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ABSTRACT

Music foundation models possess impressive music
generation capabilities. When people compose music, they
may infuse their understanding of music into their work,
by using notes and intervals to craft melodies, chords to
build progressions, and tempo to create a rhythmic feel. To
what extent is this true of music generation models? More
specifically, are fundamental Western music theory con-
cepts observable within the “inner workings” of these mod-
els? Recent work proposed leveraging latent audio repre-
sentations from music generation models towards music
information retrieval tasks (e.g. genre classification, emo-
tion recognition), which suggests that high-level musical
characteristics are encoded within these models. However,
probing individual music theory concepts (e.g. tempo,
pitch class, chord quality) remains under-explored. Thus,
we introduce SynTheory, a synthetic MIDI and audio mu-
sic theory dataset, consisting of tempos, time signatures,
notes, intervals, scales, chords, and chord progressions
concepts. We then propose a framework to probe for these
music theory concepts in music foundation models (Juke-
box and MusicGen) and assess how strongly they encode
these concepts within their internal representations. Our
findings suggest that music theory concepts are discernible
within foundation models and that the degree to which they
are detectable varies by model size and layer.

1. INTRODUCTION

State-of-the-art text-to-music generative models [1–3] ex-
hibit impressive generative capabilities. Past work sug-
gests that internal representations of audio extracted from
music generative models encode information relating to
high-level concepts (e.g. genre, instruments, or emo-
tion) [4–7]. However, it remains unclear if they also cap-
ture underlying symbolic music concepts (e.g. tempo or
chord progressions) [8].

We aim to investigate if state-of-the-art music genera-
tion models encode music theory concepts in their internal
representations and to what extent. Confirming this could
enable the creative alteration of these concepts, providing
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artists with new methods towards more detailed and lower-
level control [9] (e.g. changing the key of a song or editing
a particular chord in a chord progression). Furthermore,
by benchmarking these foundation models, we identify po-
tential avenues for improvement towards stronger concept
encoding. Our approach is based on work in probing and
editing concepts in language models, which have shown
promise in identifying emergent representations in autore-
gressive models and editing factual knowledge [9–12]. For
music generative models, the probing approach has been
applied to high-level concepts, such as emotion, genre, and
tagging [4–7]. Moreover, existing datasets such as Hook-
Theory [13] do contain rich annotations for music theory
concepts but are associated with copyrighted music, poten-
tially complicating their use.

Our first contribution is a framework to generate di-
agnostic datasets for probing music theory concepts, by
programmatically specifying which concepts to vary and
which to keep constant, while controlling the presence of
potential distractor concepts. Our synthetic music the-
ory dataset, SynTheory, consists of seven music con-
cepts based on Western music theory: tempo, time signa-
tures, notes, intervals, scales, chords, and chord progres-
sions. SynTheory serves as a customizable, copyright-free,
and scalable approach towards generating diagnostic mu-
sic clips for probing real-world music generative models.

Our second contribution is the analysis of two state-of-
the-art music generative models Jukebox [3] and Music-
Gen [1] with our SynTheory benchmark. We extract rep-
resentations for the concepts defined in SynTheory from
MusicGen and Jukebox and assess whether these models
encode meaningful representations of these concepts. To
analyze the internal representations of these models for
SynTheory, we use a supervised approach to train prob-
ing classifiers [14] based on ground truth music theory
concept labels. A higher classification accuracy implies
that these models learn internal representations that “un-
derstand” music theory concepts, which can be decoded
by a multi-layer perceptron (MLP) or a linear model.

