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ABSTRACT

Writing down lyrics for human consumption involves not

only accurately capturing word sequences, but also in-

corporating punctuation and formatting for clarity and to

convey contextual information. This includes song struc-

ture, emotional emphasis, and contrast between lead and

background vocals. While automatic lyrics transcription

(ALT) systems have advanced beyond producing unstruc-

tured strings of words and are able to draw on wider con-

text, ALT benchmarks have not kept pace and continue

to focus exclusively on words. To address this gap, we

introduce Jam-ALT, a comprehensive lyrics transcription

benchmark. The benchmark features a complete revi-

sion of the JamendoLyrics dataset, in adherence to indus-

try standards for lyrics transcription and formatting, along

with evaluation metrics designed to capture and assess the

lyric-specific nuances, laying the foundation for improving

the readability of lyrics. We apply the benchmark to recent

transcription systems and present additional error analysis,

as well as an experimental comparison with a classical mu-

sic dataset.

1. INTRODUCTION

Recent general-purpose automatic speech recognition

(ASR) models trained on large datasets [1, 2] have shown

a remarkable level of generalization, even improving the

performance of automatic lyrics transcription (ALT) [3–5].

Remarkably, these state-of-the-art ASR models are able

to take in larger temporal contexts and produce natural

text with long-term coherence which, in the case of Whis-

per [2], includes punctuation and capitalization [6]. One

may therefore ask how well these capabilities transfer from

speech to lyrics. Moreover, producing a high-quality lyrics

transcript suitable for user-facing music industry applica-

tions (e.g. to be displayed on streaming platforms or lyrics

websites) presents some unique challenges, namely the

need for specific formatting (e.g. line break placement,

parentheses around background vocals) [7–9]. This calls
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And I cannot could not breathe , <L>  

but since i watched you leave ( oh yeah ) <L> 

<S>

Word error

Case error

Line break errorPunctuation error

Section break error
Parenthesis error

Figure 1: Error types captured by our metrics. Each token

is classified as a word, punctuation mark, or parenthesis

(enclosing background vocals). Special tokens are added

in place of line and section breaks. Each token type is cov-

ered by a separate metric; differences in letter case are han-

dled separately.

for a new approach to ALT evaluation and development

that accounts for these distinctive nuances.

In ASR, the primary goal is a clear representation of

what was said. To that end, formatting is helpful for im-

proving the readability of transcripts [10]. Likewise, fillers

like um, uh, like, and you know can be omitted to improve

readability. Recent work [11] attempts to formalize this

concern for clarity, proposing a novel metric geared to-

wards assessing human readability. It employs human la-

belers, instructed to disregard filler words while, on the

other hand, taking account of punctuation and capitaliza-

tion errors that impact readability or alter the meaning of

the text.

In music, on the other hand, lyrics are not simply a

means of communicating meaning; they are a form of artis-

tic expression, closely tied to the rhythm, melody, and

emotionality of the song. For this reason, lyrics transcrip-

tion requires a different set of considerations. Line breaks,

often missing or arbitrarily placed in speech transcripts, are

essential in lyrics for capturing rhyme, meter, and musical

phrasing. Fillers like oh yeah, non-word sounds like la-

la-la and contractions such as I’ma (vs. I’m gonna, I am

going to) have prosodic significance, and their omission

would disrupt the song’s rhythm and rhyme scheme. Far

from being an impediment to readability, they are key to

any faithful rendition of a song for artist and fan alike.

We believe that readability-aware models for lyrics tran-

scription have the potential to facilitate novel applications

extending beyond the realms of metadata extraction and

relatively crude karaoke subtitles. However, in order to ad-

vance in this research direction, the ability to accurately

evaluate ALT systems in the aforementioned aspects is vi-
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tal. To the best of our knowledge, existing ALT literature

not only overlooks readability, but evaluates on datasets

(e.g. [12–15]) that have not been designed specifically for

ALT and lack some or all of the desirable features dis-

cussed above.

