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ABSTRACT

Vocal concerts in Indian music are invariably associated

with the performers’ hand gesticulations that are believed

to convey emotion, music semantics as well as the individ-

ual style of the performers. Video recordings, with one or

more cameras, along with markerless human pose estima-

tion algorithms can be employed to capture such move-

ments, and thus potentially solve music information re-

trieval (MIR) queries. Nevertheless, off-the-shelf algo-

rithms are built for the most part for upright human con-

figurations contrasting with seated positions in Indian vo-

cal concerts and the upper body movements in the con-

text of performing music. Current state-of-the-art algo-

rithms are black box neural network based and this calls

for an investigation of the components of such algorithms.

Key decisions involve the choice of one or more cameras,

the choice of 2D or 3D features, and relevant parameters

such as confidence thresholds in common machine learn-

ing methods. In this paper, we quantify the increase in the

performance with three cameras on two music information

retrieval tasks. We offer insights for single and multi-view

processing of videos.

1. INTRODUCTION

Performances of vocal music in the Indian classical tradi-

tions involve the use of hand gestures that accompany the

singing. We therefore wish to perform the automated anal-

ysis of performances with audiovisual recordings. One or

more video cameras can be used to record musical perfor-

mances. Our goal in this work is to explore different Hu-

man Pose Estimation (HPE) methods for the computational

analysis of expressive movements of upper body limbs of

the vocalist.

Markerless Human Pose Estimation algorithms consti-

tute a novel technology that is available to investigate hand

gestures by looking at important keypoints such as wrists

and elbows. These algorithms are trained with artificial

deep neural networks on whole body movements, and oc-

casionally on music recordings. One important concern in
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Figure 1: We analyze seated vocalists with multiple cam-

eras. We identify singers purely based on hand gestures,

and predict stable notes.

the use of HPE in musical gesture studies is that the ges-

tures are typically expressive movements and not routine

motor movements such as walking, jumping, or perform-

ing yoga poses, the latter motor movements being the bulk

of the training data used in the development of HPE al-

gorithms. Indian classical music, in both Northern and

Southern traditions, is particularly rich in the use of ges-

tures invariably in a seated position.

Paschalidou [1] studied associations between sound and

“effort" in gesture in Dhrupad performances using an opti-

cal motion capture system. Although she finds correspon-

dences, generalizing to multiple singers was challenging.

Pearson and Pouw [2] look at vocal-gesture coupling in

Karnatak music performance; the Kinect camera and an

older, machine learning technique is technique is used for

obtaining keypoints. With the current deep-learning HPE

technology, Clayton et. al. [3,4] use OpenPose-based wrist

keypoints to classify raga and identify singers on a dataset

of multimodal Hindustani music recordings. Nadkarni et

al. [5] also use OpenPose to explore the correspondence

between vocal singing and gestures.

However, to the best of our knowledge, there has been

no work which uses multiple camera views for studying

gesture and vocal correspondence in music. While it is

natural to expect that more cameras help HPE, on a careful

examination of prior work, we see that the process of esti-

mating keypoints requires multiple design decisions. Sev-

eral options present themselves in terms of camera posi-

tion, the number of views, the keypoint detection method

and its parameters, and finally, methods for combining in-

formation from multiple camera views.
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1.1 Scope of this paper

In this paper, we choose 3 recent models for keypoint de-

tection and 3 different HPE methods to obtain information

from multiple views for the purposes of analyzing gestures.

We restrict our study to wrist and elbow of both hands since

they appear to be the ones most relevant when singers are

seated. We consider two MIR tasks.

Stable Note Prediction from Gestures This problem

was studied by Nadkarni et al. [5]. The authors define a

stable note as a region of at least 250 ms duration across

which the singer’s pitch lies within a 25 cent interval of the

mean intonation of the raga note.

Gesture-based Singer Identification In this task, the

goal is to identify the singer purely from gestures, i.e.,

without accessing the audio stream, or the face. Rahaim [6]

emphasises that gestures in music are not taught or re-

hearsed and therefore tend to be idiosyncratic. The pro-

posed MIR task attempts to validate the hypothesis that it

should be possible to identify the singer from the gesture

using 12s randomly chosen snips from the video. Similar

problems may be interesting in other MIR settings such as

a western music conductor’s motions when the face is not

visible, or in dance and musical performances where the

face is hopelessly masked. A gesture-based singer identi-

fication system can also be used to validate a digital avatar

system that is attempting to realistically mimic singers.

