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ABSTRACT

Previous research contributions on blind lossy compres-

sion identification report near perfect performance metrics

on their test set, across a variety of codecs and bit rates.

However, we show that such results can be deceptive and

may not accurately represent true ability of the system to

tackle the task at hand. In this article, we present an in-

vestigation into the robustness and generalisation capabil-

ity of a lossy audio identification model. Our contribu-

tions are as follows. (1) We show the lack of robustness to

codec parameter variations of a model equivalent to prior

art. In particular, when naively training a lossy compres-

sion detection model on a dataset of music recordings pro-

cessed with a range of codecs and their lossless counter-

parts, we obtain near perfect performance metrics on the

held-out test set, but severely degraded performance on

lossy tracks produced with codec parameters not seen in

training. (2) We propose and show the effectiveness of an

improved training strategy to significantly increase the ro-

bustness and generalisation capability of the model beyond

codec configurations seen during training. Namely we ap-

ply a random mask to the input spectrogram to encourage

the model not to rely solely on the training set’s codec cut-

off frequency.

1. INTRODUCTION

Audio codecs can be roughly categorized into two cate-

gories: lossless and lossy. Lossless means that an exact

preservation of the signal is guaranteed by the codec. In

other words, the signal resulting from encoding and decod-

ing is exactly identical to the original. In contrast, lossy en-

coding means that some of the signal is lost in the encoding

and decoding process. In other words, the signal resulting

from encoding and decoding is not exactly identical to the

original signal.

Popular lossy audio codecs like MP3 [1], Ogg Vorbis [2]

or AAC [3] are known as "perceptual" codecs because they

rely on models of human auditory cognition to prioritise

the deletion of parts of the audio signal that have the least
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perceptual impact on human listeners. Despite the sig-

nal degradation that they result in, perceptual lossy codecs

can achieve much greater compression ratios than lossless

codecs, and are therefore well suited for applications where

data bandwidth is limited. For example, they have been in-

strumental in enabling music streaming over networks with

limited bandwidth.

Digital audio codecs are readily available and are inte-

grated into many widespread professional and consumer

tools such as Digital Audio Workstations, software li-

braries, digital music players etc., which make convert-

ing an audio file from one format to another nowadays

extremely easy and accessible to anyone. As a result it

is easy to mistakenly encode a source audio signal with a

lossy codec, which degrades the signal, and then decode it

back into a lossless file container. This process may create

the illusion that a lossless file container (e.g. WAV) con-

tains unimpaired audio when it does in fact contain lossy-

compressed audio.

Guaranteeing audio integrity is essential in many ap-

plied scenarios such as large scale music distribution or

archiving. Because the aforementioned case of lossy audio

disguised as a lossless file would violate this guarantee,

there is a need to automatically detect such occurrences.

Identification of audio that has been compressed with a

lossy codec is a valuable component of quality assurance

processes, which form an important part of many modern

musical audio content pipelines.

Contributions. In this paper, we present an investi-

gation into the robustness and generalisation capability of

a lossy audio identification model. We show that when

we naively train a lossy compression detection model on

a dataset of music recordings processed with a range of

codecs and their lossless counterparts, we obtain near per-

fect performance metrics on the held-out test set. However,

we obtain severely degraded performance on lossy tracks

produced with codec parameters not seen in training. We

also propose a new training schema in which we randomly

mask the input spectrogram to improve the model’s robust-

ness. We show that our approach significantly increases

the robustness and generalisation capability of the model

beyond codec configurations seen during training.

2. BACKGROUND

In the following sections, we will first provide a high level

overview of lossy audio codecs (Section 2.1). Next, in Sec-
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Figure 1. Basic block diagram of a perceptual audio coder.

After spectral decomposition, a psychoacoustic model in-

forms the quantization of individual spectral components.

tion 2.2, related work on lossy audio identification is dis-

cussed. Finally, in Section 2.3, we briefly present related

work in MIR on robustness evaluation.

