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ABSTRACT

Generative models are starting to become very good at gen-

erating realistic text, images, and even music. Identify-

ing how exactly these models conceptualize data has be-

come crucial. To date, however, interpretability research

has mainly focused on the text and image domain, leav-

ing a gap in the music domain. In this paper, we investi-

gate the transferability of straightforward text-oriented in-

terpretability techniques to the music domain. Specifically,

we examine the usability of these techniques for analyz-

ing how the generative music model MusicGen constructs

representations of human-interpretable musicological con-

cepts. Using the DecoderLens, we gain insight into how

the model gradually composes these concepts, and using

interchange interventions, we observe the contributions of

individual model components in generating the sound of

specific instruments and genres. We also encounter several

shortcomings of the interpretability techniques for the mu-

sic domain, which underscore the complexity of music and

need for proper audio-oriented adaptation. Our research

marks an initial step toward understanding generative mu-

sic models, fundamentally, paving the way for future ad-

vancements in controlling music generation.

1. INTRODUCTION

Generative AI systems for music have become mainstream

in the past year, and have become a popular application for

consumers, an eye-catching product for AI engineers and

companies, and a key research topic for researchers. The

most successful of these systems are built on top of recent

advances in deep learning for text and audio encoding, and

add a large text-to-music model, using the Transformer-

architecture [1], to allow users to generate music from a

text and/or audio prompt [2–5].

These systems are typically trained end-to-end, and

present us with the infamous black box problem: it is ex-
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tremely difficult to understand what is happening in the bil-

lions of mathematical operations between input and gen-

erated output. This severely limits the ability of users to

influence the generated output (other than by just trying a

different prompt), of companies to trace an individual out-

put to examples from the training set (and give credit where

credit is due), of engineers to diagnose shortcomings and

improve the system (other than by retraining on a better

dataset or bigger model) and of music researchers to relate

the behavior of these models to the large body of existing

theoretical and empirical work on how music works.

‘Opening the black box’ of generative music models is

therefore a key new area of research. In this paper, we build

on advances with interpretability techniques for generative

text models. Although there are many important differ-

ences between text and music (including their discrete ver-

sus continuous nature, and the temporal resolution needed

to build good models), we find that those techniques can be

adapted to the music domain and indeed give us insights

into the inner mechanisms. We focus on one representa-

tive, open-source generative music model, MusicGen [5],

and on two representative human-interpretable concepts:

musical instrument and genre. We ask: can we localize

and manipulate those concepts in MusicGen? We report

success on these tasks, and discuss in the final parts of the

paper how these initial steps might be extended to the full

toolbox needed to successfully address the negative conse-

quences of the black box problem.

2. RELATED WORK

Interpretability research is relatively sparse in the music

domain. Previous work has analyzed neural models trained

on symbolic music representations (MIDI) using prob-

ing classifiers [6, 7], visual inspection of the embedding

space [8], listenable explanations for classification mod-

els [9, 10], or post-hoc explanations in the form of high-

lighted parts of a piano roll [11]. To the best of our knowl-

edge, no previous work has tried to interpret generative

music models trained on raw audio data.

In the text domain, the Transformer architecture is dom-

inating the field [1]. Recent advancements in interpretabil-

ity methods are built on a key characteristic of Transformer

models: their use of residual connections across layers.

Typically, each layer of the Transformer contains an atten-

tion component and a Multilayer Perceptron (MLP), both
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Figure 1: Architecture of MusicGen. SA = self-attention, CA = cross-attention, MLP = Multi-Layer Perceptron. The

self-attention allows for communication between audio tokens; the cross-attention allows for communication between the

audio tokens and the conditioning signal (consisting of an encoded text prompt and optionally an encoded melody prompt).

of which interact with the residual stream. This arrange-

ment ensures that information in the residual stream re-

mains accessible throughout all layers, facilitating the de-

velopment of stable representations.

