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ABSTRACT

The speech domain prevails in the spotlight for several nat-

ural language processing (NLP) tasks while the singing

domain remains less explored. The culmination of NLP

is the speech-to-speech translation (S2ST) task, referring

to translation and synthesis of human speech. A disparity

between S2ST and the possible adaptation to the singing

domain, which we describe as singing-voice to singing-

voice translation (SV2SVT), is becoming prominent as the

former is progressing ever faster, while the latter is at a

standstill. Singing-voice synthesis systems are overcoming

the barrier of multi-lingual synthesis, despite limited atten-

tion has been paid to multi-lingual songwriting and song

translation. This paper endeavors to determine what is re-

quired for successful SV2SVT and proposes PolySinger

(Polyglot Singer): the first system for SV2SVT, perform-

ing lyrics translation from English to Japanese. A cascaded

approach is proposed to establish a framework with a high

degree of control which can potentially diminish the dis-

parity between SV2SVT and S2ST. The performance of

PolySinger is evaluated by a mean opinion score test with

native Japanese speakers. Results and in-depth discussions

with test subjects suggest a solid foundation for SV2SVT,

but several shortcomings must be overcome, which are dis-

cussed for the future of SV2SVT.

1. INTRODUCTION

Speech-to-speech translation (S2ST) is a method for trans-

lating human speech into another language using synthetic

speech. To do this, the conventional approach is to con-

catenate technologies that process separate parts of human

speech into a complete system, where the cornerstones are

speech recognition, machine translation and speech syn-

thesis [1–3]. Although the use of end-to-end (E2E) solu-

tions for S2ST has been studied thanks to the emergence

of seq-to-seq models [4–6], neither E2E nor cascaded so-

lutions have been attempted in the singing domain.

Singing-voice synthesis (SVS) systems have in recent

years become very capable of human-like singing [7,8] and
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have even accomplished multi-lingual synthesis [9]. How-

ever, while the synthetic voice can sing cross-lingually, the

songwriter might not be able to write cross-lingually.

Lyrics translation is a complex task which strives for

inter-cultural comprehension of what makes a song suit-

able for singing. Prose translation, also called direct trans-

lation [10–12], differs greatly in its application from poetry

and lyrics translation, as prose translation does not respect

rules regarding rhythm and rhyme [13,14]. A few attempts

at automatic lyrics translation have been made by trans-

forming standard music notation from one language to an-

other, which shows promising results [15, 16]. However,

the necessity for standard music notation becomes a glar-

ing restriction. From the perspective of a songwriter with

interest in writing foreign-language lyrics, the creation of

standard music notation is a labor-intensive task begging

for automation. Therefore, to overcome the present limi-

tations in adapting S2ST methods to the singing domain,

we propose PolySinger: the first system for singing-voice

to singing-voice translation (SV2SVT). PolySinger is a

concatenated system of music information retrieval (MIR)

technologies with the goal of directly translating a vocal

performance in a source language into a synthetic vocal

performance in a target language. PolySinger is made pub-

licly available 1 .

Automatic recognition of note-level events in a vo-

cal melody is a complex and vaguely defined task [17].

Nonetheless, standard music notation is required for lyrics

translation, and as such, this work proposes a simple yet ef-

fective approach to defining note-level events by assistance

from syllable alignment.

State-of-the-art (SOTA) in the following technolo-

gies are structured into a complete SV2SVT system for

PolySinger: 1) automatic lyrics transcription, 2) phoneme-

level lyrics alignment, 3) frame-level vocal melody extrac-

tion, 4) automatic lyrics translation, and 5) singing-voice

synthesis. PolySinger is proposed as a concatenated solu-

tion instead of E2E to represent a modular framework fa-

cilitating research in SV2SVT. In this paper, PolySinger is

presented for English to Japanese SV2SVT, which, to the

best of our knowledge, also constitutes the first attempt at

automatic lyrics translation from English to Japanese.

A series of native Japanese speakers participated in

a mean opinion score (MOS) test to evaluate the per-

ceptual quality of PolySinger for English to Japanese

SV2SVT. Results show a promising fundamental structure

1 https://github.com/SilasAntonisen/PolySinger
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for SV2SVT, but also that our translated Japanese lyrics

have not yet reached ideal naturalness.

