
ENHANCING PREDICTIVE MODELS OF MUSIC FAMILIARITY WITH
EEG: INSIGHTS FROM FANS AND NON-FANS OF K-POP GROUP NCT127

Seokbeom Park1 Hyunjae Kim1 Kyung Myun Lee1,2

1 Graduate School of Culture Technology, KAIST, South Korea
2 School of Digital Humanities and Computational Social Sciences, KAIST, South Korea

{fpfmxh, present, kmlee2}@kaist.ac.kr

ABSTRACT

Predicting a listener’s experience of music based solely

on audio features has its limitations due to the individual

variability in responses to the same music. This study ex-

amines the effectiveness of electroencephalogram (EEG)

in predicting the subjective experiences while listening to
music, including arousal, valence, familiarity, and pref-

erence. We collected EEG data alongside subjective rat-

ings of arousal, valence, familiarity, and preference from

both fans (N=20) and non-fans (N=34) of the K-pop idol

group, NCT127 to investigate response variability to the

same NCT127 music. Our analysis focused on determin-

ing whether the inclusion of EEG alongside audio features

could enhance the predictive power of linear mixed-effect

models for these subjective ratings. Specifically, we em-

ployed stimulus-response correlation (SRC), a recent ap-

proach in neuroscience correlating stimulus features with

EEG responses to the ecologically valid stimuli. The re-

sults showed that familiarity and preference was signifi-

cantly higher in the fan group. Furthermore, the inclusion

of SRC significantly enhanced the prediction of familiarity

compared to models based solely on audio features. How-

ever, the impact of SRC on predictions of arousal and va-

lence exhibited variation depending on the correlated audio

features, with certain SRCs improving predictions while

others diminished them. For preference, only a few SRCs

negatively affected model performance. These results sug-

gest that correlations of EEG responses and audio features

can provide information of individual listeners’ subjective

responses, particularly in predicting familiarity.

1. INTRODUCTION

The neuroscience of music, employing neuroimaging

methods, has revealed how the brain processes music

through regions responsible for auditory, motor, and emo-

tional functions, with recent approaches focusing on the

brain’s predictive processes [1, 2, 3, 4]. The convergence
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of music information retrieval (MIR) and neuroscience has

gained significant traction in recent years [5, 6, 7]. For ex-

ample, Rajagopalan and Kaneshiro have highlighted the

potential of electroencephalogram (EEG) in the analysis

of musical structure [8]. Furthermore, Ofner and Stober

demonstrated the reconstruction of perceived and imagined

music from EEG data [9]. These findings highlight the

synergistic benefits of integrating MIR and neuroscience.

In this paper, we aim to investigate how EEG can enhance

the predictive model of subjective listening responses to
music, given the individual variability in such experiences.

1.1 Predicting Subjective Music Listening Experience

using Audio Features

Subjective music listening experience refers to the indi-

vidual and unique responses that people have when they

listen to music. It encompasses a wide range of as-

pects, including emotional reactions, preferences, familiar-

ity, and overall enjoyment of the music. Subjective expe-

rience acknowledges that each listener’s response to mu-

sic is personal and may be influenced by various factors

such as their musical background and cultural upbring-

ing [10, 11, 12, 13].

Predicting listeners’ subjective experiences of music

through audio features has been a significant focus within

MIR research. For example, Music Emotion Recognition

(MER) aims to predict listeners’ emotional responses us-

ing various techniques [14, 15, 16, 17]. Audio features, in-

cluding tempo, rhythm, melody, and harmony, have been

shown to correlate with listeners’ emotional responses and

preferences [18, 17]. However, the relationship between

audio features and subjective experiences is complex, in-

fluenced by individual differences in musical background,

culture, and personal taste [19, 20, 21]. Notably, emotional

responses can significantly vary depending on individual

differences [21, 22, 23, 24]. Thus, relying solely on audio

features may not capture the full spectrum of music’s im-

pact on the listener, emphasizing the need for incorporat-

ing physiological measures such as EEG in understanding

subjective music experiences [18].