One method that exploits this characteristic is the De-

coderLens [12]. It is an adaptation of the LogitLens [13],

which was designed to interpret intermediate representa-

tions of decoder-only Transformer models. It applies the

unembedding matrix to intermediate layer outputs to ob-

tain a logit distribution over the vocabulary for each inter-

mediate layer. The DecoderLens was designed to interpret

the intermediate representations of encoder-decoder mod-

els. It applies the decoder to intermediate encoder outputs,

providing insight in what information that can be decoded

from earlier layers. In the original DecoderLens study,

the authors use the DecoderLens to analyze how encoder–

decoder models build meaningful representations for tasks

like machine translation and question answering.

Additionally, interchange interventions have been

used to identify model components that are causally in-

volved in specific behavior, such as greater-than reason-

ing [14], pronoun resolution [15], and gender bias [16,17].

By systematically altering model inputs or components and

observing resultant changes in behavior, researchers have

gained valuable insights into the underlying mechanisms

driving model performance and decision making.

3. EXPERIMENTAL SETUP

We conduct two interpretability experiments, one using the

DecoderLens and one using interchange interventions, for

interpreting the inner workings of a popular generative mu-

sic model, MusicGen [5].

MusicGen is an open-source, Transformer-based mu-

sic generation model, built by researchers at Meta [5]. Its

architecture is sketched in Figure 1. The model gener-

ates discrete audio tokens, optionally conditioned on a text

prompt and/or a melody. Text prompts are first processed

by a Transformer-based text encoder; music prompts by a

32-kHz EnCodec [18] tokenizer sampled at 50 Hz. Mu-

sicGen is autoregressive, and transforms its input over

successive layers through multi-head self-attention (inte-

grating information across timesteps) and MLP compo-

nents, while incorporating information from the text and/or

melody prompt through cross-attention to the respective

encoders. The generated audio tokens are then decoded

into a waveform by an EnCodec decoder.

We analyze three model sizes: MusicGen-small (300M

parameters, 1024 dimensions), MusicGen-medium (1.5B

parameters, 1536 dimensions), and MusicGen-large (3.3B

parameters, 2048 dimensions). We set the generation du-

ration to 4 seconds and keep the rest of the MusicGen pa-

rameters at their default values.*

In all of our experiments, we only condition MusicGen

on text prompts, not on melody prompts. We constructed

the following template for our text prompts: Compose a

[MOOD] [GENRE] piece with a [INSTRUMENT] melody.

Use a [TEMPO] tempo. We only modify the components

in between brackets and keep the remaining context fixed.

3.1 Experiment 1: DecoderLens

In our first experiment, we use the DecoderLens to glob-

ally examine how MusicGen builds up representations of

musicological concepts across its Transformer layers. This

involves extracting intermediate representations from each

layer and using the EnCodec decoder to map these to au-

dio. We examine the representation of musical instru-

ment and genre. We select four instruments and six genres

(listed in Table 1) and construct 100 text prompts per cate-

gory using our predefined template. We feed these prompts

to MusicGen and use the DecoderLens to obtain 100 music

outputs for each of the 24 Transformer layers.

We evaluate the recognizability of our selected musi-

cological concepts within the intermediate music outputs

by employing an audio classifier that was among the top-

ranking classifiers of the 2021 HEAR challenge [19]. This

multi-label classifier, trained on AudioSet [20], provides a

logit distribution across 527 audio classes, including both

musicological concepts and other sounds such as speech

and environmental noises. We run each intermediate mu-

sic output through the audio classifier and compute the

normalized discounted cumulative gain (NDCG) [21],

a metric commonly used in information retrieval to mea-

sure ranking quality. We consider this to be a proxy for the

recognizability of a specific concept.