2. RELATED WORK

Convolutional neural networks and expanded pronuncia-

tion dictionaries have been used for automatic lyrics tran-

scription in monophonic recordings [18], along with time-

delay neural networks in polyphonic recordings [19]. The

latest reported SOTA in automatic lyrics transcription was

achieved by adapting a Wav2Vec 2.0 [20] speech recog-

nizer to the singing domain by transfer learning [21]. How-

ever, in our preliminary tests we found the current SOTA

speech recognition system, Whisper [22], to outperform

the SOTA in automatic lyrics transcription [21] when tran-

scribing a vocal performance. Therefore, Whisper [22] is

used for automatic lyrics transcription in PolySinger.

Limited success has been achieved using speech align-

ment systems for lyrics alignment [23]. However, great

results have been obtained in word-level lyrics alignment

by training a polyphonic acoustic model in [24], but it is

not until in [25] that a direct attempt is made at phoneme-

level lyrics alignment without sacrificing competitive per-

formance in word-level alignment. Recent approaches

have exploited the correlation between phoneme onset and

note pitch by joint representation learning [26] or cross-

modal embedding in the audio and text domain through

contrastive learning [27]. For PolySinger we use [25]

due to its documented performance in the specific task of

phoneme-level lyrics alignment and accessibility to a pre-

trained model.

Defining note-level events in a vocal melody is a com-

plex task, and thus there is a lack of datasets and trained

neural networks for note-level vocal melody extraction

(VME) [17]. On the other hand, frame-level VME is an ex-

tensively researched field with robust frameworks [28–30].

Considering the high accuracy of most modern frame-

level VME systems, [30] is used in PolySinger due to

the streamlined implementation available through the MIR

toolkit Omnizart [31]. Instead of defining the note-level

events by VME, we define them by syllable-wise bound-

aries delimited by the phoneme-level lyrics alignments,

and guide the pitch of those notes with frame-level VME.

In [15], a rule-based approach is suggested for translat-

ing from English to Chinese lyrics with respect to the orig-

inal lyrics, melody and rhythm, as well as the tonal proper-

ties of Chinese. In [16], a system for bidirectional transla-

tion between English and Chinese is proposed which incor-

porates an alignment decoder for determining the amount

of syllables to write in the translation and how they should

align to the melody. Additionally in [16], the evalua-

tion process of the system is assisted by synthesizing the

translation via SVS. For PolySinger, we take inspiration

from [15] by going for a simple rule-based approach for

English to Japanese lyrics translation due to data scarcity

and an interest in unraveling the implications of process-

ing Japanese lyrics. To do so, we exploit the pre-trained

SOTA model for multi-lingual translation nllb-200 [12]

by transferring it to the singing domain.

Early work on SVS created concatenated singing li-

braries of sampled vocal sounds in a wide range of pitches,

from which a synthesizer chose the samples for synthe-

sis based on a musical score [32, 33]. More recent ap-

proaches use acoustic models trained on vocal perfor-

mances from a singer to replicate the way he/she would

perform a song given a musical score [7]. Furthermore,

cross-lingual synthesis has become possible even when

only training on mono-lingual singers [9]. The open-

source scene has entered the SVS consumer market, e.g.,

by use of the ENUNU 2 plugin to enable usage of the

NNSVS toolkit [8] in the OpenUTAU editor. Synthesizer

V 3 is gathering a common consensus of being one of the

best consumer products for SVS with a wide range of high-

quality neural singing libraries capable of cross-lingual

synthesis in a user-friendly environment with scripting ca-

pabilities. Therefore, Synthesizer V is used for SVS in

PolySinger. Similarly to [16], we synthesize the translated

lyrics, but we want to emphasize that, differently from [16],

PolySinger automates the intermediate link between auto-

matic lyrics translation and SVS.

3. PROPOSED SINGING-VOICE TO

SINGING-VOICE TRANSLATION SYSTEM

Figure 1 illustrates a flowchart of the proposed SV2SVT

system. This section will systematically break down

the technology, implementation and functionality of each

block presented in this figure.

