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ABSTRACT

Despite its musicological, cultural, and religious signifi-

cance, the Ethiopian Orthodox Tewahedo Church (EOTC)

chant is relatively underrepresented in music research.

Historical records, including manuscripts, research pa-

pers, and oral traditions, confirm Saint Yared’s estab-

lishment of three canonical EOTC chanting modes dur-

ing the 6th century. This paper attempts to investigate

the EOTC chants using music information retrieval (MIR)

techniques. Among the research questions regarding the

analysis and understanding of EOTC chants, Yaredawi

YeZema Silt, namely the mode of chanting adhering to

Saint Yared’s standards, is of primary importance. There-

fore, we consider the task of Yaredawi YeZema Silt clas-

sification in EOTC chants by introducing a new dataset

and showcasing a series of classification experiments for

this task. Results show that using the distribution of sta-

bilized pitch contours as the feature representation on a

simple neural-network-based classifier becomes an effec-

tive solution. The musicological implications and insights

of such results are further discussed through a compara-

tive study with the previous ethnomusicology literature on

EOTC chants. By making this dataset publicly accessi-

ble, our aim is to promote future exploration and analysis

of EOTC chants and highlight potential directions for fur-

ther research, thereby fostering a deeper understanding and

preservation of this unique spiritual and cultural heritage.

1. INTRODUCTION

The Ethiopian Orthodox Tewahedo Church (EOTC) chants

hold immense cultural and religious significance in

Ethiopia, yet they are largely overlooked [1]. 1 The EOTC

chant is believed to have originated with Saint Yared (505–

571), who composed the three EOTC chanting modes

1 The Eritrean Orthodox Tewahedo Church, which separated from
the EOTC administration system a few decades ago, also utilizes these
chants. We acknowledge its important role in preserving this sacred form
of church music.
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(YeZema Siltoch in Amharic language), 2 namely Ge’ez, 3

Ezil and Araray. Saint Yared’s pioneering musical com-

positions, liturgical chants, and associated dance move-

ments had a significant impact on Ethiopian sacred mu-

sic tradition [2]. The Debterawoch (also called Merigeta-

woch), who are the expert musicians and heirs of Saint

Yared, play a crucial role in the transmission and perfor-

mance of the sacred music [1]. Ethiopian sacred music has

been preserved through oral and written traditions, with

written documents supporting and reinforcing the ongoing

oral traditions [3]. The significance of the EOTC chants

in Ethiopian culture and worldwide is evident through the

two major spiritual mass celebrations that have been rec-

ognized by UNESCO as intangible cultural heritages: the

Commemoration Feast of the Finding of the True Holy

Cross of Christ (in 2013) and the Ethiopian Epiphany (in

2019). 4 These two celebrations, primarily accompanied

by the EOTC chants, are among the five intangible cultural

heritages from Ethiopia registered by UNESCO.

Despite its long history and development, the research

of EOTC chants was quite rare. Among them, a renowned

ethnomusicological work from Western academia was by

Shelemay et al. [3, 4], based on the analysis of a series of

EOTC chants collected in Addis Ababa, 1975. They dis-

cussed the oral and written tradition of EOTC chants, the

EOTC chant music notation system, and further the defi-

nition of the three chanting modes, specifically the pitch

sets used in each of the modes. It should be noted that in

this work, all the recordings were transcribed and analyzed

by ear. As stated in the paper, the analysis, for a limited

number of recordings, was sometimes challenging when

transcribing the non-Western music scales. With no in-

digenous classification of their pitch materials [3], YeZema

Siltoch remains a primary research topic in the music the-

ory of EOTC chants.

This paper is a study on YeZema Siltoch of the EOTC

chants from computational perspectives. Our contributions

in this paper are three-fold. First, we propose a new dataset

for YeZema Silt classification and analysis. Second, we

2 Siltoch is the plural form of silt. For simplicity, the Amharic phrase
YeZema Silt and the English phrase chanting mode will be used inter-
changeably throughout this paper.

3 The term Ge’ez holds various connotations depending on context;
here, it denotes one of the three chanting styles. Conversely, it also refers
to the language and may have other applications.