2.1 Lossy Codecs

Figure 1 shows a basic block diagram with the common

modules of a perceptual audio coder. The process of en-

coding an audio signal with a lossy codec is commonly

as follows. First, the original uncompressed (often pulse

code modulated - PCM) signal is transformed into a time-

frequency representation. This is typically done using

a modified discrete cosine transform (MDCT), but many

other transforms have been proposed [4]. Commonly used

signal block for the spectral decomposition are between

2ms and 50ms. The components of the spectral decompo-

sition are then individually quantized. The quantization of

the spectral components is controlled by a psychoacoustic

model that describes the time and frequency masking prop-

erties of the human auditory system. Auditory masking is

a process where one sound (maskee) becomes inaudible in

the presence of another sound (mask) [5].

Auditory masking can occur in the time domain (tempo-

ral masking) or in the frequency domain (frequency mask-

ing). The quantization controlled by the psychoacoustic

model effectively controls which spectral coefficients will

be removed, resulting in spectral band rupture and holes in

spectrograms, as observed in Figure 2. After quantization,

Huffman coding (or some other form of entropy coding)

is applied to remove or reduce the redundancy in the sig-

nal [6]. The bit rate of a codec effectively controls both the

size and the perceptual quality of the audio. A low bit rate

(like 128 kbps) will produce a small storage footprint, but

generally worse perceptual quality compared to a higher

bit rate (like 320 kbps). For more detail on audio codecs

and standards, we refer to [4].

2.2 Lossy Compression Identification

In previous research, multiple blind lossy compression

identification models have been proposed. These can

broadly be categorized into two approaches. One approach

is to estimate codec parameters from the audio signal, to

determine factors such as the decoder framing grid, fil-

ter bank parameters and/or quantization information. This

Figure 2. Spectrograms of examples of a lossless (left)

and lossy version of the same audio excerpt (right). The

latter is compressed with the LIBFDK_AAC codec at 128

kbps bit rate. The version on the right shows the hallmarks

of lossy compression: removal of FFT coefficients, holes in

the spectrum, and general loss of higher frequency content.

type of approach has been successfully applied for indi-

vidual codecs like AAC [7], MP3 [8–10]. Although this

type of approach can be very effective, it is computation-

ally very expensive, especially when multiple codecs are

considered.

The second method utilizes audio quality measures to

determine whether the audio is lossy. One effect of lossy

audio compression is the introduction of “holes” in the

spectrogram, especially right after louder transients. This

is the result of the fact that spectral coefficients can be re-

moved when they are perceptually masked by other coef-

ficients. Therefore, most approaches present some form of

“hole-detection“, such as estimating the number of inac-

tive spectral coefficients (e.g. [9,11]) or computing spectral

fluctuations [12–15].

In [16], Hennequin et al. presented a method for de-

tecting lossy compression based on a convolutional neural

network CNN applied to audio spectrograms. Similarly, Se-

ichter et al. in [17] also proposed a CNN approach for AAC

encoding detection and bit rate estimation. All research

contributions on lossy compression identification almost

uniformly report near-perfect performance metrics on their

test set, across a variety of codecs and bit rates.

However, most codecs can be configured with parame-

ters other than the bitrate too, such as a cutoff frequency

that controls the amount of higher frequencies that will be

preserved. AAC for example has a default cutoff frequency

of around 17kHz [18] for constant bit rates of 96 kbps per

channel and above, which means that the bandwidth of the

encoder is set to 0 - 17kHz. None of the previous research

explores what happens when this parameter is changed.

In this paper we show that a model naively trained on

default parameters may not efficiently learn to discrimi-

nate lossy audio encoded with different parameters and we

analyse what happens when varying the cutoff frequency

as an example. Therefore, the good results previously re-

ported must be taken with a pinch of salt.
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2.3 Robustness Evaluation in Music Information

Retrieval

Several studies in music information retrieval have shown

that models can seemingly achieve very high evaluation

performance, while further research reveals that what those

models have learned is some confound with the ground

truth dataset [19]. For example, in a research into the ro-

bustness of genre classification models, Sturm showed that

although these systems might have high mean classifica-

tion accuracies, they don’t actually reflect the underlying

properties of the genre [20]. Furthermore, it is shown that

by filtering the audio signal in a minimal way, the mod-

els produce radically different genre predictions. For a

larger overview of music adversaries in music information

retrieval research, we refer to [19]. Bob Sturm in [21]

introduced the term “horse” 1 to refer to system appear-

ing capable of achieving high evaluation performance, but

actually working by using irrelevant characteristics (con-

founds), and therefore not actually addressing the problem

it appears to be solving.