Our results show that music foundation models en-
code meaningful representations of music theory concepts.
These representations vary across different sections of
the model (audio codecs, decoder LMs), different layers
within the decoder LMs, and different model sizes. Fur-
thermore, the nature of the concepts, from time-varying
(e.g. chord progressions) to stationary (e.g. notes, chords)
influence the performance of these models across these
tasks. We hope our insights on probing music founda-
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Figure 1. Overview of our SynTheory benchmark and our Jukebox and MusicGen probing setup. Our SynTheory bench-
mark consists of Rhythmic (tempos and time signatures) and Tonal (notes, intervals, scales, chords, and chord progres-
sions) concepts. We assess whether music foundation models (Jukebox and MusicGen) encode these music theory concepts
within their internal representations. For each task from the SynTheory dataset, we extract representations from the music
foundation model. We pass an audio input, embodying the concept (e.g. Perfect 4th), into a pretrained foundation model.
The audio codec tokenizes the audio into discrete audio tokens. Then, it passes these tokens into a decoder language
model. From there, we extract the representations. We then train a probe classifier (linear and two-layer MLP) on these
representations to predict particular classes (e.g. pitch class, intervals, and chords) for each SynTheory concept.

tion models, along with the synthetic music data genera-
tion framework, encourage and facilitate future endeavors
on symbolic controllability in music generative models.

For reproducibility, we release the code for dataset gen-
eration, embedding extraction, probing, and evaluation in
our GitHub repository 1 and our website 2 .

2. RELATED WORK

The success of large language models (LLMs) [15–18] has
sparked new research on probing and editing their inter-
nal representations to measure their understanding of lin-
guistic concepts [19, 20] and world knowledge [11, 12, 21]
as well as editing the encoded knowledge to make LLMs
more faithful to factual knowledge [9, 10]. Studies have
shown that large language models can encode grounded
representations on color [22], direction [23], and auditory
representations [24]. Thus, it is interesting to investigate if
large music generative models, which often share similar
model architectures and training objectives as LLMs, are
able to encode abstract concepts from high-level music in-
formation (e.g. genre, emotion) to low-level music theory
(e.g. tempo, chords).

Recent work has indeed shown promise in uncovering
conceptual representations from probing audio and music
generative models, leveraging different music foundation
model architectures towards music understanding tasks.
Castellon and Donahue et al. [4] propose using represen-
tations from language models trained on codified audio
towards downstream MIR tasks as a better alternative to
conventional tagging models. The authors train probing
classifiers on Jukebox representations on the music tag-
ging, genre identification, key identification, and emotion
recognition tasks. These results demonstrate the effec-
tiveness of internal model representations in downstream
MIR tasks. Koo et al. [7] focus primarily on probing Mu-
sicGen’s attention heads in instrument recognition tasks,

1 https://github.com/brown-palm/syntheory
2 https://brown-palm.github.io/music-theory

benchmarking against the tasks highlighted in [4] and pro-
pose leveraging these representations for inference-time
control. Other works [5, 6] focus on the impact of model
architecture and self-supervised approaches towards music
understanding tasks.

However, prior work primarily uses real-world data,
which is often concept-entangled and potentially subject to
copyright concerns. For example, some of these works use
Giantsteps-MTG and Giantsteps [25], which are datasets
of primarily electronic dance music with tempo and key
annotations, obtained from Beatport. Won et al. [5] use
HookTheory for chord recognition, where they focus on
major and minor chord identification for each pitch class.
The authors also use Harmonix Set [26] and GTZAN [27]
for beat and downbeat detection. In the language modality,
the authors of ChatMusician [28] produce a multi-choice
question answering dataset, MusicTheoryBench, with ex-
pert annotation from a professional college music teacher.
MusicTheoryBench aims to assess the music understand-
ing capabilities of LLMs but through natural language
alone. To the best of our knowledge, there is a lack of mu-
sic theory probing benchmarks in the audio domain that
are accurately-labeled, copyright-free, and scalable, prior
to our proposed SynTheory.