One of the datasets widely adopted by recent works

[3, 4, 16–18] as an ALT test set is JamendoLyrics [14],

originally a lyrics alignment benchmark. Its most recent

(“MultiLang”) version [19] contains four languages and a

diverse set of genres, making it attractive as a testbed for

lyrics-related tasks. However, we found that, in addition to

lacking in the aspects discussed above, the lyrics are some-

times inaccurate or incomplete. While such lyrics may be

perfectly acceptable as input for lyrics alignment (and in-

deed representative of a real-world scenario for that task),

they are less suitable as a target for ALT.

To address these issues and help to guide future ALT

research, we present the Jam-ALT benchmark, consist-

ing of: (1) a revised version of JamendoLyrics MultiLang

following a newly created annotation guide that unifies

the music industry’s conventions for lyrics transcription

and formatting (in particular, regarding punctuation, line

breaks, letter case, and non-word vocal sounds); (2) a com-

prehensive set of automated evaluation metrics designed to

capture and distinguish different types of errors relevant to

(1). The dataset and the implementation of the metrics

are available via the project website. 1 Additionally, to

explore the applicability of the proposed metrics to other

datasets, we present results on the Schubert Winterreise

Dataset (SWD) [20].

2. DATASET

Our first contribution is a revision of the JamendoLyrics

MultiLang dataset [19] to make it more suitable as a lyrics

transcription test set. Different sets of guidelines for lyrics

transcription and formatting exist within the music indus-

try; we consider guidelines by Apple [7], LyricFind [8],

and Musixmatch [9], from which we extracted the follow-

ing general rules:

1. Only transcribe words and vocal sounds audible in

the recording; exclude credits, section labels, style

markings, non-vocal sounds, etc.

2. Break lyrics up into lines and sections; separate sec-

tions by a single blank line.

3. Include each word, line and section as many times as

heard. Do not use shorthands to indicate repetitions.

4. Start each line with a capital letter; respect standard

capitalization rules for each language.

5. Respect standard punctuation rules, but never end a

line with a comma or a period.

6. Use standard spelling, including standardized spell-

ing for slang where appropriate.

7. Mark elisions (incomplete words) and contractions

with an apostrophe.

8. Transcribe background vocals and non-word vocal

sounds if they contribute to the content of the song.

1 https://audioshake.github.io/jam-alt/

9. Place background vocals in parentheses.

The original JamendoLyrics dataset adheres to rules 1, 3,

and 8, partially 2 and 6 (up to some missing diacritics, mis-

spellings, and misplaced line breaks), but lacks punctua-

tion and is lowercase, thus ignoring rules 4, 5, 7, and 9.

Moreover, as mentioned above, we found that the lyrics do

not always accurately correspond to the audio.

To address these issues, we revised the lyrics in order

for them to obey all of the above rules and to match the

recordings as closely as possible. As the above rules are

fairly unspecific, we created a detailed annotation guide

where we have attempted to resolve minor discrepancies

among the source guidelines [7–9] and fill in missing de-

tails (including language-specific nuances). This annota-

tion guide is released together with the dataset.

Each lyric file was revised by a single annotator profi-

cient in the language, then reviewed by two other annota-

tors. In coordination with the authors of [19], one of the

20 French songs was removed following the detection of

potentially harmful content.

Examples of lyrics before and after revision can be

found on the project website.

3. METRICS

In this section, we first discuss our adaptation of the con-

ventional word error rate (WER) metric and then our pro-

posed precision and recall measures for punctuation and

formatting. Our goal here is to design a comprehensive

set of metrics that covers all possible transcription errors

while allowing us to distinguish between different types of

errors (see Fig. 1 for a visual overview of the error types).

Note, however, that our goal is not to create metrics that

completely align with the rules put forth in Section 2 or

correlate with a specific notion of readability; the metrics

should be general enough to apply to any plain-text lyrics

dataset and adapt to its formatting style.

3.1 Word Error Rates

The standard speech recognition metric, WER, is defined

as the edit distance (a.k.a. Levenshtein distance) between

the hypothesis (predicted transcription) and the reference

(ground-truth transcript), normalized by the length of the

reference. If D, I , and S are the number of word deletions,

insertions, and substitutions respectively, for the minimal

sequence of edits needed to turn the reference into the hy-

pothesis, and H is the number of unchanged words (hits),

then:

WER =
S +D + I

S +D +H
=

S +D + I

N
, (1)

where N is the total number of reference words.