4 https://ich.unesco.org/en/state/ethiopia-ET?

info=elements-on-the-lists

729



benchmark the YeZema Silt classification on the dataset us-

ing neural network classifiers with a number of features,

primarily the pitch contour features which have been ver-

ified useful in analyzing various kinds of music [5–11].

Third, we perform a comparative study with [3,4] to echo,

and to revise their statements as well: while the pitch sets

used in Ezil and Araray was regarded as the same [3], our

numerical results indicate notable difference in between

them. In the rest of this paper, we will have a background

introduction of EOTC chants in Section 2. The proposed

dataset, benchmarks and the comparative study will be in

Sections 3, 4, and 5, respectively. Conclusion and future

works will be given in Section 6.

2. BACKGROUND OF EOTC CHANTS

2.1 Features and Performance Traditions

The spiritual schools of the EOTC have several depart-

ments, locally known as Guba’e bet. These departments

include Nibab-bet (reading practice), Zema-bet (introduc-

tory to advanced level offices chanting), Qidase-bet (or

Kidase-bet, liturgical chants), Qine-bet 5 (or Kine-bet, po-

etry), Aquaquam-bet (or Akuakuam-bet, advanced chant-

ing with accompaniments), and YeMetsahift Tirguame-bet

(exegesis of scriptures). The knowledge and skills ac-

quired from each Guba’e bet are crucial for understand-

ing the chants. Each Guba’e bet, which focused on chant-

ing, has two or more slightly different vocal and perfor-

mance styles [12]. For example, Zema-bet has Bethle-

hem, Achabir, Qoma, and Tegulet, and Qidase-bet has Se-

lelkula and Debre Abay. These nominations are based on

the names of places where the center of excellence, that

approves a senior student to be a teacher, is located. Such

Guba’e bet, for example, Bethlehem has a slightly different

vocal style, ornamentation, and notation complexity com-

pared to Qoma, and it also has its own swaying and reli-

gious dancing tradition with its own drumbeat.

The EOTC chants incorporate monophonic, antiphonal,

and choral ritual performances. Our dataset is derived from

Qidase-bet, which primarily focuses on monophonic and

antiphonal ritual performance components without accom-

paniments. In contrast, Aquaquam-bet emphasizes reli-

gious dance and movements, primarily choral with some

monophonic and antiphonal components. It is accompa-

nied by prayer staffs known as mequamia, drums, and

sistrums [12, 13]. The content of the chants - the text,

whether poetic or unpoetic, is directly or indirectly based

on the Holy Bible. The lyrics primarily employ Ge’ez

( ), an ancient Semitic language with a distinct script

known as Fidäl. These chants play an essential role in the

religious practices of nearly 43.5% of the country’s popu-

lation, or over 32 million Orthodox Tewahedo Christians,

according to the 2007 national census [14]. 6

The social groups involved in the chants include priests,

deacons, and laypeople who attend the service hours. Tra-

5 -ne’ is pronounced as in ‘Nelson’
6 The Ethiopian and Eritrean faithful worldwide served by the chants

is additional to the data reported in [14].

ditionally, the chants were transmitted orally, with singers

memorizing a repertoire of phrases and melodies to per-

form during liturgical celebrations. Several decades ago,

chant manuscripts were handwritten on parchment, which

refers to processed goat or sheep skins. Even today, some

scholars adhere to this practice to uphold the church’s cul-

tural traditions. However, in recent decades, transmission

has been supported by printed manuscripts for training

along with oral traditions for actual performance.

Despite its rich heritage, the tradition of EOTC chants

faces significant challenges. Many training centers are

closing down due to absence of government support, insuf-

ficient community support for students [12], and the dom-

inance of modern education since the 20th century. De-

spite the contributions of printing and recording advance-

ments, the computational contribution to the Ge’ez lan-

guage and the chants remains underdeveloped. Except for

a few works on MIR [13] and music generation [15], com-

putational research on the EOTC chants is not as devel-

oped as it is for some other secular music. These issues

highlight the need for more research on the EOTC chants.

Our research aims to contribute to MIR-related tasks on the

EOTC chants, addressing this gap.