3. SYNTHEORY: SYNTHETIC DATASET OF

MUSIC THEORY CONCEPTS

We design seven datasets to capture isolated music theory
concepts – similar to synthetic audio for ear training. Mu-
sicians may “train their ear” to recognize music concepts
like intervals or chord quality in an isolated setting before
advancing to the harder, more entangled case that arises
in non-pedagogical music. Assessing concept recognition
through isolated concepts mitigates the possibility that one
intuits or guesses the answer from its context. Literature
on instrument-specific absolute pitch in humans corrobo-
rates the notion that timbral information may be exploited
in identifying a different concept like pitch class [29]. As
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such, our dataset is designed to remove or reduce features
that may correlate with a concept, but are not strictly nec-
essary for identifying it. Our intent is a more pointed
assessment towards theoretical concepts as abstract ideas
rather than as acoustically realized audio. A more practical
motivation for this work is that extracting such low-level,
isolated concepts from existing datasets may require non-
trivial engineering or domain expert labor. It may even be
impossible to disentangle all overlapping concepts. Mu-
sic stem isolation and concept isolation are distinct; an iso-
lated instrument in a multi-track recording may still exhibit
several, intricately intertwined theory concepts. It is not
clear how to “unmix” such concepts once they are blended.

Instead of attempting to disentangle several concepts
from existing audio, SynTheory implements this “ear train-
ing” quiz setting by explicitly producing individual con-
cepts. Each of the seven datasets ablates a single musi-
cal feature while fixing all others, thereby isolating it to a
degree not typically found in recorded music. These ab-
lated concepts consist of tempo, time signatures, notes, in-
tervals, scales, chords, and chord progressions. We adopt
isolation as a design choice to mitigate context that may
be exploited in deep learning models as “shortcuts”, i.e.
heuristics that correlate with concepts most of the time but
do not truly encode the concept.

Using this music theory concept-driven synthesis de-
sign, we construct label-balanced and copyright-free data.
The synthetic approach avoids annotation errors present
in other contemporary MIR datasets. For example, the
HookTheory data processing step for SheetSage [13] re-
quired ad-hoc time-alignment of the expert annotations. In
the released SheetSage dataset, 17, 980/26, 175 (68.7%)
samples required more precise time alignment. While our
synthetic data is no substitute for real music data, to our
knowledge, no other dataset so strictly isolates each con-
cept.

SynTheory contains two categories: tonal and rhyth-
mic. We make this distinction for stronger concept iso-
lation; we wish to keep the rhythm samples tonally con-
sistent and the tonal samples rhythmically consistent. For
each tonal dataset, we voice the same MIDI data through
92 distinct instruments. The selection of instrument voices
is fixed, making the distribution of timbres sufficiently
diverse but also class-balanced. Each instrument corre-
sponds to one of the 128 canonical MIDI program codes
and is voiced through the TimGM6mb.sf2 [30] sound-
font. A MIDI “program” is a specific instrument preset.
The canonical program set includes many named instru-
ments, e.g. “Acoustic Grand Piano”, “Flute”, etc. We
exclude programs that are polyphonic, sound effects (e.g.
“Bird Tweet”, “Gun Shot”), and highly articulate. A highly
articulate program has some unchangeable characteristic
(e.g. pitch bending) that destabilizes its pitch. For each
rhythmic dataset, we define five metronome-like timbral
settings. Each setting uses one of the distinct instruments:
“Woodblock Light”, “Woodblock Dark”, “Taiko”, “Synth
Drum”, and the MIDI drum-kit, following the voicing done
in Sheetsage [13]. Each setting produces a distinct sound

Concept Total Samples

Tempo 4,025
Time Signatures 1,200
Notes 9,936 3

Intervals 39,744
Scales 15,456
Chords 13,248
Chord Progressions 20,976

Table 1. SynTheory contains seven synthetic datasets,
each of which captures an isolated music theory concept.
We present an overview of these datasets and their sizes.

on the upbeat and the downbeats, which defines the time
signature concept.

3.1 SynTheory-Rhythmic

3.1.1 Tempo

We voice integer tempi within 50 to 210 BPM (beats per
minute) inclusive in 44 time. To ensure diverse start times,
we produce five random offsets per sample. There are
(5 CLICK SETTTING ·161 TEMPO ·5 OFFSET ) = 4, 025 sam-
ples in total.