3.1 Automatic Lyrics Transcription

Whisper [22] is a Transformer-based model [10] origi-

nally pre-trained on 680k hours of weakly-labeled audio

for multi-task learning; there among the main task be-

ing multi-lingual automatic speech recognition. The most

recent checkpoint, Whisper-large-V3, is trained on

1M hours of weakly-labeled audio and 4M hours of au-

dio which was pseudo-labeled by Whisper-large-V2.

We collect Whisper-large-V3 from HuggingFace 4

for automatic lyrics transcription. The model has 1,550M

parameters and was trained for 2 epochs on the dataset. We

have not fine-tuned Whisper on singing data due to Whis-

per’s great ability to generalize across several domains.

To keep the memory usage of Whisper within ∼8 GB, a

chunking algorithm segments the vocal performance into

30-second segments which are processed individually with

a batch size of 4. Block 1 in Figure 1 is facilitated by Whis-

per to transcribe an English string of text from an English

vocal performance.

3.2 Phoneme-Level Lyrics Alignment and

Syllable-Level Lyrics Alignment

In Western languages, poetry and lyrics are very reminis-

cent of each other. Poetry has a rhythmic structure called

2 https://github.com/oatsu-gh/ENUNU
3 https://dreamtonics.com/synthesizerv/
4 https://huggingface.co/openai/

whisper-large-v3
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Vocal Performance

Block 1
Automatic Lyrics Transcription

Subsection 3.1

Block 2
Phoneme-Level Lyrics Alignment

Subsection 3.2

Block 5
Automatic Lyrics Translation

Subsection 3.4

Block 7
Singing-Voice Synthesis

Subsection 3.5

は な す

0 <L 1.23, EH 1.27, T 1.51>
<IH 1.51, T 1.68>

<G 1.68, OW 1.70> 2.03

Let it go 離す

Block 3
Syllable-Level Lyrics Alignment

Subsection 3.2

<Note 1, onset 1.23, dur 0.28>
<Note 2, onset 1.51, dur 0.17>
<Note 3, onset 1.68, dur 0.35>

Block 6
Japanese Lyrics Pronunciation

Subsection 3.4

<は, onset 1.23, dur 0.28>
<な, onset 1.51, dur 0.17>
<す, onset 1.68, dur 0.35>

Block 4
Frame-Level Vocal Melody Extraction

Subsection 3.3

Pitch: 58, start 1.23, end 1.25
Pitch: 61, start 1.25, end 1.27
Pitch: 62, start 1.27, end 1.28

Character Types
Kanji: 離

Hiragana: は, な, す

Figure 1. Overview of our proposed SV2SVT system, PolySinger. Provided an English vocal performance, a synthetic

vocal performance is created in Block 7, defined by notes with onsets, durations and Japanese lyrics, guided by a frame-

level melody. Every numeric value is in seconds and “< >” illustrates the boundaries of notes. The process of segmenting

words into syllables is illustrated in Table 1. Fundamentals of Japanese writing are explained in Subsection 3.4, and the

process of converting kanji to hiragana is illustrated in Table 2.

meter. This structure can be dissected into a syllabic pat-

tern [34]. Therefore, in this work, we define the onset

and duration of notes by aligning the sung syllables to the

vocal performance. To obtain syllable-level lyrics align-

ments, we first align the sequence of phonemes present in

the vocal performance. The phoneme sequence is extracted

with the pre-trained phoneme-level lyrics aligner informed

in [25]. This model is a deep neural network trained

for joint phoneme-level lyrics alignment and singing-voice

separation. Text and audio are encoded separately. Text

features and audio features are aligned by dynamic time

warping-attention to minimize the total distance between

audio frames and phonemes. The list of possible phonemes

is provided by CMUdict 5 . Block 2 in Figure 1 uses

the phoneme-level lyrics aligner to align the transcribed

lyrics provided by Block 1 to the vocal performance.