For each concept, we establish an ‘ideal ranking’ of the

audio classes by assigning relevant labels (listed in Table

*For our code and listening examples, see our GitHub page: https:
//github.com/Marcel-Velez/musicgen-mech-interp
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Category Selection Relevant Labels

Instrument Guitar Guitar, Acoustic Guitar, Electric Guitar,
Bass Guitar, Plucked String Instrument

Piano Piano, Electric Piano, Keyboard (musi-
cal)

Trumpet Trumpet, Brass Instrument
Violin Violin/Fiddle, String Section, Bowed

String Instrument

Genre Classical Classical Music
Jazz Jazz, Rhythm and Blues
Pop Pop Music
Rock Rock Music, Rock and Roll, Progressive

Rock, Punk Rock
EDM Electronic Dance Music, Electronic

Music, Techno, Drum and Bass, Dub-
step, House Music

Hip Hop Hip Hop Music

Table 1: Relevant labels of the external audio classifier

[19] for each category.

1) a relevance score of 1, while assigning all other labels

a score of 0. This methodology facilitates a comparison

between the predicted ranking generated by the audio clas-

sifier and our predefined ideal ranking. NDCG returns a

high score when the relevant labels from our ideal ranking

are ranked high by the audio classifier, with a score of 1.0

indicating a perfect predicted ranking.

3.2 Experiment 2: Interchange Interventions

In our second experiment, we use interchange interven-

tions to identify the crucial model components responsi-

ble for generating specific musical instrument and genre

sounds. The workflow for performing these interventions,

which we apply for every permutation of two categories in

Table 1, is as follows.

1. Construct two sets of text prompts: one for a con-

cept such as guitar (henceforth the original con-

cept), and one for a contrasting concept such as pi-

ano (henceforth the desired concept).

2. Run both sets of prompts through MusicGen and

save the output of each individual component within

the MusicGen Transformer (these model compo-

nents are further explained in section 3.2.1). This

leaves us with two activation caches: one for the

original concept, and one for the desired concept.

3. While running MusicGen on the original concept

prompts again, replace the output of a specific model

component with the average output of that model

component across all desired concept prompts. Af-

ter the intervention, the forward pass continues as

normal, but yields an intervened music fragment.

Repeat this step for all model components.

4. To evaluate the effect of each individual interven-

tion, run a classifier on the original and intervened

music fragment, and assess how the odds for the

original and desired concept labels changed (we use

the same audio classifier that we used for our De-

coderLens experiments). If the intervention was

effective, the odds for the original concept should

have decreased, and the odds for the desired concept

should have increased.

3.2.1 Intervention techniques

We explore two intervention techniques: replace and ad-

just. With the “replace” technique, we entirely sub-

stitute an activation from an individual original concept

prompt with the average activation of 100 desired concept

prompts. With the “adjust” technique, we first subtract the

average activation of 100 original concept prompts from

an individual original concept activation. Then, we add the

average activation of 100 desired concept prompts to that

result. The latter technique is inspired by the idea that, in

language models, semantic properties of words can be ad-

justed by adding or subtracting specific word vectors, e.g.,

king – man + woman = queen [22], or in our case, music

with guitar – guitar + piano = music with piano.

We perform the interchange interventions across all 24

Transformer layers of MusicGen. Each layer consists of a

self-attention block, a cross-attention block, and a Multi-

Layer Perceptron (MLP). Thus, each intervention consists

of swapping the output of one of these three components

per layer individually. For a single text prompt, this adds

up to 24 layers × 3 layer components = 72 interventions.

3.2.2 Within-category vs. cross-category interventions

We investigate intervention effects on both instrument

prompts and genre prompts. For each instrument and

genre category listed in Table 1, we construct 100 text

prompts based on the template outlined in Section 3. We

then perform within- and cross-category interventions.

In within-category interventions, we interchange model

activations between two sets of instrument prompts, or be-

tween two sets of genre prompts. For instance, we intro-

duce piano activations during a forward pass intended for

guitar, or we introduce jazz activations during a forward

pass intended for classical.