Typically, the hypothesis and the reference are pre-

processed to make the metric insensitive to variations in

punctuation, letter case, and whitespace, but no single stan-

dard pre-processing procedure exists. In this work, we ap-

ply Moses-style [21] punctuation normalization and tok-

enization, then remove all non-word tokens. Before com-

puting the WER, we lowercase each token to make the met-

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

738



ric case-insensitive, but also keep track of the token’s origi-

nal form. To then measure the error in letter case, for every

hit in the minimal edit sequence, we compare the original

forms of the hypothesis and the reference token and count

an error if they differ. We then compute a case-sensitive

word error rate WER′ as:

WER′ =
S +D + I + Ecase

S +D +H
= WER +

Ecase

N
, (2)

where Ecase is the number of casing errors. We include

both variants (1) and (2) in our benchmark.

3.2 Punctuation and Line Breaks

Since the output of ASR systems traditionally lacks punc-

tuation, a common ASR post-processing step – punctua-

tion restoration [22] – consists of recovering it. This task

is usually evaluated using precision and recall:

P =
# correctly predicted symbols

# predicted symbols
,

R =
# correctly predicted symbols

# expected symbols
.

(3)

In this original setting where the system only inserts punc-

tuation and the words remain intact, computing the metrics

is trivial. In contrast, in our end-to-end setting, the hypoth-

esis and the reference may use different words, and hence

computing the numerator in Eq. (3) requires an alignment

between the two. We leverage the same alignment as used

in Section 3.1, but computed on text that includes punctu-

ation. Moreover, we extend this approach to account for

line breaks, which, though traditionally ignored in speech

data, are particularly important for lyrics.

We use the pre-processing from Section 3.1, but pre-

serve punctuation tokens and, as in [23, 24], add special

tokens in place of line and section breaks; this leaves us

with five token types: word W, punctuation P, parenthe-

sis B (separate due to its distinctive function), line break

L, and section break S. 2 After computing the alignment

between the hypothesis tokens and the reference tokens,

we iterate through it in order to count, for each token type

T ∈ {W,P,B,L,S}, its number of deletions DT , inser-

tions IT , substitutions ST , and hits HT . In general, each

edit operation is simply attributed to the type of the token

affected (e.g. the insertion of a punctuation mark counts

towards IP). However, a substitution of a token of type T

by a token of type T ′ ̸= T is counted as two operations: a

deletion of type T (counting towards DT ) and an insertion

of type T ′ (counting towards IT ′ ).

We can now use these counts to define a precision, re-

call, and F-1 metric for each token type:

PT =
HT

HT + ST + IT
, RT =

HT

HT + ST +DT

,

FT =
2

P−1

T
+R−1

T

.

(4)

2 We define a section break as one or more blank lines. Hence, every
section break is explicitly preceded by a line break in our representation.

English Spanish German French

0.0
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0.6

0.8
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1.2

1.4

W
ER

Whisper v2
Whisper v3
OWSM v3.1 +lang
AudioShake v3

+demucs
+demucs
+demucs

Figure 2: Song-level word error rates by language. Note

that strong outliers occur; for clarity, they are not displayed

here, but affect the means, which are indicated by triangles.

4. RESULTS

4.1 Benchmark Results

Table 1 shows the performance of various transcription

systems on our benchmark. Fig. 2 shows the distributions

of song-level word error rates by language.

We include two recent, freely available models ca-

pable of transcribing long, unsegmented audio: Whis-

per [2] (large-v2 and large-v3) and OWSM 3.1 [25]

(owsm_v3.1_ebf). For both models, we use Whisper-

style long-form transcription with a beam size of 5. Both

models have language identification capabilities, but may

perform better if the correct language is specified; for

Whisper, we evaluate both options, while for OWSM, for

simplicity, we only evaluate with the language provided.