The phoneme alignments are informed in seconds. The

phoneme sequence is concatenated into syllables by simple

rules: 1) it is assumed that each phoneme corresponding to

a vowel makes an individual syllable, and 2) consonants

are merged with their closest neighboring vowel, gravitat-

ing towards the rightmost vowel in case of both neighbor-

ing phonemes corresponding to vowels. The process of

breaking a word into phonemes according to CMUdict and

concatenating them into syllables is illustrated in Table 1.

In Block 3 of Figure 1, in order to perform syllable-level

lyrics alignment, we define the onset of a note as the start

of the first phoneme in a syllable, and we define the dura-

tion as the time difference between the onset and the end

of the last phoneme in the syllable.

5 http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Word BLUEBERRY

Phonemes B L UW1 B EH2 R IY0

Syllables BLUW BEH RIY

Table 1. Example of the word “blueberry” being decon-

structed into phonemes with respect to CMUdict and re-

constructed into syllables. An integer ranging 0-2 is asso-

ciated with each vowel to indicate the type of vowel stress.

3.3 Vocal Melody Extraction

The notes in Block 3 of Figure 1 with timings defined by

phoneme boundaries are not individually associated with

a unique pitch. Instead, to preserve the melody from the

vocal performance as much as possible, the melody is ex-

tracted at a frame level. This frame-level pitch contour is

used to automate the pitch over time for the note sequence.

The notes are set to a standard pitch of 60, and the contour

is used to describe the deviation from 60 at each frame.

The frame-level VME system presented in [30] deploys a

deep convolutional neural network for semantic segmenta-

tion across a time-frequency image. Additionally, a pro-

gressive neural network is used for cross-domain trans-

fer learning between the audio domain (frequencies) and

the symbolic domain (pitch). Block 4 in Figure 1 utilizes

this model for extracting the frame-level melody contour

as pitches from the vocal performance. The start and end

of pitches are in seconds. The model is used through the

Omnizart toolkit [31].
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3.4 Automatic Lyrics Translation and Japanese Lyrics

Pronunciation

nllb-200 [12] is a Transformer [10]-based mixture-

of-experts (MoE) multi-lingual translation model that

achieves SOTA results in many languages. This success

is largely owed to the parallel development of datasets:

1) the expertly-annotated Flores-200 dataset (which con-

sists of 3,001 English sentences translated into 204 lan-

guages), and 2) automatically-generated datasets by web-

scraping for either mono-lingual sentences with high

probability of being each other’s translation, or mono-

lingual sentences for back-translation. The biggest model,

nllb-200-MoE, has 54B parameters, which is infea-

sible to run locally. Therefore, we collect the smaller

checkpoint nllb-200-distilled-600M from Hug-

gingFace 6 and fine-tune the model for English to Japanese

lyrics translation. Since neither high-quality nor high-

quantity dataset of paired English and Japanese lyrics ex-

ists, we take inspiration from [15] and scrape the web

for lyrics translations that are not necessarily singable.

Our dataset consists of ∼213k paired lines, thereof ∼80%

(∼20%) being Japanese⇒English (English⇒Japanese) 7 .

With PolySinger, we perform English⇒Japanese transla-

tion, so we invert the Japanese⇒English lyrics pairs into

English⇒Japanese lyrics pairs. We hypothesize that this

inversion does not raise an issue, but might in fact incen-

tivize the model to produce high-quality Japanese lyrics

even when provided with low-quality English lyrics. Be-

sides, unlike in [15], we attempt fine-tuning with no prior

self-supervised training on mono-lingual lyrics due to our

larger paired dataset.

Ideally, the output of our fine-tuned model should have

the same amount of syllables as established in Block 3 of

Figure 1. However, counting syllables is not as simple in

Japanese as in English. Japanese has moraic syllabaries in

the form of kana. Kana characters have specific pronun-

ciations that take up one mora (Japanese syllable) each.

Japanese also uses kanji as logograms, that is, characters

that convey a certain meaning. Kanji characters have mul-

tiple readings depending on the context, and, as such, it

becomes a challenging task to decide the pronunciation of

a Japanese sentence. To get the correct pronunciation of

kanji characters, pyKAKASI 8 is used to decode kanji into

their hiragana (a type of kana) readings. An illustration of

the relation between kanji and Japanese pronunciation can

be seen in Table 2. pyKAKASI is dictionary-based, and it

can therefore be difficult to convert sentence-wise instead

of word-wise. Japanese does not use blank space to sepa-

rate words, therefore, we use Nagisa 9 , a recurrent neural

network trained for Japanese word segmentation.