In cross-category interventions, we interchange model

activations between a set of instrument and a set of genre

prompts. For example, we introduce piano activations dur-

ing a classical forward pass, or we introduce jazz activa-

tions during a guitar forward pass.

3.2.3 Evaluating Intervention Effects

An ideal intervention removes the original concept and in-

troduces the desired concept, but does not change anything

about the rest of the music. We therefore evaluate the inter-

ventions along two axes: intervention effectiveness and

intervention precision.

We evaluate intervention effectiveness using a metric

that quantifies the impact on both the original and desired

concept, inspired by the metric used in [23]. Specifically,

we calculate:

log
odds(originalbefore)

odds(originalafter)
− log

odds(desiredbefore)

odds(desiredafter)
(1)

A high score indicates that the odds of the original concept

decreased as a result of the intervention, or that the odds
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Figure 2: Results for Experiment 1 (DecoderLens): Av-

erage recognizability of instruments (A) and genres (B)

across Transformer layers in MusicGen-small (as mea-

sured by the NDCG).

of the desired concept increased. We calculate odds by

applying a softmax function over the logit distribution of

our external audio classifier.*

We evaluate intervention precision using the Kullback-

Leibler (KL) divergence, which quantifies the overall

shift in softmax distribution across all audio labels. This

metric gauges how much the intervened music fragment

differs from the original. Ideally, our intervention only has

an effect on the odds for the original and desired concept

labels, leaving the odds for the others unchanged. This

means that low KL scores are desirable, but for ease of in-

terpretation, we reverse them to make higher scores better.

4. RESULTS

4.1 Results Experiment 1: DecoderLens

Figure 2 shows the average recognizability of our selected

instruments and genres across the Transformer layers of

MusicGen-small. For instruments, we observe relatively

stable recognizability in layers 0-19, followed by a grad-

ual increase in layers 20-23. This indicates that MusicGen

gradually builds up the representation of individual musi-

cal instruments across layers, with the final layers playing

a crucial role. The pattern for genres is different. Except

for EDM, all genres exhibit the same recognizability across

layers, with a slight increase in the final layer. In contrast,

EDM exhibits high scores across layers, with a gradual de-

cline in the final layers. This pattern could be attributed to

the genre distribution in MusicGen’s training data: EDM

is disproportionately represented [5], possibly leading to

the model overfitting to EDM characteristics. It could be

that most Transformer layers are tuned to generate music

reminiscent of EDM, and only the final layer has learned

to integrate genre information from the input text prompt.

An alternative explanation is that the DecoderLens is

*For simplicity, we only use one label for each concept in this analy-
sis, i.e., the first label listed for each category in Table 1.
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Figure 3: Self-similarity matrices (Euclidean distance) of

intermediate layer outputs of the Transformer block within

MusicGen-small, when conditioning the model on text

prompts containing the instrument guitar (left) or contain-

ing the genre EDM (right). Both matrices are averaged

over 100 prompts. A dark color indicates high similarity, a

light color indicates low similarity.

currently not optimized for music. Upon listening to De-

coderLens outputs, we noted instances of distortion and

disorganization. While these outputs predominantly re-

semble the EDM genre when compared to other genres like

classical or jazz, they may simply reflect artifacts of the

EnCodec decoder, trained specifically for decoding repre-

sentations from the final Transformer layer. The represen-

tations of earlier layers may be harder to decode, as they

may follow a different representational distribution.

To explore this alternative hypothesis, we examined the

similarity of intermediate layer outputs within the Trans-

former block of MusicGen-small. We re-ran the model

with the same 100 text prompts for each concept and ex-

tracted the output of each intermediate Transformer layer.

We averaged these layer outputs across time and then com-

puted the Euclidean distance between all combinations of

layers. Figure 3 displays the results for guitar and EDM,

but similar patterns were observed for the other instru-

ments and genres listed in Table 1. We indeed observe that

the final layer (24) is highly dissimilar to the other layers.