For Whisper, which exhibits great variation between runs

due to its stochastic decoding strategy, we report averages

over 5 runs. We optionally use HTDemucs [26] to isolate

the vocals from the input audio.

Whisper and OWSM are general-purpose speech recog-

nition models and are not designed for lyrics transcrip-

tion. To make a fairer comparison, we apply simple

post-processing to their outputs to improve the formatting:

(1) The models do not produce line breaks, but split their

output into timestamped segments; we insert line breaks

between these segments. (2) We remove unwanted end-

of-line punctuation (all non-word characters except for

!?'"»)) and uppercase the first letter of every line. 3

We also evaluate LyricWhiz [4], a lyrics transcription

system combining Whisper with the commercially avail-

able instruction-following language model ChatGPT [27].

We report averages over two outputs per song (English

only), kindly provided by the LyricWhiz authors. Finally,

3 Although we observed that this transformation tends to improve the
outputs for Whisper and OWSM, in general, it may make evaluation re-
sults worse if the line break predictions are incorrect. For this reason, we
do not include this step as a fixed part of our benchmark.
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All languages English Spanish German French

WER WER′ FP FB FL FS WER WER′ FP FB FL FS WER WER′ WER WER′ WER WER′

Whisper v2 37.8 42.1 44.2 — 69.3 3.3 43.8 47.5 31.5 — 63.0 11.2 25.8 31.5 54.5 59.3 27.7 31.1
+lang 27.9 32.6 45.0 — 70.4 3.7 39.7 43.7 34.9 — 65.5 11.6 21.9 27.7 19.9 26.0 27.1 30.5
+demucs 44.5 49.8 41.6 — 61.2 — 33.3 39.1 42.2 — 53.9 — 39.6 46.5 65.2 70.4 43.3 46.9
+lang 33.5 39.3 39.4 — 60.6 — 35.6 41.3 41.8 — 53.4 — 34.9 42.2 23.9 30.4 38.2 42.1

Whisper v3 35.5 39.7 43.0 — 73.5 1.0 37.7 42.5 41.4 — 71.5 2.6 28.6 33.6 40.7 44.6 34.7 38.0
+lang 32.6 37.2 43.7 — 73.9 0.6 36.4 41.4 41.8 — 72.5 2.6 22.4 28.0 35.9 40.4 34.7 38.0
+demucs 48.0 51.6 33.0 — 65.7 — 43.0 47.2 25.8 — 66.9 — 61.5 64.9 43.5 47.4 44.9 48.2
+lang 46.6 50.4 33.7 — 65.8 — 43.0 47.2 25.8 — 66.9 — 58.6 62.1 40.8 44.9 44.9 48.3

OWSM v3.1+lang 69.3 75.0 22.5 0.6 37.8 — 68.6 74.0 22.3 — 42.7 — 73.3 78.5 63.3 71.8 71.6 75.7
+demucs 66.5 72.6 20.0 0.0 41.1 — 63.4 69.4 21.5 0.0 47.3 — 70.8 76.0 51.8 62.0 78.5 82.1

LyricWhiz — — — — — — 24.6 28.0 34.0 — 74.0 1.4 — — — — — —
AudioShake v3 16.1 20.1 57.0 29.4 84.4 73.9 17.3 20.9 65.3 37.9 84.3 84.8 12.6 17.7 12.6 17.5 20.8 23.5

JamendoLyrics 11.1 29.6 — — 93.3 85.3 14.4 29.6 — — 88.1 77.9 14.0 29.1 5.0 37.6 10.3 23.3

Table 1: Benchmark results (all metrics shown as percentages). WER is word error rate, WER′ is case-sensitive WER, the

rest are F-measures. +demucs indicates vocal separation using HTDemucs; +lang indicates that the language of each song

was provided to the model instead of relying on auto-detection. Whisper results are averages over 5 runs with different

random seeds, LyricWhiz over 2 runs; OWSM and AudioShake are deterministic, hence the results are from a single run.