1.2 Stimulus-response Correlation

The use of EEG offers a breakthrough in predicting subjec-

tive music listening experiences [25]. EEG provides real-

time measures of brain activity, allowing direct observa-
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tion of neural responses to musical stimuli. Specifically,

stimulus-response correlation (SRC), a recent method cor-

relating stimulus features with EEG responses, enhances

the ecological validity of studies by using real-world mu-

sic stimuli and offers interpretable insights into the di-

rect effects of stimulus features on the listener’s experi-

ence [26, 27]. For example, SRC analysis revealed that

neural responses are strongly correlated with specific task-

relevant visual areas [28]. Additionally, SRC enabled the

prediction of speech intelligibility [29]. Despite employ-

ing a different method to calculate the correlation between

audio features and EEG responses, Weineck et al. found

that neural response intensity increased with music famil-

iarity [30]. Therefore, SRC is considered to be useful tool

for predicting subjective music listening experiences.

1.3 Research Question

In this study, we aim to investigate the variability of subjec-

tive music listening experiences by comparing responses of

fans and non-fans to K-pop idol music. Subsequently, we

explore the effectiveness of SRC in predicting this individ-

ual response variability. To achieve this goal, we formu-

lated the following research questions:

RQ 1: How do subjective music listening experiences,

such as arousal, valence, familiarity, and preference, vary

individually for the same music among fans and non-fans

of K-pop idol music?

RQ 2: How does the inclusion of SRC alongside audio

features affect the predictive power of models for arousal,

valence, familiarity, and preference in music listening?

RQ 3: Does the effectiveness of SRC in predicting sub-

jective experiences vary depending on the type of audio

feature it is correlated with?

To address these questions, we conducted an experi-

ment collecting EEG data and subjective ratings from both

fans and non-fans of NCT127 as they listened to music by

the group. Utilizing linear mixed-effects models, we an-

alyzed the contribution of audio features and SRC in pre-

dicting subjective experiences, providing a comprehensive

understanding of how these components interact to shape

individual music listening experiences.

2. MATERIALS AND METHODS

2.1 Participants

We recruited 20 fans of NCT127 (mean age 24.8 years, 2
males) and 34 non-fans (mean age 26.1 years, 7 males). To

participate in the experiment as part of the fan group, par-

ticipants were required to meet at least one of the follow-

ing conditions: they must have attended at least one event

featuring NCT127, such as a concert or fan meeting, or

they must own at least one piece of NCT127-related mer-

chandise, such as an album, light stick, photocard, LP, or

sheet music. This was verified through a photo submis-

sion process when applying for the experiment. All par-

ticipants were Korean non-musicians. All participants had

normal hearing and provided written informed consent be-

fore starting the experiment.

Figure 1: Schematic view of data collection and analysis.

2.2 Stimuli

The music used in the experiment consisted of the

NCT127’s top 10 songs based on the YouTube Music rank-

ings as of December 26, 2023. The music was edited from

the beginning to the end of the first chorus. The length of

the edited audio varied between 60 to 92 seconds. Each

audio was edited to began with a 0.5 second fade-in and

ended with a 0.5 second fade-out. Then, volume normal-

ization was applied to each channel before being exported.

As a result, ten stereo audio files with a 44100Hz sampling

rate and 16-bit depth were created for the stimuli.

2.3 Experiment

The EEG experiment was conducted using the Com-

pumedics Neuroscan system. For EEG recordings, a

Synamp RT 64-channel amplifier and a 64-channel Quik-

Cap with sintered Ag/AgCl electrodes were used. The data

collection was carried out through the Curry 8 acquisition

software. EEG electrodes were placed in accordance with

the international 10-20 system, and EEG data were col-

lected at a sampling rate of 1000Hz across 64 channels.