Further exploration, possibly involving a “translation

model” that maps intermediate layer outputs to final layer

outputs [24, 25], could help to refine the DecoderLens for

the music domain.

4.2 Results Experiment 2: Interchange Interventions

4.2.1 Intervention effects across model components

Figure 4A shows the average effect of intervening on dif-

ferent components (MLP, self-attention, cross-attention)

across the Transformer layers of MusicGen-small, for both

the “replace” technique (solid lines) and the “adjust” tech-

nique (dashed lines) (results for the medium and large

model can be found in the Appendix). Starting with the

“replace” technique, we observe a clear contrast between

the MLP and the attention components: the MLP con-

sistently shows positive intervention effects, whereas both

self-attention and cross-attention predominantly show neg-

ative effects. With the “adjust” technique, intervening on

the attention components results in positive scores, but they
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Figure 4: Results for Experiment 2 (interchange interventions) across model components and layers, for MusicGen-small

only. Solid lines show the result for the “replace” technique, dashed lines show the results for the “adjust” technique. Figure
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by the inversed KL-divergence). Higher scores are better for both metrics.

Figure 5: Intervention effect vs. intervention precision of

the MLP across model sizes (small, medium, large) and in-

tervention techniques (replace vs. adjust). The datapoints

are labelled according to the layer where the intervention

was performed (b = beginning, i = intermediate, e = end).

are still much lower than intervening on the MLP. This sug-

gests that manipulating the sound of instruments and gen-

res is achievable by intervening on the MLP output, but not

to the same extent by intervening on the attention outputs.

Shifting focus to Figure 4B, we observe that interven-

tions on all model components produce negative interven-

tion precision scores This means that all interventions in-

duce some type of alteration to the audio output. To in-

terpret the magnitude of these changes, we compare them

to the “ideal” intervention precision score, where only

the original concept and desired concept probabilities flip

while everything else remains unchanged. We find that the

actual stability scores are much lower than this ideal sce-

nario, suggesting that the interventions are rather invasive

and change the audio in a way that goes beyond merely

flipping the original concept to the desired concept. A po-

tential future approach could be to perform the interven-

tions on specific frames rather than on the entire audio [26].

4.2.2 Dissecting intervention effects of the MLP

Figure 4A suggests that interventions on the MLP yield

the desired alteration (reducing the original concept and

increasing the desired concept). We now analyze these ef-

fects in more detail. Figure 5 shows the relationship be-

tween intervention effectiveness and intervention precision

for different model sizes (small, medium, large) and inter-

vention techniques (replace vs. adjust) for the MLP only.

For each combination of model size and intervention tech-

nique, we plot three scores: 1) the score for intervening on

the first layer, 2) the average score for intervening on the

intermediate layers, and 3) the score for intervening on

the final layer (we average the intermediate layers since

they showed very stable effects in Figure 4).

The effectiveness of intervention techniques seems to

depend on model size. We see that the “adjust” technique

performs best with the small model, while the “replace”

technique shows better results with the medium and large

models. We also notice that using the “replace” technique

for the large model yields the highest intervention preci-

sion overall. This suggests that the large model might rep-

resent musicological concepts in a more modular manner

compared to the smaller ones; thus, we can more easily

modify only a single concept without affecting other con-

cepts. One possible explanation could be that in the smaller

models, due to limited space, individual neurons represent

multiple features simultaneously, a phenomenon known as

superposition [27].

Finally, for all model sizes, we observe that interven-

ing at the final layer produces the best results, followed

by intervening at intermediate layers. Intervening at the

first layer tends to be least effective. This pattern may be

attributed to the model’s ability to “compensate” for inter-

ventions: when we intervene at early layers, the model still

has plenty of opportunity to change the original or desired

concept as it progresses through its forward pass.