The best results achieved by open-source systems are shown in bold. LyricWhiz and AudioShake are listed separately,

because they rely on proprietary technology. The last row shows metrics computed between the original JamendoLyrics

dataset as the hypotheses and our revision as the reference. For full results by language, see the project website.

All EN ES DE FR

WER FL FS WER

Whisper v2 39.1 70.0 2.8 43.0 31.7 54.7 28.0
+lang 28.8 71.0 2.6 38.8 27.9 19.8 27.4
+demucs 46.2 61.5 — 33.6 43.9 65.5 44.1
+lang 34.8 61.2 — 36.1 39.3 23.9 38.9

Whisper v3 37.7 71.6 1.0 39.3 34.5 40.8 36.1
+lang 34.9 72.3 0.6 38.0 28.9 36.0 36.1
+demucs 49.6 65.3 — 44.3 65.8 43.5 45.7
+lang 48.3 65.4 — 44.3 63.1 40.8 45.7

OWSM v3.1+lang 70.3 39.0 — 69.9 75.7 63.5 71.9
+demucs 67.5 41.6 — 65.0 72.7 51.7 79.1

LyricWhiz — — — 23.7 — — —
AudioShake v3 19.4 82.3 64.5 22.5 18.7 13.8 21.7

Jam-ALT 11.5 94.0 85.1 15.7 14.4 5.0 10.4

Table 2: Results with the original JamendoLyrics (i.e. be-

fore revision) as reference. The last row corresponds to our

revision. See also the caption of Table 1.

as an example of an ALT system built with formatting and

readability in mind, we include our in-house lyrics tran-

scription system, which integrates vocal separation.

As a first general observation, consistent with previous

studies [4, 5], the performance of Whisper models is rel-

atively good, considering that they were not specifically

designed for lyrics transcription. Among the formatting

metrics, we highlight a high accuracy in line break pre-

diction. This shows that, although the segments output by

Whisper do not always impose a meaningful structure, in

music, they do in many cases coincide with lyric lines.

Somewhat counter-intuitively, for Whisper, inputting

isolated vocals (+demucs) tends to substantially degrade

the results (with the single exception of large-v2 for

English). Whisper’s language identification mechanism

also turns out to have a significant effect, in that disabling

it and instead inputting the known language of the song

(+lang) tends to result in a sizeable drop in WER, espe-

cially on languages different from English. This suggests

that the language detected by Whisper is often incorrect.

We also observe that Whisper v3 does not necessarily

perform better on lyrics than v2. In fact, the WER in-

creases from 27.9 to 32.6 when comparing Whisper v2

+lang to v3 +lang.

The improvement of LyricWhiz over plain Whisper in

terms of WER is clear and even sharper than reported in

[4]. We also see some improvement in terms of line breaks

and punctuation.

Regarding OWSM, its performance is far behind Whis-

per, with differences far larger than reported in [25] for

speech, strongly suggesting that OWSM is poorly suited

for ALT, at least without finetuning. With isolated vocals

as input, the error is slightly reduced, but still large.

As for our own system, it outperforms all of the above

on all metrics shown in Table 1, by a large margin, e.g. with

a 57% reduction in overall WER compared to Whisper v2.

It is also the only one achieving acceptable accuracy for

parentheses (B) and section breaks (S).

4.2 Effect of Revisions

The revisions described in Section 2 have enabled us to

compute metrics related to letter case and punctuation, fea-

tures that are missing from the original dataset. How-

ever, the revisions also involved correcting words and

line breaks; to measure the effect of these corrections,

we present in Table 2 the relevant metrics computed on

the original JamendoLyrics data. Comparing Tables 1

and 2, we note that the revisions have mostly improved

the results, notably reducing the overall WER (by 1.7, or

5.3%, on average) for all systems, with Spanish seeing the

sharpest drop (4.7, or 17.4%, on average, likely due to fre-
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quently missing accents in the original data). The general

trends – in particular, the ranking based on WER and FL –

remain mostly unchanged.