During inference, a beam search is applied to the output

of our fine-tuned nllb-200-distilled-600M with

6 https://huggingface.co/facebook/

nllb-200-distilled-600M
7 Both English⇒Japanese and Japanese⇒English are collected from

https://lyricstranslate.com/. Extra Japanese⇒English is
also collected from https://www.animelyrics.com/.

8 https://codeberg.org/miurahr/pykakasi
9 https://github.com/taishi-i/nagisa

Kanji character 離

Hiragana readings り はな

Roman readings RI HA NA

Mora count 1 2

Table 2. Example of two possible hiragana readings for a

kanji character.

as many beams as memory will allow (∼50 beams in our

tests). The beams are biased towards a token count lower

than the number of syllables in Block 3 of Figure 1 due to

a kanji always corresponding to at least one syllable. Each

generated sentence becomes word-separated with Nagisa

and the kanji are converted into hiragana readings with

pyKAKASI. The sentence with the lowest non-negative

difference between mora count and syllable count gets se-

lected and assigned to the notes in Block 6 of Figure 1.

3.5 Singing-Voice Synthesis

Synthesizer V is a SVS system with growing popularity

among musicians. The technology behind Synthesizer V

is kept proprietary. Based on related literature [7, 8], it is

assumed that AI singing-voices in Synthesizer V are acous-

tic models trained on phoneme-level annotated vocal per-

formances. With this training scheme, the model recog-

nizes patterns in a singer’s vocal performances, e.g., artic-

ulation of phoneme sequences, transitions between pitches

and tendencies to use vibrato. Additionally, Synthesizer

V AI voices have parameters for vocal modes, which can

be included in training by annotating vocal samples with

a singing style, e.g., nasal, powerful, soft, and whisper.

AI singing-voices are usually only trained on vocal perfor-

mances by a mono-lingual or bilingual singer, however AI

voices in Synthesizer V are capable of cross-lingual syn-

thesis in English, Japanese, Mandarin Chinese, Cantonese,

and, recently, Spanish. It is assumed, based on related liter-

ature [9], that cross-lingual synthesis is achieved by unify-

ing phoneme representations across languages with the in-

ternational phonetic alphabet and training on data labeled

with language identification such that the acoustic model

can learn language-specific features. As illustrated in Fig-

ure 1, the notes with Japanese lyrics provided by Block 6

are plotted into Synthesizer V at a standard pitch of 60. The

vocal contour provided by Block 4 is used to automate the

deviation from pitch 60 over time. We use the AI singing-

voice Mai in Synthesizer V to generate the Japanese vocal

performance.

4. EXPERIMENTS

Objective measures in machine translation such as BLEU

[35] are typically used for word-wise similarity with re-

spect to a ground truth. Such a method does not suit lyrics

translation as there should rather be a focus on seman-

tic interpretation rather than precise word choice. More-

over, PolySinger has to be evaluated on the overall per-
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Score 1 2 3 4 5

Meaning Very poor Poor Neutral Good Very good

Table 3. Five-point scale for MOS test.

ID Question

Q1 How much sense do the lyrics make?

Q2 How natural is the Japanese used in the lyrics?

Q3 How well is the meaning of the original lyrics preserved?

Q4 How singable are the generated lyrics?

Q5 How well are the lyrics and melody aligned?

Q6 What is the overall quality of the generated Japanese singing?

Table 4. Questions asked to the test subjects in the MOS

test of Section 4.

formance achieved for English⇒Japanese SV2SVT rather

than solely on the translation quality. Therefore, we evalu-

ate PolySinger subjectively by means of a MOS test.