1.2 Contributions

Although our work is focused on the two tasks mentioned

above, we offer insights more generally useful in the HPE

analysis of multiview recordings of music performances.

• Every HPE algorithm provides confidence scores.

We suggest an approach to the choice of confidence

thresholds for fair comparisons across algorithms.

• Multiple cameras lend themselves to 3D reconstruc-

tion, and indeed a single camera can also be used in

recent state-of-the art methods to infer 3D. We sug-

gest that decision fusing 2D information from mul-

tiple cameras can be almost as competitive as using

3D reconstruction.

In term of concrete results for the two problems we re-

port the following:

1. By considering position coordinates and individual

coordinates of velocity and acceleration as features,

a systematic choice of confidence thresholds, and the

best HPE method, we improve the performance of

stable note prediction (from gestures) from ∼66%

[5] to ∼83% (single camera).

2. We report the accuracy of the best performing HPE

method for gesture-based singer identification (8-

way) to be ∼93%.

It is to be noted that the two MIR tasks are solved using

two different methods. The Stable Note problem uses the

classical machine learning method of SVM. There is no ar-

tificial neural network here. On the other hand, the gesture-

based singer identification problem uses a deep neural net-

work with an inception block.

The rest of the paper is organized as follows. In Sec. 2

we look at different keypoint detection methods, and the

reported performance. Sec. 3 describes the dataset used.

Task agnostic comparisons of HPE methods is discussed

in Sec. 4. Our two suggested methods of consuming infor-

mation from multiple cameras is described in Sec. 5. The

details of our experiments and the results are reported in

Sec. 6. A summary appears in Sec. 7.

2. BACKGROUND

We first briefly describe three popular HPE methods, one

[7] of which is proprietary. Later we describe the appli-

cations of these to areas in sports, and medicine in order

to understand current understanding of their usage. We are

not aware of the direct use of HPE for gesture understand-

ing except the ones mentioned in the introduction.

2.1 Human Pose Estimation Techniques

The pose of a human in HPE methods results in a stick

diagram (similar to Fig. 1) of important joints such as the

shoulder, wrist, elbow, hip, knee and so on from images

and videos. At the turn of the century, the joints, referred

to as keypoints were obtained with markers placed on dif-

ferent parts of the body — however this can only be set

up in controlled experimental settings and may also affect

the natural movement of the subject. Subsequently spe-

cialized cameras such as the Kinect was employed using

classical machine learning techniques. With the advent of

deep learning (DL), nowadays standard RGB cameras may

be employed for markerless pose estimation.

One of the first DL-based techniques is OpenPose [8]

which can identify 25 keypoints in terms of pixel coordi-

nates reported as (x, y). OpenPose is based on estimating

confidence heatmaps for keypoints and part affinity fields

(PAF) which are vector fields encoding the connection

across limbs between different joints. Since their method

estimates keypoints and parts directly from the image using

a multi-stage Convolutional Neural Network (CNN) their

method is called a bottom-up approach in the literature [9].

OpenPose is trained on the MP-II human dataset [10] and

the COCO [11] datasets. The MP-II dataset, with 25K im-

ages in 20 activity categories like cycling, running, violin

playing, etc., has both full body and seating position data.

The COCO dataset has 200K annotated images of 17 body

keypoints in both seated and full body positions.

Alternatively, approaches based on Mask R-CNN [12]

perform semantic segmentation of the image to identify

masks on people in the image. Detectron2 [13] uses this

mask to identify 17 keypoints for the body parts. As this

method uses an identified mask for the prediction of the

keypoints, this is often referred to as a top-down keypoint

estimation method. Detectron2 is trained on the COCO

dataset [11].
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Multiple calibrated cameras can use well understood

geometric computer vision methods of the 90s for depth

estimation from 2D keypoins, thus producing 3D coordi-

nates (x,y,z). Aniposelib [14] is a library which imple-

ments the 3D reconstruction from multiple synchronized

calibrated cameras. However, the 2D keypoints in Detec-

tron2 can be extended to 3D by a different deep learning

based model VideoPose3D [15]. Videopose3D uses two

DL models – a temporal dilated convolution for estimating

depth per person and a separate 3D trajectory model for

the center of the body viz. center-hip coordinate. Depth is

estimated as a distance with respect to the center-hip of the

body. Videopose3D is trained on Human 3.6M [16] and

Human Eva [17] datasets.