To quantify the extent of our revisions more directly,

we also evaluate both versions of the lyrics against each

other and include the results as the last row in Tables 1

and 2. Remarkably, in terms of word tokens, Jam-ALT dif-

fers from JamendoLyrics by about 11% (around 15% for

English and Spanish), which is substantially more than the

difference between system performance on the two dataset

versions. One potential explanation is that a significant

number of the corrections correspond to low-intelligibility

singing, which is prone to transcription errors, or to back-

ground vocals, which are susceptible to being omitted by

transcription systems.

4.3 Error Analysis

In this section, we further analyze the errors made by se-

lected systems on our benchmark.

First, we visualize in Fig. 3 how each type of edit oper-

ation contributes to the WER. Besides the basic edit opera-

tions (hits, substitutions, insertions, deletions), we include

case errors from Section 3.1; that is, a hit with a difference

in letter case is shown as a case error instead. Moreover, to

account for small spelling differences, we consider a sub-

stitution as a near hit when the replacement differs from

the reference in at most two letters. 4

With Whisper, we observe that inputting separated vo-

cals causes more insertions (and longer output) in v2, but

more deletions (and shorter output) in v3. Upon inspecting

the outputs, we find that Whisper has a general tendency to

omit parts of the lyrics (often the entire song) and instead

produce generic or irrelevant text, and that this is more fre-

quent with separated vocals, especially with v3. On the

other hand, OWSM shows a slight improvement with sep-

arated vocals, but its predictions contain significantly more

substitutions, suggesting that they are more often incorrect

on a word-by-word basis.

Next, we focus on errors in punctuation and formatting

and investigate how often different token types are substi-

tuted for each other. To this end, we count the edit opera-

tions as in Section 3.2, but preserve the information about

substitutions across the four non-word token types (P, B,

L, S). We then present this information in a form akin to a

confusion matrix, adding a special “null” token type ∅ to

account for insertions and deletions.

The result is shown in Fig. 4 for three selected systems.

Most errors are insertions and deletions, but another fre-

quent type of error is the replacement of a line break by a

punctuation mark, especially in Whisper models. This is

explained by the fact that our guidelines forbid most end-

of-line punctuation, and hence, when transcription omits a

line break, inserting a punctuation mark in its place is often

needed to maintain grammatical correctness.

4 More precisely, we count a near hit if, after removing apostrophes
from the two words, their character-level Levenshtein distance is at most
2, and strictly less than half the length of the longer of the two words.
Examples include an/and, gon’/gonna, there/their/they/them, but not a/an

or this/that.

0.0 0.2 0.4 0.6 0.8 1.0
Relative count

JamendoLyrics

AudioShake v3

OWSM v3.1
+demucs+lang

OWSM v3.1
+lang

Whisper v3
+demucs+lang

Whisper v3
+lang

Whisper v2
+demucs+lang

Whisper v2
+lang

hit case near sub ins del

Figure 3: Word edit operation frequencies on our bench-

mark (one run per system). Near are substitutions that dif-

fer in few characters, sub are the remaining substitutions.

case are hits with case errors, hit are the remaining (case-

sensitive) hits. The rest are insertions and deletions. The

frequencies are normalized by the reference length, so that:

• hit + case + near + sub + del = 1,

• WER = near + sub + ins + del,

• WER′ − WER = case,

• hit+case+near+sub+ins corresponds to the length

of the prediction.

By manual inspection of the transcriptions, we find that

Whisper tends to produce much longer lines than in the

reference and frequently outputs periods (forbidden by our

annotation guide as a sentence separator) and, occasion-

ally, spuriously repeated punctuation.

4.4 Schubert Winterreise Dataset

To explore the application of the proposed metrics to other

datasets, we additionally perform an evaluation on the

Schubert Winterreise Dataset (SWD) [20]. SWD com-

prises nine audio versions of Franz Schubert’s 24-song

cycle Winterreise, along with symbolic representations,

lyrics, and other annotations. An example of Romantic

music based on early 19th century German poetry, it con-

trasts with JamendoLyrics and presents an interesting chal-

lenge for ALT. For our evaluation, we pick a single version,

SC06 (a 2006 live recording of singer Randall Scarlata),

one of the two with audio publicly available.