The experiment was conducted using STIM2 software

in a soundproof room to eliminate noise interference. Par-

ticipants listened to each stimulus through insert earphone

while focusing on a cross in the center of the monitor. Each

stimulus was played once, and after listening to each, par-

ticipants rated their arousal, valence, familiarity, and pref-

erence using a 7-point scale. Participants were able to pro-

ceed to the next stimulus after completing their ratings.

There was a 5-second silence window before and after each

stimulus, and the stimuli were played in a randomized or-

der. An overall view of the data collection and analysis is
presented in Figure 1.

2.4 Analysis

2.4.1 EEG Preprocessing

The preprocessing of EEG data was conducted using MAT-

LAB with the EEGLAB toolbox [31]. From the 64 chan-

nels, the reference channels M1 and M2 were excluded.

The EEG data underwent a 1-55 Hz bandpass FIR fil-

ter, followed by epoching for each stimulus. Subsequent

steps included baseline removal and downsampling from

1000Hz to 125Hz. The data were re-referenced using
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the common average reference method, and all EEG data

were merged by each participant. Independent Component

Analysis (ICA) decomposition (using runamica15 func-

tion) was performed to remove artifacts [32]. Artifactual

components (eye, muscle, heart) were chosen by auto-

mated artifact IC classifier ’IClabel’ and additional artifac-

tual components were manually chosen [33]. Finally, the

EEG data were epoched by each stimulus.

2.4.2 Stimulus-response Correlation

To calculate SRC, we applied a hybrid encoding-decoding

technique, performing canonical correlation analysis to

maximize the correlation between temporally filtered stim-

uli (audio) and spatially filtered neural responses (EEG).

A detailed explanation of the method, including the com-

putation of spatial and temporal response functions for

each component, can be found in Dmochowski et al.’s pa-

per [26].

For SRC calculations, stimulus features were extracted

from each audio stimulus using MATLAB mirtoolbox

[34]. From audio features that Lange and Frieler explored

[18], only audio features permitting extraction in a time-

by-feature value manner, thus enabling SRC calculation,

were selected for investigation. This process resulted in
extracting ten audio features: sound envelope, root mean

square (RMS), spectral flux, zero-crossing rate, roughness,

spectral entropy, spectral centroid, spectral spread, spectral

rolloff, and spectral flatness. Each feature was extracted

using mirtoolbox functions—mirenvelope, mirrms, mir-

flux, mirzerocross, mirroughness, mirentropy, mircentroid,

mirspread, mirrolloff, mirflatness—and adjusted to a sam-

ple rate of 125Hz. If the sample number of audio features

slightly differed from the EEG data, they were adjusted to
match the length of the EEG data: longer samples were

cut, and shorter ones were zero-padded. Finally, all audio

features were z-scored for normalization.

The SRC calculation was performed using a modified

version of a publicly available MATLAB implementation

by Dmochowski 1 . SRCs were computed on a per-stimulus

basis for each participant. The regularization parameters

were set to 7 for both stimuli and EEG data. The represen-

tative SRC value for each stimulus and participant was de-

termined by summing the three components with the high-

est values. As a result, a total of 54 x 10 x 10 (participants

x songs x audio features) SRC values were computed.

2.4.3 Modeling Subjective Experience

Our analysis used linear mixed-effects models to exam-

ine the effects of individual audio features, both in isola-

tion and in conjunction with their corresponding SRC, on

subjective music listening experiences: arousal, valence,

familiarity, and preference. Separate models were con-

structed for each dependent variable, with each model in-

corporating a single audio feature as a fixed effect (AF

model). In the case of AFSRC models, compared to AF

model, SRC was added as a fixed effect. This approach

1 https://github.com/dmochow/SRC

allowed for a detailed examination of the influence of spe-

cific audio features and their neural correlates on listeners’

subjective experiences.

The general form of the linear mixed-effects model used

in this study is given by:

y = X β + Z γ + ϵ (1)

where y is the vector of observed dependent variables

(e.g., arousal, valence), X is the matrix of fixed effects,

β represents the coefficients for the fixed effects, Z is the

matrix for random effects, γ represents the coefficients for

the random effects, and ϵ is the error term.