4.1 Methodology

Six native Japanese speakers participated in a MOS test

to evaluate the perceptual quality of English⇒Japanese

SV2SVT using PolySinger on 5 different vocal perfor-

mances. All test subjects were females ranging from 24 to

39 years old with no hearing impairment. The test subjects

were asked to self-report their English speaking level. Two

participants reported complete fluency (5/5), one reported

near fluency (4/5), two more indicated advanced compre-

hension (3/5), and the final one reported intermediate com-

prehension (2/5). Using the inference procedure described

in Subsection 3.4, PolySinger was alternately tested

with the original nllb-200-distilled-600M (Base-

line) and our fine-tuned nllb-200-distilled-600M

(Fine-tuned) on every vocal performance. The test subjects

were asked to first listen to an English vocal performance,

followed by the synthetic performances generated by the

two PolySinger versions (i.e., Baseline and Fine-tuned).

Participants were not informed which synthetic vocal per-

formance was generated by which system variant. Using

the 5-point scale shown in Table 3, the test subjects were

asked to assess each generated performance by the 6 MOS

questions displayed in Table 4. The average time a par-

ticipant spent on the evaluation was 53 min. The audio

samples used for evaluation can be accessed here 10 .

After the participants submitted their MOS scores, we

additionally had a brief discussion with them individually

about their general opinions and observations.

4.2 Results

Table 5 shows the MOS test results along with 95% confi-

dence intervals from the Student’s t-distribution [36]. Both

system variants (i.e., Baseline and Fine-tuned) lie some-

where between poor and neutral in all 6 MOS questions

Q1–Q6. The relatively large confidence intervals in Table

10 https://antonisen.dev/polysinger/

5 suggest a high variance in opinion scores. We investi-

gate this variance in Figure 2 by representing per-question

score’s relative frequency. While it is true that the majority

of opinion scores lies in the mid-to-low end of the spec-

trum, several evaluations have also resulted in good or very

good opinion scores. This emphasizes the very subjective

nature of the SV2SVT problem.

Given a MOS question Q1–Q6, we determine if there

is a statistically significant difference between the opin-

ion scores for Baseline and Fine-tuned. A Kolmogorov-

Smirnov test [37] generally rejects, at a standard signif-

icance level of 5%, the null hypothesis that our opinion

score sample populations follow Gaussian distributions.

Therefore, we use a Wilcoxon rank-sum test [38] to de-

termine whether there are statistically significant differ-

ences in MOS between the two system variants. The p-

values shown in Table 6 demonstrate that the performance

of the two systems is rather equivalent. Specifically, these

p-values indicate that there are no statistically significant

differences between Baseline and Fine-tuned at a standard

significance level of 5% given any of the 6 MOS questions.

During discussions conducted after the MOS test, the

test subjects generally conveyed a positive reaction to-

wards SV2SVT being possible with PolySinger. However,

as anticipated, the participants mainly assessed PolySinger

by the naturalness of the Japanese language used in the

context of singing and the pronunciation of words. The

most recurring observations from the participants, that

were suggested as crucial improvements needed for the

pursuit of natural Japanese singing, are summarized in Ta-

ble 7. In the next section, we will discuss the comments in

Table 7 as to why our processing and synthesis of Japanese

might not have been of ideal quality, along with our plan

for improving them in future. Moreover, the statistically

insignificant difference between Baseline and Fine-tuned

is also discussed along with techniques and technologies

that may assist in improving PolySinger.

5. DISCUSSION

To produce natural Japanese speech synthesis, the front-

end of a text-to-speech system requires phonetic and

prosodic features [39]. Phonetic features, i.e., pronun-

ciations, are typically acquired by grapheme-to-phoneme

(G2P) conversion, and prosodic features, i.e., rhythm and

intonation, are in Japanese typically acquired by phrase

break prediction and accent estimation [40–42]. G2P con-

version is particularly difficult in Japanese, since kanji

characters can have multiple pronunciations. As indicated

by our test subjects (C1 in Table 7) and discussed in [40],

the accuracy obtained by dictionary-based G2P conversion

in Japanese is not satisfactory. Japanese has no word sep-

arators, which also makes it difficult to determine phrase

breaks. In our work, we performed word segmentation

with Nagisa to avoid intra-word breaking, and attempted

to define phrase breaks as the pauses transcribed by lyrics

alignment on an English vocal performance. However, ac-

cording to our test subjects (C5 in Table 7), these methods

yielded limited success. As future work, we will inves-
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System / Question Q1 Q2 Q3 Q4 Q5 Q6