2.2 YeZema Siltoch - Chanting Modes

The EOTC chants encompass three primary YeZema Sil-

toch (modes): Ge’ez, Ezil, and Araray. They are typically

employed sequentially or intermixed, sometimes aligning

with the church calendar’s seasons. Notably, during fasting

periods, the Ge’ez and Araray modes predominate, while

the Ezil mode mostly reserved for holidays. These modes

serve as conduits for conveying distinct emotions and sea-

sonal themes within the EOTC chants [1].

• Ge’ez: Characterized by a foundational, low tone,

Ge’ez chanting evokes a sense of despondency and

solemnity. Rendered in a relaxed, subdued manner

devoid of rhythmic constraints, it encapsulates feel-

ings of despair, disappointment, and sorrow [1]. In

[3], the Ge’ez mode is interpreted as a chain of third

(a-c′-e′) with “chromatic auxiliary notes around the

outer fifth” (♯g/ ♭b around a, and ♯d′/ f′ around e′).

• Ezil: Positioned within a mid-range vocal register,

the Ezil (or Izil) mode assumes a secondary role,

characterized by its unassuming, moderate cadence.

Emotionally neutral in essence, it is seldom utilized

during fasting periods, maintaining a comfortable,

ordinary vocal expression. Shelemay et al. [3] stated

that “Ezil uses the same pitch set as in Araray,” but

this pitch set is rendered as either c-d-e-g-a or c-d-

f-g-a, implying that the third note lies in between e

and f and causes ambiguity for Western ears.

• Araray: Distinguished by its high-pitched rendi-

tion, embellished with ornamental flourishes and a

brisk tempo, the Araray mode exudes vitality and

jubilation. It serves as a vehicle for conveying an-

imated expressions, elation, and manifestations of

compassion, happiness and fulfillment.
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Figure 1. Interlinear letter-based notations with inter-

spersed neumes. From the first underlined two words, the

letters enclosed in red rectangles are used as short-form

representations of the melody to be used over the other un-

derlined words, sung with the same melody.

The EOTC chants rely on a sophisticated system of

interlinear notations, encompassing neumatic signs inter-

spersed between letter-based representations [1, 3]. This

notation system serves as the cornerstone of melodic ex-

pression in chanting. Although some notations are com-

mon across different chanting modes, they produce distinct

melodies depending on the mode, making it challenging to

identify a specific mode solely based on notation. Figure

1 provides an example of the notation system used in the

EOTC chants.

3. DATASET

The dataset was manually collected from the Eat the Book

website, 7 a hub of numerous audio books for most of the

teachings in the EOTC school departments, with full and

partial coverage. From the available audio books, we se-

lected the Se’atat Zema (Horologium chant), which is part

of Qidase-bet department. All the audios selected for our

dataset were recorded by a single scholar at a sampling rate

of 44,100 Hz and in stereo channel.

Our first step in the audio arrangement process involved

narrowing the gap between the longest and shortest dura-

tion among the audios. Long audios, such as those over 13

minutes, were segmented into shorter audios of less than

three minutes (180 seconds) in a way that preserves mean-

ingful segments. This segmentation process also applied to

audios that contained multiple chanting modes. For exam-

ple, if an audio had 160 seconds of Araray mode followed

7 https://eathebook.org/, We acknowledge the website’s ad-
ministrators for their invaluable contribution.

Figure 2. Distribution of audio recording length (in secs).

Shelemay and Jeffery [4] This work

Modes # Length # Length

Araray 8 11m36s 118 192m36s

Ezil 6 9m56s 176 291m29s

Ge’ez 10 21m12s 75 118m6s

Total 24 42m44s 369 602m11s

Table 1. Data distribution among the chanting modes.

by 22 seconds of Ezil mode content, it would be segmented

into two separate audios of 160 seconds and 22 seconds.

Recordings that were less than three minutes but still had

multiple modes were also segmented based on the respec-

tive duration of the included chanting modes.