We fitted two types of models for each dependent vari-

able:

For the audio feature only models, the general form of

the model can be represented as:

Yij = β0 + β1Xij + uj + ϵij (2)

where Yij is the dependent variable (arousal, valence,

familiarity, or preference) for the i-th song listened to by

the j-th participant, β0 is the intercept, β1 is the fixed effect

coefficient of the audio feature Xij , uj is the random effect

for the j-th participant, and ϵij is the error term.

For the models with audio feature and SRC as the fixed

effects, the equation expands to include the SRC:

Yij = β0 + β1Xij + β2Sij + uj + ϵij (3)

where β2 is the fixed effect coefficient of the SRC Sij

related to the audio feature Xij .

The fitting of models was carried out using the lme4

and lmerTest packages in R software. All AF and AF-

SRC models were cross-validated using leave-one-subject-

out cross-validation. To evaluate the significance of each

model, we compared it against a null model predicting the

same dependent variable using anova function. Specifi-

cally, we compared AF models with AFSRC models, again

using the anova function. When comparing models, it is
generally accepted that a difference of 2 or more in AIC

values indicates a meaningful difference in model perfor-

mance [35]. In our experiment results, we also categorized

a difference in AIC value of 1.9 as a marginal but meaning-

ful difference. This approach allowed us to quantitatively

determine the added value of incorporating EEG-derived

SRCs into the predictive models of subjective music lis-

tening experience.

3. RESULTS

3.1 Subjective Experience of Fans and non-Fans

Independent samples t-test were conducted to examine the

group differences between NCT127 fan group and non-fan

group while listening to 10 NCT songs in terms of arousal,

valence, familiarity, and preference (Figure 2).

For arousal, there was no significant difference between

the fan group (M = 4.54, SD = 1.38) and the non-fan group

(M = 4.98, SD = 0.75); t(25.812) = −1.320, p = .199.
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Figure 2: Average subjective ratings by fan and non-fan

group. Error bar indicates standard error. *** = p < .001

Valence scores were significantly higher for the fan

group (M = 5.75, SD = 0.84) compared to the non-fan

group (M = 4.26, SD = 0.97); t(52) = 5.665, p < .001,

indicating that fans experienced more positive emotions to-

wards NCT127 songs.

A significant difference in familiarity with the songs

was observed, with the fan group reporting much higher

familiarity (M = 6.89, SD = 0.28) than the non-fan group

(M = 3.37, SD = 1.61); t(36.199) = 12.425, p < .001.

Preference ratings were also significantly higher in the

fan group (M = 6.58, SD = 0.47) compared to the non-fan

group (M = 3.47, SD = 1.42); t(43.705) = 11.734, p <
.001. This result suggests a strong preference for NCT127

music among fans.

Overall, the results indicate that while fans and non-

fans do not differ significantly in arousal when listening

to NCT127 songs, fans report significantly more positive

valence, greater familiarity, and a stronger preference for

the NCT127 songs compared to non-fans.

3.2 Predicting Subjective Music Listening Experience

with Stimulus-response Correlation

Integrating SRC into the audio feature only models yielded

variable results depending on the subjective ratings and au-

dio features. Most importantly, for familiarity, SRC sig-

nificantly enhanced predictive power of the models across

various audio features (Figure 3C). Among ten audio fea-

tures, SRC correlated with eight audio features showed sig-

nificant improvement in predicting familiarity.

The prediction of arousal was enhanced from SRC cal-

culated with specific audio feature—spectral flux, spec-

tral centroid, spectral rolloff, and spectral flatness—while

roughness was found to negatively impact model perfor-

mance (Figure 3A). For valence, SRC correlated with spec-

tral flux improved the model performance, whereas sound

envelope, RMS, and zero-crossing rate increased the AIC

values by 1.9 or more, suggesting reduction in model per-

formance (Figure 3B). In models predicting preference,

the addition of SRC related to sound envelope, roughness,

spectral centroid, and spectral rolloff resulted in an in-

crease of 1.9 or more in the AIC values, indicating a de-

cline in performance (Figure 3D).