Baseline 2.53 ± 0.49 2.57 ± 0.48 2.47 ± 0.44 2.40 ± 0.41 2.50 ± 0.52 2.33 ± 0.45
Fine-tuned 2.17 ± 0.46 2.30 ± 0.48 2.10 ± 0.44 2.23 ± 0.44 2.10 ± 0.40 2.13 ± 0.41

Table 5. MOS quality test results, broken down by question, with 95% confidence intervals.
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Figure 2. Bar plots representing per-question score’s relative frequency from the MOS quality test for Baseline (left) and

Fine-tuned (right).

Question Q1 Q2 Q3 Q4 Q5 Q6

p-value 0.228 0.389 0.115 0.509 0.279 0.557

Table 6. p-values, broken down by question, from a

Wilcoxon rank-sum test comparing MOS scores from

Baseline and Fine-tuned.

ID Comment

C1 Incorrect readings of kanji

C2 Usage of keigo in casual language

C3 Direct translations where interpretations are needed

C4 Occasionally, lyrics are not entirely translated

C5 Both intra- and inter-word separation at unnatural places

C6 Missing keywords important to the song

C7 Wrong word order

C8 Improper mixture of feminine and masculine language

Table 7. Comments from discussions with the test subjects

on essential improvements that could lead to more natural

synthetic Japanese singing.

tigate the adaptation of SOTA methodologies in Japanese

text-to-speech to SV2SVT such as phrase break prediction

with large language models (LLMs) [41] and G2P conver-

sion via machine translation [40].

In [15], they demonstrated an improvement in auto-

matic lyrics translation by fine-tuning on paired lyrics that

were not necessarily singable, but also by pre-training on

mono-lingual lyrics. In this work, we avoided pre-training

on mono-lingual lyrics and only fine-tuned on paired lyrics

that were not necessarily singable, which resulted in no sta-

tistically significant improvement with respect to the base-

line model (see Table 6). We applied a beam search to find

translated lyrics that fit well into the syllable count of the

original lyrics. The selected lyrics were occasionally not a

full translation of the original lyrics (C4 in Table 7). Apart

from the use of keigo (honorific language) being inappro-

priate for the inherent casual nature of song lyrics (C2 in

Table 7), we conjecture that keigo could also be a major

cause of incomplete lyrics translations. This is because

keigo will usually incorporate more characters than casual

language, which means that it will be harder to fit the lyrics

into the fixed syllable count.

In [16], they achieve SOTA results by training on a

dataset created by back-translating mono-lingual lyrics and

automatically aligning automatically-generated melodies

that fit both the source and target lyrics. As future work,

creating such a dataset and training an alignment decoder

similarly to [16] could very well be adapted to Japanese.

However, we hypothesize that translation systems have an

inherent limitation towards cross-lingual songwriting that

hinders them from rivaling professional human translators

due to a lack of abstract interpretation and “imagination”.

Hence, as future work, we will also investigate the usage

of LLMs for sentiment analysis and feature extraction to

exploit poetry/lyrics generation models. By lyrics genera-

tion, guided by keyword spotting, we can also address the

issue of missing keywords (C6 in Table 7).

6. CONCLUSION

The goal of this paper has been to adapt conventional S2ST

to the singing domain. To do so, we have built the first

SV2SVT system, PolySinger, by cascading SOTA MIR

technologies facilitating a modular tool for extended re-

search in SV2SVT. We have conducted a MOS test with

native Japanese speakers to evaluate PolySinger’s perfor-

mance for English to Japanese SV2SVT. Results indicate

that we have created a fundamentally-coherent structure

for SV2SVT, but the translation of English lyrics into

Japanese and the automatic synthesis of it is not yet natural

enough. To further develop SV2SVT, our future work will

investigate —to facilitate creative lyrics generation— the

usage of sentiment analysis and feature extraction for ab-

stract meaning representation of lyrics as opposed to trans-

lation. Finally, we will also investigate the necessities for

autonomous generation of natural Japanese lyrics.
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