The lyrics in SWD are formatted as poems – contain-

ing line and section breaks –, but their spelling and punc-

tuation, mirroring an 1827 edition of the score [28], does

not exactly match our annotation guide. To make them

adhere to our punctuation and capitalization rules, we ap-

ply a simple transformation to the lyrics: replace all un-

wanted punctuation (.;:-) with commas, then remove all

end-of-line commas and uppercase the first letter of each

line. Note, however, that even after this transformation, the

lyrics’ obsolete spelling – predating the 1996 German or-

thography reform – violates our annotation guide to some

extent (mainly in the usage of the letter ß and the treatment

of elisions), which is expected to distort the WER.

We evaluate all models with the language provided (i.e.
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Figure 4: Edit operation counts on non-word (punctuation and formatting) tokens by token type (P = punctuation, B =

parenthesis, L = line break, S = section break). ∅ denotes the absence of a token, i.e. it stands for insertion (on the

reference axis) or deletion (on the prediction axis). Substitution of/by a word token is counted as an insertion/deletion,

respectively. Only a single run per system is considered.

WER WER′ FP FL FS

Whisper v2 34.5 40.4 42.6 66.2 —
+demucs 41.4 47.2 38.0 61.4 —

Whisper v3 59.0 63.8 40.0 63.6 —
+demucs 52.3 58.6 34.7 63.3 0.0

OWSM v3.1 75.6 82.5 12.9 39.6 4.9
+demucs 82.9 91.8 17.0 39.2 —

AudioShake v3 24.3 29.1 50.9 80.0 72.0

Table 3: Results on performance SC06 from SWD. Only

punctuation (P), line breaks (L) and section breaks (S) are

included, as the ground truth lyrics do not contain any

parentheses. Whisper results are averages over 5 runs with

different random seeds. The best result in each column,

excluding AudioShake, is shown in bold. For full results,

see the project website.

disabling language identification). The results are shown

in Table 3 and further error analysis in Fig. 5. We notice

substantially worse performance on SWD than the German

section of our benchmark (Table 1): for example, WER for

Whisper v2 +lang increased from 19.9 to 34.5. This likely

reflects the more challenging nature of the dataset, but also

possibly the mismatched spelling, as suggested by a higher

frequency of near hits (see Fig. 5) than seen in Section 4.3

(Fig. 3).

5. DISCUSSION

Given our focus on formatting and punctuation, the ques-

tion arises to what extent they are in fact dependent on

the audio. In particular, could line and section boundaries

be accurately predicted just from the textual context, e.g.

based on metrical patterns, rhyme, syntax, and semantics?

To answer this, we suggest an experiment where a human

annotator is tasked with formatting given lyrics first with-

out and then with access to the audio. Such a task would,

however, be highly time-consuming and require expert an-

notators unfamiliar with the songs. As a proxy, one might

instead train a formatting restoration model on lyrics or use

a general-purpose instruction-following language model.

Our attempts in this regard have only had limited success

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Relative count

AudioShake v3

OWSM v3.1
+demucs

OWSM v3.1

Whisper v3
+demucs

Whisper v3

Whisper v2
+demucs

Whisper v2

hit case near sub ins del

Figure 5: Word edit operation frequencies on SWD. See

the caption of Fig. 3.

and we therefore leave such experiments for future work.

Another issue is that there may not always be a single

correct division into lines and sections. For example, in a

song with relatively short lines, it may be acceptable to join

pairs of adjacent lines, especially in the absence of rhyme.

Likewise, 4-line sections may be joined to create 8-line

sections and so forth. However, it is not obvious how to

relax the metrics to allow for this kind of variation. Doing

so rigorously would likely require additional annotations,

which is contrary to our goal of creating a set of generally

applicable metrics. A possible solution compatible with

this idea is to create multiple references and pick the best-

scoring one during evaluation.

6. CONCLUSION

We have proposed Jam-ALT, a new benchmark for ALT,

based on the music industry’s lyrics guidelines. Our results

show how existing systems differ in their performance on

different aspects of the task, and we hope that the bench-

mark will be beneficial in guiding future ALT research.
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