3. METHOD

In the following sections, we will first describe our model

setup (in Section 3.1), then our dataset (in Section 3.2) and

finally our proposed evaluation methods (in Section 3.3).

3.1 Network Architecture

For the detection of lossy audio we propose a model (vi-

sualized in Figure 3) that can be divided into four parts:

a spectrogram + random mask module, 4 convolutional

blocks, an lstm block and a classification head made of

a single dense layer. The architecture is partly inspired by

prior work by Hennequin et al. in [16] and Seichter et al.

in [17]. In the following sections, we will describe each

part in detail.

The model takes as input 2 seconds of raw monophonic

audio signal sampled at 44.1 kHz, which is passed to a

torchaudio spectrogram layer that produces a magnitude

spectrogram with 1024 FFT coefficients [22].

Random mask. A random mask is optionally applied

to the input spectrogram. This is achieved by uniformly

randomly sampling a cutoff frequency between 14 kHz and

the Nyquist frequency of the sample, and nulling all fft co-

efficients above that frequency by setting them to the min-

imum of the input spectrogram. A similar approach called

Specaugment was proposed by Park et al. in [23].

In our first experiment (as described in Section 4.1) this

layer is not used, and the spectrogram is directly fed to the

convolutional blocks. However, in the second experiment

(as described in Section 4.2), we use this random mask

layer with a different random cutoff frequency for every

training example.

CNN. Each of the CNN blocks consist of four layers: a

2D convolutional layer with a kernel size of (3,3), a ReLU

layer, a batch normalization layer and a 2D max-pooling

1 A nod to the Clever Hans horse, see https://en.wikipedia.
org/wiki/Clever_Hans
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Figure 3. Proposed model for the detection of lossy au-

dio Our model takes as input 2 seconds of audio, which is

passed to a torchaudio spectrogram layer (in green). De-

pending on the experiment, the spectrogram is then passed

to a masking layer (in blue), which simulates low-pass fil-

tering. The spectrogram is then passed to four convolu-

tional modules (in pink). We use a bi-directional LSTM (in

yellow) for dimensionality reduction. We classify the au-

dio into lossy or lossless in the final model head.

layer. The max pooling size for each block is (2,2), with

the exception of the last block, which is (2,4).

LSTM. We connect the CNN to a long short-term mem-

ory (LSTM) block for two reasons. Firstly, we want to ex-

ploit possible sequential properties of the CNN output, and

secondly, for dimensionality reduction for the last (dense)

part of the network. We use a bidirectional LSTM with two

layers of size 128.

Classification head. Our model’s lossy/lossless clas-

sification head is connected to the LSTM output with a

dense layer of size 256 (2x 128 because our LSTM is bi-

directional). The classification head has a softmax activa-

tion and 2 outputs that model the probability of the exam-

ple being lossless or lossy.

Training. We back-propagate our model on the binary

cross entropy of the classification head and the ground

truth. For each audio track, we take a 2-second random

crop at training time.

3.2 Datasets

For our experiments, we sample 10k tracks of lossless 16

bit, 44.1kHz WAV files from a large private library of com-

mercial music. From these tracks, we create two datasets.

3.2.1 DS1.

For the first dataset we encode each track with a codec ran-

domly chosen among LIBMP3LAME (MP3), LIBFDK_AAC

(AAC) and LIBVORBIS (OGG), with bit rate also randomly

chosen among 128, 256 and 320 kbps. Each encoded file

is then decoded back into a 16bit, 44.1 kHz WAV file that

is used as input to the model. All the encoding/decoding is

done using ffmpeg [24]. Between lossless and lossy tracks,

the dataset comprises of 20k tracks.