On the other hand, short audios, like a 19-second audio,

were merged with neighboring context audios when appli-

cable to our assumptions. If no neighboring audio with the

same mode was found, it would be counted as a separate

audio. As we arranged all audios to be in a single mode,

we have a corresponding mode label for each audio. An-

other audio cleaning process was removing non-chant seg-

ments as the recordings included short explanatory state-

ments about the corresponding chants. We manually re-

moved them to ensure that the full audio content will be for

chanting. In this process we also have shortened the dura-

tion of significant silent regions, resulted in only two silent

regions above two seconds, particularly 2.25 and 2.14 sec-

onds. After such cleaning procedures, the overall duration

distribution of our dataset, ranging from 20.142 seconds to

177.476 seconds, is shown in Figure 2. As our immediate

future work, we are working on expanding our dataset by

including annotation of word-level lyrics to audio align-

ment as well as other features, which are not uncovered

in this paper to keep the focus. We will do more research

regarding other possible additional features.

Table 1 presents the comparison between the previously

used dataset (i.e., the recordings collected by Shelemay et

al. in [4]) and our dataset. While the previous dataset, with

a total of 24 instances, is less than one hour, our dataset

accounts for more than 10 hours, with a total of 369 in-

stances. The chanting mode annotations of the dataset are

available on https://github.com/mequanent/

ChantingModeClassification.git.
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4. YAREDAWI YEZEMA SILT CLASSIFICATION

As a preliminary study, we only consider using time-

averaged audio features (i.e., the features ignoring the in-

formation lying in the temporal dimension) for Yaredawi

YeZema Silt classification. Focusing on such features also

supports our subsequent discussion on the pitch distribu-

tions of different chanting modes (see Section 5).

4.1 Feature Representations and Classifiers

Following previous works on the analysis of various kinds

of music [5–11], we consider pitch distribution, the dis-

tribution of the frame-level pitch values, for the classifi-

cation task. Our pipeline of feature extraction mostly re-

sembles [10, 16], by having the stages of pitch contour ex-

traction, stable region extraction, and pitch drift calibra-

tion. First, the pitch detection algorithm pYIN [17] is uti-

lized for pitch contour extraction. It sets the time reso-

lution to 128 samples (5.8 ms) while the frequency res-

olution to 10 cents. After having the pitch contour, the

pitch distribution is obtained by having a histogram over

the frame-level pitch values with a frequency resolution of

also 10 cents. To analyze the time-averaged aspects of the

chanting modes, extracting the stable regions of the pitch

contour while discarding the sliding, ornamental or other

unstable components might be helpful. We therefore re-

implement two stable region extraction methods, namely

the morphetic method and the masking method, both pro-

posed in [5]. There is also observable pitch drift during

the performance. With an investigation of the data, we

found that the pitch drifting along the whole recording is

relatively small (around 1 semitone upward for the whole

recording), so the pitch calibration process can be done

straightforwardly with a linear regression. More specif-

ically, the regression is performed on the pitch values 1

semitones around the global maximum of the pitch his-

togram. With the regression line with slope s, the pitch

contour f [t] indexed by time t is calibrated to fcalibrated[t]
by having fcalibrated[t] := f [t]− st.

The pitch distribution features are therefore based on

the six types of pitch contours: three stabilization modes

(no stabilization, stabilization with morphetic method, and

stabilization with masking method) times two calibra-

tion modes (with and without calibration). Besides, sev-

eral audio features are also compared: time-average mel-

spectrogram, mel frequency cepstral coefficient (MFCC),

and chromagram. The melspectrogram and MFCC are ex-

tracted using the torchaudio package [18], while the

chromagram is extracted with the librosa package [19].

The time-average features of them are obtained simply by

taking average over the time axis.

For the classifiers, we utilize the M5 (0.5M) model ar-

chitecture proposed in [20]. The model is a fully convo-

lutional network containing only 1-D convolution layers,

max pooling layers and a global average pooling layer.

Such a design has small number of training parameters and

can capture the invariance in data [21]. While this network

was taken for raw waveform, we adapt it to operate in the

frequency domain regarding it as an operator invariant to

pitch shifting. To customize the model to our extracted

features, we changed the receptive fields in the first convo-

lutional layer from 80 to 3 when running on the non-raw-

audio features in our experiments. For all the experiments,

we adopt the categorical cross entropy loss function, Adam

optimizer, learning rate of 0.001, batch size of 32, and 50

epochs, due to model convergence.