In our analysis of the significance of AF models by

comparison to null models, we observed distinct patterns

across subjective music listening experiences (Table 1).

Specifically, roughness and spectral flatness were key pre-

dictors for arousal, while sound envelope, RMS, spec-

tral flux, and zero-crossing rate significantly predicted va-

lence. Familiarity was well predicted by RMS, spectral

rolloff, and spectral flatness, and preference was effec-

tively predicted by sound envelope, RMS, spectral flux,

zero-crossing rate, spectral entropy, and spectral flatness.

Notably, the inclusion of SRC based on RMS, spectral

flux, zero-crossing rate, spectral entropy, and spectral flat-

ness did not significantly enhance the performance of mod-

els predicting preference (Figure 3D), yet these models

demonstrated a good fit using only audio features. For

detailed comparisons and summaries of all model fits and

cross-validation results, refer to the supplementary materi-

als 2 .

4. DISCUSSION

We compared subjective music listening experiences,

specifically focusing on arousal, valence, familiarity, and

preference when fans and non-fans of NCT127 listened

to the same NCT127 songs. The results showed that va-

lence, familiarity, and preference were significantly higher

in the fan group, while there was no significant difference

in arousal. Then, we investigated the combined effects of

audio features and SRC derived from EEG data on predict-

ing subjective music listening experiences. Through com-

paring linear mixed-effects models based solely on audio

features with those incorporating both audio features and

SRC, we revealed that integrating SRC with audio features

significantly enhances the predictive power for familiarity.

However, the influence of SRC on predictions of arousal

and valence showed variation depending on the correlated

audio features. The inclusion of few SRC decreased the

predictive power of preference.

The notably higher familiarity and preference ratings

observed in the NCT127 fan group were anticipated out-

comes, aligning with the criteria we set for participant re-

cruitment: participants in the fan group were required to
regularly listen to NCT127’s music, confirm their atten-

dance at an NCT127 event, and own NCT127-related mer-

chandise.

The absence of significant difference in arousal between

groups suggests that arousal ratings were predominantly

influenced by the acoustic characteristics of the music,

such as tempo and timbre, rather than personal traits [36].

This finding aligns with previous research indicating mini-

mal variability among individuals in arousal ratings for the

same musical piece. [37, 38].

Incorporating SRC alongside audio features enhances

the predictive accuracy for familiarity. SRC, derived

from a hybrid encoding-decoding technique, captures dis-

tributed representations in neural response [26]. Since

2 https://blues95.github.io/ISMIR2024/
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Figure 3: AIC values for each model. (A) Arousal (B) Valence (C) Familiarity (D) Preference. Asterisk symbols indicate

the significant improvement of the AFSRC model compared to AF model. Note that the scale of y-axis are different. * = p
< .05, ** = p < .01, *** = p < .001.

Table 1: Significance of AF models compared to null models. * = p < .05, ** = p < .01, *** = p < .001.

Audio Feature
Arousal Valence Familiarity Preference

AIC P r(> χ2) AIC P r(> χ2) AIC P r(> χ2) AIC P r(> χ2)