3.2.2 DS2.

For the second dataset, we use the same original tracks

as were used to create DS1. We also use the same codec

parameters, but vary the cutoff frequency of the codecs,

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

809



Codec LIBFDK_AAC LIBVORBIS LIBMP3LAME Lossless Mean

Bit rate 128k 256k 320k 128k 256k 320k 128k 256k 320k — —

DS1 100.0 98.91 100.0 100.0 100.0 100.0 100.0 100.0 98.37 99.88 99.79

DS2 31.38 28.96 24.74 98.91 93.16 86.7 80.63 68.45 60.87 99.88 81.85

Table 1. Accuracy of evaluating the model without random mask on a dataset without (DS1) and with cutoff frequency

variations (DS2). Varying the cutoff parameter in the codec greatly degrades model results.

choosing among 14, 16, 18 and 20 kHz. DS1 and DS2,

therefore, differ only on the lossy versions obtained for

each track. We use the same random 70/10/20 split for

training/validation/testing for both datasets. All our exper-

iments are run using DS1 for training and validation. Eval-

uation is done on DS1 (cf. Sec. 4.1) or DS2 (Sec. 4.2).

3.3 Evaluation

We evaluate the performance of our lossy/lossless detec-

tion model in three ways. Firstly, we provide quantita-

tive evaluation and report the model accuracy. Secondly,

we inspect saliency maps of the CNN blocks of our model

to gain qualitative insight into what signal properties the

model is sensitive to. Finally, we also inspect the errors

of our model in detail to help us assess the effectiveness

our proposed method to make our model more robust, and

identify avenues for future work.

4. EXPERIMENTS & RESULTS

In this section we first describe our experiments and report

our results on a naively trained lossy/lossless audio detec-

tion model (Section 4.1). After an analysis of our results,

we report on a more robust variation of our model in Sec-

tion 4.2, and an analysis of errors in Section 4.3.

4.1 Experiment 1: Naive Model Training

In our first experiment, we train our model on DS1. For

each track in our test set, we extract 2-second windows of

raw audio with 50% overlap. For each window, we per-

form a forward pass through our trained network, and col-

lect the output of the classification head. We take the mean

of all windowed local model outputs as the global output

per track.

4.1.1 Results

In line with previous research (e.g. [16, 17]), we find near-

perfect performance on lossy/lossless audio detection of

audio with default codec settings. The top row of Table 1

shows the results broken down by codec and bit rate for

DS1. We obtain near-perfect results per bit rate/code com-

bination. On average, we obtain 99.79% accuracy across

all codecs and lossless files.

However, if we slightly tweak the codec parameters at

test time (i.e. we test our model on DS2) the performance

drops significantly. The bottom row of Table 1 shows the

results of evaluating the model on the dataset with cutoff

frequency variations. The results show much poorer results

for the lossy tracks across all codec/bit rate combinations.

Specifically, we find a big drop in accuracy of around 70

percentage points for the LIBFDK_AAC codec and around

30 percentage points for the MP3 codec. The LIBVORBIS is

less impacted, but is still significantly impacted by around

10 percentage points.

4.1.2 Analysis

To get a better sense of what our model has learned, we

turn towards a feature analysis of the CNN part of the net-

work. When inspecting the spectrogram of a potentially

lossy file with the naked eye, one of the most striking as-

pects is the nulling of coefficients, resulting in “holes” in

the spectrogram. We expected the convolutional part of

the network to pick up on those, and to design features that

capture this phenomenon.

However, when we visualize saliency maps from our

network, we find a different pattern (see Figure 4, top row).

It seems that the model is more concerned with the cut-

off frequency of the lossy audio than with the holes in the

spectrogram. Although the cutoff frequency is a useful fea-

ture, by itself it is neither necessary nor sufficient to de-

termine whether an audio signal has been encoded with a

lossy codec.

Table 2 shows the results of the model per cutoff fre-

quency, in the columns marked with ‘No’. Here again we

see that most cutoff frequency variations are severely un-

derperforming when compared to the previous test dataset.

The model performs best at a cutoff frequency of 16

kHz. This can be explained by the fact that this is the de-

fault cutoff frequency of LIBVORBIS, which is therefore

not affected by this transformation. In the next section, we

adapt the model to be robust against this cutoff effect.

4.2 Experiment 2: Creating a Robust Model

In order to increase the model’s robustness against the

lossy codec’s cutoff frequency, we present a second ex-

periment where we randomly mask the upper end of the

spectrum. The mask, defined in 3.1, is applied to all input

files.