There is, however, a direct way of obtaining 3D pro-

vided the face of the image is visible. BlazePose [18]

identifies thirty-three 3D keypoints from single-view im-

ages. This model is trained on a custom dataset consisting

of 60K images and is used in the Mediapipe library [7].

2.2 HPE-based Applications

A number of studies (for example, [19]) in HPE have in-

volved evaluation of the accuracy of the HPE models by

comparing markerless pose estimation with marker based

pose estimation and shown that the Mean Absolute Error

to be less than 30mm on 80% of trials.

Markerless systems are evaluated in clinical settings by

Zhang et al. [20] and Mroz et al. [21] where they compare

Hyperpose [22] vs OpenPose and OpenPose vs BlazePose

(Mediapipe) respectively. Zhang et al. [20] establishes that

OpenPose is better than HyperPose using manual anno-

tations and then compares OpenPose with BlazePose via

Root Mean Squared Error (RMSE) and correlation metrics.

Their findings are that while BlazePose is faster, Open-

Pose provides for more accurate results in their setting.

A similar comparison study [23] between three models

– OpenPose, BlazePose and AlphaPose looks at a multi-

camera setting for estimating biomechanical parameters

like Ground Reaction Force (GRF). They observe that the

detection rate is dependent on the camera view and the

model. Also, they observe the BlazePose has lower de-

tection rate than the other models.

Mehdizadeh et al. [24] look at estimating gait variables

comparing OpenPose, AlphaPose [25] and Detectron and

do not find any differences between their correlation with

gait variables. Since all of the HPE models estimate a con-

fidence score, they choose a confidence threshold for each

model independently and discard estimates with a lower

confidence than threshold and interpolate the values lin-

early. They choose the confidence thresholds so that less

than 10% of frames were interpolated as a result.

Evaluating athlete anterior cruciate ligament (ACL) in-

jury risk in jumps is important for athletes and the studies

by Blanchard et. al [26] and Roygaga et al. [27] look at this

using a multi-view camera setting and OpenPose model for

HPE. They train models to identify if the jump is erroneous

on each view independently and also a fusion model com-

bining the individual models. Their choice of a confidence

threshold of 0.3 for OpenPose confidence is validated by

an ablation study across different thresholds. Their results

indicate that the task performance depends on the view and

the type of error. They drop frames below threshold of 0.3

but do not interpolate dropped frames.

2.3 Synopsis

All of these studies bring us to some conclusions which

motivate our research in MIR space. First, we are aware of

a variety of techniques and approaches for HPE estimation

and 3D reconstruction. Second, markerless pose estima-

tion models have acceptable accuracy This is necessary in

a musical setting since performers may not be comfortable

using markers. Third, we realize the possible benefits of

doing multi-view reconstruction in downstream tasks. We

understand that performance on any downstream task de-

pends on the view and model of choice. Finally, we are

aware of the importance of the choice of thresholds in re-

jecting or retaining HPE estimates and how these are de-

pendent on the model and view in question.

3. DATASET

We used the dataset from our earlier study [5]. The de-

tails of the dataset, data processing and links to download

the data are available on github. 1 The dataset consists

of 11 professional singers singing 2 alaps 2 each of 9 ra-

gas. Recordings are captured by 3 synchronized cameras.

However, we discovered that the recordings for 3 of the

11 singers were done with uncalibrated cameras and thus,

since we are interested in 3D information, Anipose [14]

cannot be used. Therefore we base our MIR tasks de-

scribed in Sec. 1.1 on only the remaining 8 singers. We

are left with 143 recordings with about 7 hours 10 mins of

recording. These recordings are at 24 fps with a resolution

of 1920× 1080. The angle between the front and the right

camera is approximately 55 degrees and the front and left

camera is approximately 47 degrees. We refer to left and

right camera based on the singer’s point of view. Fig. 1

shows a sample of the singer in the three views.

4. TASK-AGNOSTIC COMPARISONS

We choose the three HPE models because they provide a

mix of bottom-up (OpenPose), top-down (Detectron) sin-

gle view 2D keypoint estimation as well as single view

3D keypoint estimation (Mediapipe). In addition, our re-

construction techniques involve both frame-wise geomet-

ric reconstruction via Anipose [14] as well as DL-based

methods (Videopose3D [15]) which uses information from

neighbouring frames. Thus our methods of estimation and

reconstruction are relatively independent of each other.

