoiding the limitations of MOPs. It
is our hope that the growing amount of data and ease of its
collection will enable broader research into SchA’s appli-
cations.
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