The application of this random mask is intended to force

the model not to solely rely on the codec cutoff frequency

to make a prediction, and instead also rely on other signal

degradations included by codecs, such as "holes" in the

spectrogram. A fixed mask at a specific cutoff frequency

would have meant throwing away the information given

by the spectral rolloff entirely and this would have been

suboptimal in the opposite direction.

We train this model on DS1 and evaluate on DS2.
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LIBFDK_AAC LIBVORBIS LIBMP3LAME 128k 256k 320k MEAN

Cutoff No Mask No Mask No Mask No Mask No Mask No Mask No Mask

14 kHz 24.1 81.0 100.0 100.0 76.9 100.0 90.4 82.6 53.7 100.0 49.3 97.8 65.9 93.3

16 kHz 83.9 98.4 100.0 100.0 98.6 100.0 88.2 100.0 97.0 97.7 98.6 100.0 94.6 99.5

18 kHz 0.7 86.7 66.9 100.0 25.3 100.0 50.0 96.2 28.2 94.1 12.4 94.8 29.5 95.6

20 kHz 11.1 96.5 100.0 100.0 82.9 100.0 46.2 100.0 76.1 97.2 70.2 100.0 65.1 98.9

MEAN 28.3 90.1 92.9 100.0 70.1 100.0 70.1 93.6 64.1 97.9 57.3 98.8 63.7 96.8

Table 2. Accuracy (in percentage points) of evaluating our models without (No) and with (Mask) random mask on DS2,

per codec and bit rate, for varying cutoff frequency. Lossless accuracy is 99.9% for No and 99.8% for Mask.

Figure 4. Saliency maps from exposing a model trained

without (top) and with (bottom) random mask to lossy au-

dio. The model with random mask shows more activation

in the holes of the spectrogram without losing any of the

activations at the cutoff frequency.

4.2.1 Results

Table 2 shows the results obtained for the model trained

with the random mask on DS1 and evaluated on DS2. We

observe good classification results on average, 96.8% on

lossy files and 99.8% on lossless files. Overall, we ob-

tain 98.4% lossy/lossless classification accuracy across the

entire test dataset. Comparing with the naive model, the

accuracy on DS2 improves significantly across the board.

With the mean classification accuracy at 90% or above

in all conditions (last column of the table), this model is

broadly robust against cutoff frequency variations. It is in-

teresting to note that performance on the AAC codec is

comparatively lower than on other codecs. This result sug-

gests that the AAC codec is more challenging to detect,

and warrants further investigation, which we leave for fu-

ture work. We hypothesise it may be due to the AAC codec

producing less artefacts in the magnitude spectrogram.
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Figure 5. F1-score for varying thresholds, evaluated on

DS2. Each line analyses the subset made of lossless files

as negatives and the specified codec as positives; files en-

coded with different codecs are discarded. Left: model

without random mask; Right: model with random mask.

In Fig. 5, for both the model without random mask (cf.

Section 4.1) and the model with (cf. Section 4.2) we plot

the F1 score (i.e., the harmonic mean between precision

and recall) as a function of the threshold of the binary clas-

sification prediction. The F1-score for the model without

the random mask peaks at very low values of the thresh-

old and then decays for increasing threshold at a rate that

highly depends on the codec analysed.

This suggests three conclusions: (1) There are a num-

ber of test set files that yield a prediction p(x) in the cen-

tral region 0.1 < p(x) < 0.9, which shows a high de-

gree of uncertainty for the model; (2) since the F1-score is

monotonously decreasing, the model tends to output false

negatives rather than false positives; (3) different codecs

are identified with different level of proficiency.

Compare this with the output for the model with the ran-

dom mask: in the case of LIBMP3LAME and LIBVORBIS

codecs, the F1-score is almost flat and close to 1 for the

entire range of thresholds. The LIBFDK_AAC codec still

shows some decrease in performance for increasing thresh-

olds, but the peak value increased from 0.875 to 0.982 and

the area under the F1 curve jumped from 0.450 to 0.891.

From the results above we can conclude that the introduc-

tion of the random mask brings higher peak performance

and also reduces the impact of the choice of the threshold.