4.1 Confidence Threshold

All HPE models provide a confidence score for each of

the estimated keypoints and it is conventional to choose

1 Dataset github
2 Alap is the unmetered introduction in raga performances.
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a threshold for the confidence score to ignore predictions

with a lower confidence score. Various previous studies

[5, 27–29] have used a 0.3 threshold for OpenPose. How-

ever, we find that this method is not based on the actual

data distribution and also cannot be extended to other HPE

models like Detectron and Mediapipe. Due to this, we ap-

proach the problem similar to [24]. In every frame, if any

of the left and right wrist and elbow keypoints have a con-

fidence score to be less than some value x then we remove

the position coordinate in question and interpolate it from

the available neighbouring frames. For each model-view

combination we change the threshold from 0 to 1 in steps

of 0.01 and, in line with [24], choose the threshold so that

no more than 10% of frames are dropped in that model-

view combination. The corresponding obtained confidence

thresholds are given in Tab. 2 and used for all our experi-

ments. Abbreviations used in this paper are in Tab. 1.

OpenPose - OP2 Detectron - DE2 Mediapipe - MP2

Aniposelib - AP3 Videopose3D - VP3 Mediapipe3D - MP3

Table 1: Abbreviations for the various HPE techniques.

View OP2 DE2 MP3

Front 0.49 0.17 0.27

Left 0.20 0.10 0.01

Right 0.38 0.15 0.12

Table 2: Confidence values obtained when the maximum

number of interpolated frames is 10%.

4.1.1 Observations

We observe that thresholds for the left view are lower in

all the 3 HPE models and this indicates that the keypoints

are predicted with lower confidence for this view. The ob-

tained threshold is particularly low for Mediapipe. Also,

we observe that thresholds for OpenPose are higher than

the other models indicating that OpenPose predicts key-

points with a higher confidence score. If we use the pre-

viously reported threshold of 0.3 for OpenPose then we

would have 3.67%, 15.49% and 7.23% of interpolated

frames in front, left and right views respectively. How-

ever, as seen from Tab. 5, there is no particular advantage

of using the previous reported confidence value of 0.3 with

its performance lower than what we have in Tab. 4.

4.2 Correspondence between models

Given that the models are attempting to predict the same

joints, we expect that that the predictions would be close

to each other in the pixel coordinate system. To verify this

we consider the Euclidean distance of the predicted key-

points between 2 models in a pair in every frame. We ig-

nore frames where any of the four keypoints have a confi-

dence less than the corresponding threshold as defined in

Tab. 2. The results are presented in Fig. 2.

4.2.1 Observations

We observe that the three models correspond well to each

other in the front view (noting that the dimensions of the

frame to be 1920× 1080). However, in other views, while

OpenPose and Detectron predictions maintain pair-wise

consistency, the same cannot be said for Mediapipe. We re-

peat these experiments by choosing thresholds correspond-

ing to 5% and 15% interpolated frames and the same trends

hold true. These trends also hold when we study the pair-

wise correlations (instead of RMSE distances). This analy-

sis, however, can only say that the models concur with each

other in the front view but not so in the other views with

least concurrence in the left view. We cannot conclude that

one model is better than the other based on this analysis.

A partial intuition for these results is that the left hand ob-

scures the right hand in the left view, and most singers are

right-handed.

5. MULTIPLE CAMERAS

In this section, we provide the details of the use of multiple

cameras for the downstream MIR tasks. Fig. 3 shows the

algorithms we use to get 2D and 3D coordinates.

5.1 Reconstruction

Reconstruction involves the combination of the data from

multiple views to estimate a depth-coordinate either via

classical computer vision [14] or DL. The z-coordinate is

measured in distance from the camera in geometric re-

construction. On the other hand, with DL the depth is

estimated to be a distance with respect to the center hip

with larger values indicating further distance from the cen-

ter. In the recording setting, a higher value of the esti-

mated z-coordinate (e.g., for an outstretched hand) would

mean closer to the camera. Mediapipe which predicts the

z-coordinate from a single view uses a similar definition

of the z-coordinate. Reconstruction using both Aniposelib

[14] and Videopose3D can be done using any of the cam-

eras as reference view and information from other cameras

used for reconstruction. The results for the downstream

tasks can be different.