4.2.3 Effect on original vs. desired concept

Figure 6 displays the intervention effect on the orig-

inal and desired concept separately, as well as the

combined score (scoreoriginal + scoredesired) for all three

model sizes. We also separately show the effects for

different intervention types: inter-category (instrument-
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Figure 6: Combined and separated intervention effect of the replace technique on the original and desired concept for the

MLP only, in the small (A), medium (B), and large (C) version of MusicGen. Bar colors indicate the intervention type

(inter-category/cross-category).

instrument, genre-genre) and cross-category (instrument-

genre, genre-instrument). Since intervention effects were

similar across layers, each bar represents the average inter-

vention effect across layers. We showcase the results for

the “replace” technique here; the results for the “adjust”

technique can be found in the Appendix.

When examining the scores for the original and de-

sired concepts separately, a clear pattern emerges across

all model sizes: the impact on the original concept is much

bigger than on the desired concept. This suggests that in-

terventions effectively reduce the original concept, but do

not introduce the desired concept as effectively.

For the inter-category intervention effects (blue and or-

ange bars), we observe that instrument–instrument inter-

ventions are much more effective than genre–genre inter-

ventions. This indicates that it is easier to manipulate

the sound of individual instruments in the output than the

sound of genres. This in turn suggests that instruments are

represented in a more modular fashion than genres, which

makes sense given the complex combination of features

that are typically involved in a genre.

The pattern for cross-category interventions (green

and red bars) is similar: instrument–genre interventions

are more effective than genre–instrument interventions.

Specifically, interventions inserting genre activations dur-

ing a forward pass with an instrument prompt notably im-

pact the instrument sound—but interventions inserting in-

strument activations during a forward pass with a genre

prompt have a less pronounced effect on the genre. This

supports the notion that genres are represented with multi-

ple features, making them more resistant to manipulation

compared to instruments’ more modular representation.

5. DISCUSSION

In this work, we explored the usability of text-oriented in-

terpretability techniques for analyzing the representation

of human-interpretable musicological concepts in Music-

Gen. We applied the DecoderLens for globally analyz-

ing how the model conceptualizes musical instruments and

genres across layers, and applied interchange interventions

to dissect the role of individual layer components in gener-

ating specific instrument and genre sounds across several

model sizes.

In our investigation, applying the DecoderLens to Mu-

sicGen revealed significant challenges in generating co-

herent audio from intermediate layers, a limitation under-

scored by the self-similarity matrix which showed that the

last layer is vastly different from the rest of the model.

Similarly, our attempts at interchange interventions, aimed

at dissecting the influence of specific model components

per layer on musical output, was fairly effective in remov-

ing existing musical concepts but was unsuccessful when

it came to injecting new ones into the network, across all

examined model sizes. These outcomes not only show

the complexities inherent in interpreting generative music

models but also underscore the need for music/audio spe-

cific intervention techniques.

In future work, we aim to adapt these interpretability

techniques to be more suitable for audio. As for the De-

coderLens, a single linear layer could be trained to map

intermediate representations to final layer representations,

possibly allowing for better decodability. Furthermore, we

aim to explore different intervention techniques (e.g., inter-

vening on specific frames instead of the entire sequence),

which could contribute to less drastic alterations of the

audio while still changing the desired concepts. These

improvements may allow us to additionally explore other

facets of music generation, such as tempo and rhythm.

5.1 Limitations

We used quantitative metrics based on a machine learn-

ing model to evaluate intervention effects, acknowledging

that this approach introduces extra noise. However, it al-

lowed us to investigate a larger parameter space compared

to a user-listening study. For instance, we evaluated 100

prompts across multiple model components (100 * 3 com-

ponents * 48 layers for the large model) for each permuta-

tion of concepts. Although human ratings from a listening

study could provide many complementary insights, setting

up such experiments is costly. Additionally, the authors

themselves listened to several intervention results and no-

ticed a lot of variation across samples, complicating the

selection of a representative subset for a listening study.

Therefore, we believe establishing robust quantitative re-

sults first is more practical. These results can inform the

design of more focused and efficient listening studies, en-

suring effective resource use and meaningful insights.
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