Envelope 1896.7 0.682 1834.1 0.029* 1954.3 0.628 1839.5 0.002**

RMS 1896.7 0.732 1825.3 <0.001*** 1943.7 0.001** 1841.8 0.007**

Flux 1896.8 0.841 1834.5 0.037* 1954.4 0.698 1844.9 0.041*

Zerocross 1896.8 0.925 1829.0 0.002** 1954.4 0.686 1842.5 0.010*

Roughness 1888.0 0.003** 1838.3 0.448 1954.4 0.734 1847.0 0.150

Entropy 1896.1 0.394 1837.9 0.327 1954.5 0.795 1843.6 0.019*

Centroid 1896.5 0.597 1838.5 0.535 1952.0 0.108 1847.2 0.170

Spread 1896.4 0.531 1835.1 0.052 1953.7 0.357 1846.8 0.127

Rolloff 1894.8 0.150 1838.7 0.751 1950.2 0.036* 1848.4 0.417

Flatness 1889.7 0.008** 1835.7 0.076 1942.6 <0.001*** 1842.3 0.009**

SRCs in this study were computed by correlating partic-

ular audio features with EEG responses, it is possible that

audio features of highly familiar music were more effec-

tively represented in neural responses. Familiar music is
known to enhance brain activity related to recurring mu-

sical patterns and structures [39]. Familiarity may foster

better recall of the song, leading to enhanced representa-

tion in the brain [40]. Thus, exposure to or familiarity with

stimuli may facilitate the processing of specific stimulus

features.

In a previous study examining the relationship between

audio features and neural responses, Weineck et al. used

temporal response function and reliable component anal-

ysis to calculate neural synchronization, employing meth-

ods distinct from our study [30]. They investigated how

synchronization varied with music familiarity, enjoyment,

and beat easiness. Their findings indicated that the in-

tensity of neural responses increased with familiar music.

While a direct comparison with our study is challenging

due to the methodological differences, both studies demon-

strate that music familiarity is reflected in the relationship

between stimulus (audio features) and response (EEG).

The impact of SRC on the predictions of arousal and va-

lence varied depending on the correlated audio features. In
the case of preference, the inclusion of few SRC decreased

the model performance, suggesting that emotions or pref-

erences evoked by music may be relatively less dependent

on how the audio features are represented in the brain com-

pared to familiarity. Contrary to our findings regarding

preference, Pandey et al. demonstrated that stronger SRCs

predict increased levels of enjoyment of music [41]. This

difference may be due to the selection of features for SRC

calculation. Our study used various audio features sepa-

rately, whereas they used the principal component of 18
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audio features for SRC calculation.

The fitting of AF models demonstrated that specific au-

dio features alone can predict subjective music listening

experiences. This aligns with the effectiveness of using

audio features for training deep learning models in prior

MER research.

There are few limitations of this work. First, the de-

mographic composition of our participants, particularly re-

garding gender distribution, may limit the generalizability

of our findings. The process of recruiting fans of a spe-

cific artist resulted in a gender imbalance among our par-

ticipants. Future research should aim to recruit a more

balanced participants to enhance the reliability of the re-

sults. Second, our analysis only used linear mixed-effects

models, making it challenging to generalize the signifi-

cance of specific audio features in relation to subjective

music listening experiences. Since the impact of audio fea-

tures and SRC on subjective experience may have an inher-

ent nonlinear characteristics, future studies should validate

the efficacy of SRC as a learning feature or predictor us-

ing a broader range of models, including deep learning-

based models capable of capturing nonlinearity. Finally,

we only considered ten low-level signal components as

audio features in our study. However, the correlations of

higher-level audio features, such as chromagrams and var-

ious rhythmic features, and EEG might contain unique in-

formation about the subjective music listening experience.

Therefore, future research should investigate the use of a
broader range of audio features, including higher-level au-

dio features.

5. CONCLUSION

This paper explores individual differences in music listen-

ing experiences among both fan and non-fan groups of the

K-pop idol group NCT127. We aim to demonstrate how

responses to the same NCT127 music vary in arousal, va-

lence, familiarity, and preference across different individ-

uals. Furthermore, we investigate the predictive capabil-

ity of EEG responses, particularly through SRC, regarding

subjective music listening experiences. By comparing lin-

ear mixed-effects models that solely rely on audio features

with those incorporating SRC, our findings underscore the

significant role of EEG data in improving the prediction

accuracy of music familiarity. This result suggests that us-

ing SRC could enable the prediction of individual music

listening experiences, which would be challenging using

audio features alone.
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