4.2 Experiment Settings

To observe how the characteristics of YeZema Silt vary

across different recordings, we consider both the within-

dataset and cross-dataset experiments. For the within-

dataset experiment, we perform 5-fold cross validation

(CV) on the proposed dataset and report the average clas-

sification accuracy. For the cross-dataset case, the model

is trained on the proposed dataset and then tested on the

recordings performed by a chanter from a different chant-

ing department, specifically Zema-bet, in different time

and location [4]. The recordings we used from [4], de-

scribed in Table 1, have a sampling rate of 44100 Hz with

stereo channel with 0.33 and 4.05 seconds of shortest and

longest audio recordings, respectively. Lastly, to examine

the reasonable identifiable audio duration among the chant-

ing modes and how the duration affects the performance,

we consider four input durations, namely 5 seconds, 10

seconds, 20 seconds and full length.

4.3 Results

Table 2 lists the classification accuracy of all the experi-

ment settings. First, the results of full length audio show

that all the pitch distribution greatly outperform other au-

dio features by a gap of over 25 percentage points. Also,

the pitch distribution is more robust than the other audio

features in the cross-dataset scenario, with a performance

drop by 7 to 23 percentage points. However, comparing

the six pitch distributions, it is not clear which calibra-

tion or stabilization mode is better. The best accuracy over

all in the CV scenario is the calibrated but non-stabilized

pitch distribution, but the trend does not apply to the cross-

dataset case. Besides, we observe that 1) pitch contour sta-

bilization does help on the accuracy for most of the cases,

2) using stabilization tends to reduce the performance gap

between within-dataset and cross-dataset scenarios, and 3)

the masking method can reduce this gap better than the

morphetic method does, though the morphetic method typ-

ically has better classification accuracy. Lastly, there is a

clear trend that a longer input audio leads to a better per-

formance. This implies that YeZema Silt is a long-term,

song-level music concept, while it can also be signified to

some extend upon a 10- to 20-sec duration, which is around

the duration of a set of music notation.

Table 3 shows two example confusion matrices for both

the within-dataset and cross-dataset cases. For the within-

dataset case, the accuracy of each class basically follows

the amount of data (Ezil > Araray > Ge’ez, see Table 1).

The trend is different for the cross-dataset case: all classifi-

cation errors occur between Ezil and Araray, a result being

in line with the experience of analysis [3].
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Feature representation Within-dataset (5-fold CV) Cross-dataset

Pitch contour

Calibration Stabilization full 20 sec 10 sec 5 sec full 20 sec 10 sec 5 sec

No

No 96.20 91.51 87.93 81.60 87.50 82.98 72.96 74.76

Morphetic 95.13 87.23 83.47 73.35 83.33 84.40 76.67 70.97

Masking 94.85 83.85 76.85 64.32 87.50 74.47 68.52 55.41

Yes

No 98.11 89.92 88.02 80.78 75.00 80.85 77.04 69.64

Morphetic 95.66 87.71 80.39 70.58 79.17 73.05 70.00 69.07

Masking 92.94 84.05 76.32 63.22 83.33 78.01 79.63 62.43

Time-average chromagram 68.01 66.63 62.28 55.93 62.50 50.43 42.68 45.33

Time-average mel-spectrogram 64.20 59.20 55.16 54.61 37.50 48.72 50.41 47.91

Time-average MFCC 68.52 66.62 66.16 65.42 37.50 35.90 36.18 39.17

Table 2. Results (classification accuracy, in %) of Yaredawi YeZema Silt classification.

5-fold CV Cross-dataset

G E A G E A

G 92.0 2.67 5.33 G 100.0 0.0 0.0

E 1.14 97.73 1.14 E 0.0 83.33 16.67

A 2.54 2.54 94.92 A 0.0 25.0 75.0

Table 3. Confusion matrices over the Ge’ez (G), Ezil (E)

and Araray (A) classes. The reported classifier is trained

on calibrated pitch contour with masking stabilization.