5.2 Model Fusion

The second method for consuming data from multiple

views in a machine learning based MIR setting is to have

the downstream task (e.g. classifiers) trained individually

on each view and then use the probability predictions of

these classifiers as an input to a further classifier. This

can be done based on classifiers on three sets (each us-

ing 2D data) in which case this will be an alternative to

reconstruction. On the other hand, one can use classifiers

trained on three reference views using 3D reconstructed

data (anipose, videopose3D) or predicted data (e.g. Medi-

apipe), and then use their probability outputs as an input to

a further model. Both of these approaches are examples of

multi-view fusion which exploit the complementary infor-

mation present in different views.
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(a) Left view (b) Front view (c) Right view

Figure 2: The average Euclidean distance in pixel coordinates different keypoints for pairwise HPE techniques. Non-

interpolated frames considered are shown in parenthesis and four joints are considered. See Table 1 for the legend.

Figure 3: The three HPE methods (see Table 1) in this

paper. Left and Right are views defined with respect to the

singer.

6. EXPERIMENT DETAILS

6.1 Kinematic Features

The keypoint detection methods algorithms give us the x

and y pixel coordinates for the keypoints and the 3D esti-

mation gives us the z-coordinate to some scale. We linearly

interpolate keypoints in frames that having confidence lev-

els lower than the thresholds defined in Tab. 2. We use

a low-pass Savitzky-Golay filter [30] to remove any jitter.

We next interpolate the gesture data from the video frame

rate to 10 ms sampling interval. We use z-score normaliza-

tion for each keypoint by considering the mean and stan-

dard deviation for that keypoint and that coordinate across

all frames of the recording. For repeatability, following [5],

we estimate velocity and acceleration on each coordinate

axis by a 101-point biphasic filter to get a smooth velocity

and acceleration profile. We re-use the parameters of the

biphasic filter defined in the supplementary link provided

in [5].

6.2 Stable Note Detection

Although we replicate from [5] the stable note identifica-

tion algorithm on audio, we use different features for the

gesture classification. Instead of using the velocity and

acceleration vector magnitudes, we consider the position,

velocity and acceleration along each coordinate axis inde-

pendently. We thus have 9 kinematic features per wrist.

As in [5], we only consider stable and non-stable segments

which are at least of 500 ms duration. Using this for the

8 singers, we have 15312 segments with 40.65% of them

as stable notes. We use the mean and standard deviation

per segment of each of the kinematic features for both

wrists as input to our classifier. Thus, for models trained

on 3D data (aniposelib, Videopose3d, Mediapipe) we have

9 × 2 × 2 = 36 features considering both wrists. For

models trained on 2D data (aniposelib, Videopose3d, Me-

diapipe2D) we have 6 × 2 × 2 = 24 features. With these

features, we train a SVM classifier per singer using 10-fold

cross-validation and report the mean cross-validation accu-

racy. (Note that Mediapipe outputs 3D coordinates but we

drop the z-coordinate in the experiments for comparison of

2D results.)

6.3 Gesture-based Singer Identification

We use randomly chosen 12s splits from the video in an

attempt to identify the singer. We use a time series for the

position, velocity and acceleration (PVA) features along

each coordinate axis at (each) 10ms time interval for both

wrists and elbows. Thus we have 36 features considering

wrist and elbow for models using 3D data and 24 features

for models using 2D data. We keep aside data for 3 ragas

as test data (4103 samples), and train on the rest of the data

using a random 80–20 train–validation split. We use a deep

neural network consisting of convolutional layers followed

by a 2D inception block as shown in Fig. 3 of [3]. We find

best hyperparameters separately for each HPE technique,

retrain the model with best hyperparameters and then re-

port the results on the test set.

6.4 Fusion models

In the fusion models (for both 2D and 3D classifiers) for

the stable note classifier we use the predicted probability

for the stable note classifier. Thus we have 3 features in

the fusion classifier and we train per singer using 10-fold

cross-validation a classification model by a hyperparame-

ter choice over logistic regression, random forests and sup-

port vector machines. We report the average of the mean

per-singer cross-validation F1-score.
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For the fusion models (both 2D and 3D) for the gesture-

based identification of 8 singers, we take the softmax out-

put of the final layer of the classifier from all views. Thus

we have 24 features in the fusion classifier and we train a

classifier by 10 fold hyperparameter tuning across logistic

regression, random forests and support vector machines.

Our training data for the fusion model consists of the soft-

max predictions on the train and val data of the neural

network. We report the accuracy using features generated

from the excerpts corresponding to the 3 held-out ragas.