4.2.2 Analysis

Similarly to the analysis presented in Section 4.1.2, we vi-

sualise saliency maps of the model trained with the ran-

dom mask in the bottom row of Figure 4. Compared to

the saliency of the model with no mask (top row), we
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Figure 6. The five assumed lossless tracks misidentified as

lossy. However, A, C, and D are in fact lossy. B and E are

quiet tracks with a single instrument.

see a much brighter activation in the holes of the spectro-

gram without losing any of the activations at the cutoff fre-

quency. The model has learned to rely on more markers to

make its choice.

4.3 Qualitative Analysis of Errors

In this section, we present a qualitative analysis of the erro-

neous predictions produced by our model trained with the

random mask.

4.3.1 Lossless Errors.

From our entire test subset of DS2, we observe only 5 cases

(0.2%) where the model made a "lossy" prediction while

the recording is in the lossless part of the dataset. The

spectrogram of three out of the five tracks (A, C and D

in Figure 6) show the hallmarks of lossy compression. It

appears that our model was indeed correct in predicting a

lossy encoding, and therefore revealed "in-the-wild" cases

of accidental lossy compression that were present in our

dataset.

The other two tracks (B and E) are quiet and sparsely or-

chestrated tracks. It is notable that the spectrogram also ap-

pears sparse, with very little energy in the upper frequency

range. Given that lossy codecs often feature energy deple-

tion in the top part of the frequency range, we hypothesise

that the misclassification may be due to the model relying

on the absence of energy in the upper register in this case.

4.3.2 Lossy Errors.

Table 2 shows that the entirety of cases where the model

erroneously classified recordings as lossless when it should

be lossy comes from tracks encoded with the LIBFDK_AAC

codec. In Figure 7, spectrograms of 2 second excerpts from

a random selection of error tracks are visualized.

From inspecting the spectrograms of LIBFDK_AAC en-

coded tracks, we find that common characteristics are

(1) the spectral roll-off is relatively stable over time, (2)

the preservation of transients above the cutoff frequency,

which can often span upwards to the Nyquist frequency,

and (3) less nulling of spectral coefficients, resulting in

fewer holes in the spectrogram. The LIBFDK_AAC codec is

a superior codec in terms of compression efficiency, mean-

ing it can provide better audio quality at lower bitrates than

other codecs [25].

A

22.0

17.6

13.2

8.8

4.4

0

kH
z

256k / 20 kHz

B

320k / 18 kHz

C

320k / 16 kHz

D

128k / 14 kHz

Figure 7. A random selection of lossy tracks misidentified

as lossless. All tracks are encodec with LIBFDK_AAC. The

spectrograms show less holes and band rupture compared

to other codecs, especially under 14 kHz.

Table 2 shows that AAC with cutoff 14kHz is only 81%

accuracy. We hypothesize that the LIBFDK_AAC codec

does not produce as much “holes” in the spectrogram be-

low this threshold. Our model applies the random mask to

every example in our training dataset, which can be confus-

ing on LIBFDK_AAC samples. That is, as the random mask

is applied at a relatively low cutoff frequency, the resulting

spectrogram is almost identical to a lossless example. One

avenue for future work could be to apply the random mask

with a lower probability, to allow the model to also learn

other spectral characteristics of LIBFDK_AAC samples.

5. CONCLUSION

In this paper, we presented a lossy audio compression de-

tection method that can robustly estimate whether a given

audio file has been lossy encoded before. We show that

naively training a model results in near-perfect lossy audio

compression detection on the held-out test set generated

using the same encoding parameters.

However, we find that, for several widely used lossy

codecs, the performance of this model catastrophically de-

grades when exposed to variations of the cutoff frequency

parameter that were not seen during training. This result

suggests that a naively trained model is overly reliant on

the cutoff value. In response to this shortcoming, we pro-

pose to amend the training strategy by applying a random

mask to the upper range of the spectrogram, in order to

reduce the model’s reliance on the codec cutoff frequency

value.

We show that this method results in a model that is

significantly more robust against frequency cutoff varia-

tions. Our experiments reveal compelling performance on

all codec and bit rate combinations we considered, but re-

veal that there remains room for improvement on the de-

tection of the LIBFDK_AAC codec. We hypothesise that

the AAC codec is comparatively more difficult to detect

than MP3 and Ogg Vorbis because it generates less arte-

facts in the magnitude spectrogram. An avenue for future

work may consist in exploring further development of the

training strategy in order to improve performance on the

AAC codec.
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