5. ANALYSIS OF YAREDAWI YEZEMA SILT

The goal of our analysis of YeZema Silt is using com-

putational tools to individually identify the pitches uti-

lized in the three chanting modes. Any attempt to this

relies on some music theoretical assumptions. The clas-

sification results presented in Section 4.3 supports two as-

sumptions that facilitate the analysis: first, YeZema Silt is

a song-level property that can be satisfactorily described

with time-average pitch distributions; second, YeZema Silt

can be identified by a classifier invariant to pitch-shifting

(i.e. convolution). On the other hand, the classification re-

sults also expose a few technical limitations. While the raw

pitch distribution (i.e., without pitch contour stabilization)

yields the best classification accuracy, it is highly noisy and

therefore less applicable for our analysis purpose. In fact,

we found in our study that the raw and the morphetic pitch

distribution are relatively deficient in the below-mentioned

analysis process. Therefore, instead of advocating a spe-

cific setting in terms of classification accuracy, we decided

to use the calibrated pitch contour with masking stabiliza-

tion method on the full length audio for subsequent anal-

ysis, although its performance is not the most favorable.

It is worth noting that in this case, the performance gap

between within-dataset CV and cross-dataset is relatively

small among all settings.

Our approach, which partly resembles [10], contains

three steps: 1) shift the pitch distributions of each record-

ing such that each of them are best correlated (i.e., best

aligned); 2) compute the average of the aligned pitch distri-

bution for all the recording of the same chanting mode; 3)

employ the Gaussian Mixture Model (GMM) to estimate

the representative pitch set from the distribution.

Specifically, the pitch distributions of two recordings pi

and pj are aligned through pitch-shifting pj by ξij such

that their cross-correlation Rij := Rij [ξ] is maximized:

ξij = −ξji := argmax
ξ

Rij [ξ] . (1)

The recording which has the highest average correlation

with all the other recordings is considered as an anchor:

the pitch distributions of all the other recordings are pitch-

shifted to this anchor according to their optimal ξ and are

then averaged for GMM fitting. The mean (µ), variance

(σ2) and weight (w) of each GMM component then repre-

sents the pitch center, pitch variance and pitch weight. The

GMM fitting process is initialized by user-specified mean

values to enhance convergence [10]. To facilitate the dis-

cussion, only the components having variance smaller than

100 cents are considered as representative pitches.

The top row of Fig. 3 illustrates the aligned pitch

distributions for the three chanting modes and the two

datasets. We observe that the recordings in the same chant-

ing modes typically have similar pitch distributions over

the two datasets. Such a consistent trend is also observed

from the average pitch distributions (middle row of Fig. 3),

which shows that only one pitch (the third peak from the

left) from the two dataset in Araray is somehow different.

The bottom row of Fig. 3 shows the GMM-estimated

pitch distributions for all the recordings from both datasets.

By selecting the pitches summing up to maximal weights

within one octave, we obtain three representative pitches

for Ge’ez (denoted as g1, g2 and g3, from low to high),

five for Ezil (denoted as e1, e2, e3, e4 and e5) and also

five for Araray (denoted as a1, a2, a3, a4 and a5). 8 Other

representative pitches outside this octave are also notated:

the pitch being one octave below g3 is denoted as G3, while

the pitch one octave above g1 is denoted as ġ1. The same

naming rules also apply for Ezil and Araray.

Table 4 shows the GMM-estimated parameters for the

three modes. First, the pitches used in the Ge’ez mode are

more flexible than other two modes, as can be observed

by their variances than the pitches in other two modes.

Among them, only g2 has the variance less than 10 cents.