6.5 Results

The results of the stable note detection appears at the first

row of Tab. 3. We report the best result across camera

views (or reference view for 3D reconstruction) for the

HPE method. We note that the performance for the 2D

models, MP2 performs better than either OP2 or DE2.

Moving to 3D coordinates, we see a significant improve-

ment in AP3 and VP3.

The results of the (pure) gesture-based singer identifica-

tion classifier is given in the second row of Tab. 3. We re-

port the best result across camera views (or reference view

in the case of 3D). The classification accuracies, compared

to a chance accuracy of 12.5%, indicate (given gestures

are idiosyncratically singer-specific) that the HPE methods

are reliable. We observe to our surprise that the method

of classical computer vision (AP3) is the best performing

model.

2D 3D

OP2 DE2 MP2 AP3 VP3 MP3

StableNote 77.7 78.6 83.0 78.6∗ 82.5∗ 83.5

SingerID 83.2 81.9 79.6 83.3 81.4 82.9∗

Table 3: F1-score (%) for stable note detection and ac-

curacy (%) for gesture-based singer identification.star(*)

indicates significant (p<0.05) difference between 2D and

3D, and bold indicates best result for a task in correspond-

ing methods of 2D/3D.

The first row of Tab. 4 shows the results of decision

fusion models based on the corresponding models across

views for the stable note task. The results show that 2D

fusion gives us comparable performance to reconstruction.

The results of the models using fusion of classifiers across

views are present in the second row of Tab. 4 for the

gesture-based singer identification task. We see that when

we use fusion instead of reconstruction, the results are

much better with every possible technique for both MIR

tasks. Accordingly we recommend this method. All fusion

results are statistically significantly better than the corre-

sponding best single view results in Tab. 3.

6.5.1 Ablation Study of Thresholds

Tab. 5 has the OpenPose results using a constant thresh-

old of 0.3 for all views and the Anipsoselib result tasks.

Tab. 6 has the results ablation study for various levels of

interpolated frames.

The results show that our chosen threshold has com-

parable performance with default 0.3 threshold but our

2D-Fusion 3D-Fusion

OP2 DE2 MP2 AP3 VP3 MP3

StableNote 82.0† 82.1 83.9 82.0 85.0∗ 86.6∗

Singer-ID 91.4† 93.0† 92.3† 93.3∗ 93.6 92.7

Table 4: Fusion based results. Values in %. Bold and

star have same meaning as Tab. 3. Values with dagger (†)

indicate the 2D-fusion model is better (p< 0.05) than the

corresponding 3D model in Tab. 3

method is extensible to other HPE models. Results for

5%,10% and 20% interpolated frames are very similar.

However if we set thresholds corresponding to 30% inter-

polated frames the performance is poorer.

OP2-Front OP2-Left OP2-Right AP3

Stable Note 77.1 77.8 77.5 78.2

Singer ID 80.8 81.5 82.6 82.3

Table 5: Performance (in %) of OP2 for all views and AP3

using the confidence threshold of 0.3 used in the literature.

Interpolated % 2D Models 3D Models

OP2 DE2 MP2 AP3 VP3 MP3

5 78.2 78.6 83.0 78.0 82.6 83.0

10 77.7 78.6 83.0 78.1 82.5 83.0

20 77.1 78.5 82.9 77.4 82.2 82.9

30 75.1 74.8 80.5 75.4 79.0 80.6

Table 6: F1-score (%) across HPE techniques.

7. SUMMARY AND CONCLUSION

Given the importance of reliable joint pose estimation in

gesture analysis, we investigated a set of distinct available

approaches to the keypoint detection of wrists and elbows

for an application of expressive hand movements in two

MIR tasks. We showed that the different ways of using

multiple camera views, in terms of the single-view pose

estimation method and the manner of combining multiple

views, can influence task performance significantly. While

3D reconstruction affords a complete description of the

gesture movements, the fusion of multiple 2D information

is competitive. The fusion of multiple 3D representations

is seen to bring in further benefits. The superiority of fu-

sion results over single view is established via statistical

significance. The two MIR tasks involve the use of dis-

tinctly different machine learning methods (classical SVM,

and recent deep-learning) and involve scenes where the ac-

tion is only in the upper body, providing evidence for the

use modern HPE methods. We expect the outcomes of this

study therefore to be useful in any application of expres-

sive movement analysis involving upper-body limbs.

Future work would involve the fine-tuning of HPE al-

gorithms with a set of manually labelled keypoints to see

whether the optimization with respect to upper body key-

points helps improve the estimates.
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