8 Here, the subscript number does not imply the hierarchical order of
the musical scale (e.g., g1 does not mean “the tonic of the Ge’ez mode”).
The hierarchy of these pitches is another research question and will be
considered as future work.
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Figure 3. Illustration of pitch distributions for the three

YeZema Siltoch. Top: the aligned pitch distributions of all

the recordings. A row in the 2-D illustration represents

the pitch distribution of one recording. Darker color repre-

sents larger values. Red background represents pitch dis-

tributions of the recordings in [4]. Middle: the average

pitch distribution of the proposed dataset (green) and [4]

(red). Bottom: GMM-estimated pitch distributions for all

the recordings from both datasets. The pitch value of each

note name under the bottom row is listed in Table 4.

g3 and g2 form a major third (∆µ = 400 cents) while g1
and g2 form approximately a minor third g2 (∆µ = 324
cents). The pitches of g1 and g3 can vary by more or less

semitones. Besides, we also observe that the octaves of g1
and g3 (i.e., G3 and ġ1) also have large variances. This

implies that such variance (flexibility of pitch) depend on

the pitch name rather than the register. These findings are

basically in line with the statements (a scale ♯g-a-♭b-c′-♯d′-

e′-f ′ while g-c′-e′ are the stem pitches) made in [4].

Both the Ezil and Araray modes have five representative

pitches within one octave. However, the five representative

pitches of them are different. For Ezil, all the intervals lie

between 200 cents (major second) and 300 cents (minor

third), while for Araray, the intervals distribute from 172

cents (less than a major second) to 347 cents (in between

a minor third and a major third). In other words, there is a

consistent trend that the intervals in Ezil are more equally

distributed than Araray. There are also some flexible usage

of pitch, for example, e5 (E5) in Ezil. These suggest that

the pitch sets found in [4] needs revision: from our obser-

vation, each of the pitch sets used in the three EOTC chant-

ing modes is distinctive. Besides, a mode is characterized

by not only its pitch centers, but also its pitch variances.

Mode Note name µ σ2 w ∆µ

Ge’ez

G3 361 11 0.034
486

g1 847 21 0.211
324

g2 1171 7 0.171
400

g3 1571 14 0.419
476

ġ1 2047 18 0.112

Ezil

E4 189 6 0.022
258

E5 447 14 0.023
223

e1 670 6 0.106
270

e2 940 7 0.151
234

e3 1174 7 0.123
232

e4 1406 3 0.416
268

e5 1674 15 0.068
204

ė1 1878 5 0.059
261

ė2 2139 5 0.013

Araray

A5 173 3 0.008
347

a1 520 6 0.318
172

a2 692 8 0.173
218

a3 910 10 0.176
297

a4 1207 5 0.134
174

a5 1381 4 0.027
335

ȧ1 1716 5 0.084

Table 4. GMM-estimated mean (µ, in cents), variance (σ2,

in cents), weight (w) of the representative note pitches in

the Ge’ez, Ezil, and Araray modes. Reference pitch (0

cent) is 82.4 Hz. The intervals (difference between two

neighboring pitches, ∆µ) are listed in the last column.

6. CONCLUSION

In this paper, we presented a research on a relatively under-

explored music genre, the Ethiopian Orthodox Tewahedo

Church (EOTC) chant, from three computational perspec-

tives. First, through a rigorous data cleaning and annota-

tion process, we presented a new and high-quality EOTC

chant dataset, which can be extended for various music in-

formation retrieval (MIR) and music generation tasks. Sec-

ond, we conducted a chanting mode (YeZema Silt) recogni-

tion task using our dataset and achieved promising results.

Additionally, this paper is, to our knowledge, the first to

computationally analyze the pitch sets of the EOTC chant-

ing modes, specifically YeZema Siltoch, with new musico-

logical insights. In the future, we plan to keep enriching

the annotations of the datasets, by incorporating more de-

tails like lyrics, chanting options, reading tones and other

potential features. Analyzing YeZema Siltoch using the

features in the temporal dimension and the new data an-

notations are also our ongoing projects.

The EOTC chants encompass a wide range of styles and

forms. In this paper, we specifically concentrated on the

Se’atat Zema (Horologium chant), which falls under the

Qidase-bet department. Our objective is to encourage re-

sponsible research on EOTC chants, as computational re-

search in this area can lead to technological advancements

that enhance the learning process and increase accessibil-

ity. Diversifying the data and MIR of EOTC chants for the

protection and promotion of this spiritual-cultural heritage

is also our future work in the long term.
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