3.1.2 Time Signature

We voice the following time signatures: 22, 24, 34, 38, 44, 68, 98,
and 128 . The tempo is fixed at 120 BPM. To add acoustic
variation, we add three levels of reverb from completely
dry to spacious. We find empirically that this acoustic per-
turbation increases the difficulty of the probing task. Like
the Tempo dataset, we produce ten random offsets for each
sample. There are (8 TIME SIGNATURE · 3 REVERB LEVEL ·

5 CLICK SETTING · 10 OFFSET ) = 1, 200 samples.

3.2 SynTheory-Tonal

3.2.1 Notes

We voice all twelve Western temperament pitch classes,
in nine octaves, using 92 instruments. The note is played
in quarter notes at a tempo of 120 BPM, with no dis-
tinction between the upbeat or downbeat. There are
(12 PITCH CLASS · 9 OCTAVE · 92 INSTRUMENT ) = 9, 936
configurations. However, there are only 9, 900 distinct
samples because 36 configurations at extreme registers are
unvoiceable in our soundfont. These silent samples are
listed for completeness in our GitHub repository.

3.2.2 Intervals

We vary the root note, number of half-steps, instrument,
and play style (unison, up, and down). To retain con-
sistent rhythm, the up and down styles repeat four times
throughout the sample while the unison play style repeats

3 There are 9,936 distinct note configurations, but our dataset contains
9,900 non-silent samples. With a more complete soundfont, all 9,936
configurations are realizable to audio.
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eight times. There are (12 PITCH CLASS ·12 HALF-STEP ·

92 INSTRUMENT · 3 PLAY STYLE ) = 39, 744 samples.

3.2.3 Scales

We voice seven Western music modes (Ionian, Dorian,
Phrygian, Lydian, Mixolydian, Aeolian, and Locrian) in
all root notes, in 92 instruments, and in two play styles
(ascending or descending). The register is constant; we se-
lect root notes close to middle C. There are (7 MODE ·

12 ROOT NOTE · 92 INSTRUMENT · 2 PLAY STYLE ) =
15, 456 samples.

3.2.4 Chords

We voice triads of all twelve root notes, four chord quali-
ties (major, minor, augmented, and diminished), 92 instru-
ments, and three inversions (root position, first inversion,
and second inversion). The chord is struck at each quar-
ter note at 120 BPM. Like in the Scales dataset, we fix
the register close to middle C. There are (12 ROOT NOTE ·

4 CHORD QUALITY ·92 INSTRUMENT ·3 INVERSION ) =
13, 248 samples.

3.2.5 Chord Progressions

We select 19 four-chord progressions, with ten in the ma-
jor mode and nine in the natural minor mode. The progres-
sions are:

• Major: (I–IV–V–I), (I–IV–vi–V), (I–V–vi–IV),
(I–vi–IV–V), (ii–V–I–Vi), (IV–I–V–Vi), (IV–V–iii–Vi),
(V–IV–I–V), (V–vi–IV–I), (vi–IV–I–V)

• Natural Minor: (i–ii◦–v–i), (i–III–iv–i), (i–iv–v–i),
(i–VI–III–VII), (i–VI–VII–i), (i–VI–VII–III),
(i–VII–VI–IV), (iv–VII–i–i), (VII–vi–VII–i)

We vary only the root note of the key and instrument. Each
chord is played in quarter notes at 120 BPM. There are
(19 PROGRESSION ·12 KEY ROOT ·92 INSTRUMENT ) =
20, 976 samples.

One can extend or alter the above configurations using
the SynTheory codebase. We provide a framework that
enables declarative and programmatic MIDI construction
in musical semantics, audio export in any soundfont, and
dataset construction for use in our framework.

4. EXPERIMENTS

We describe the evaluation protocols used to analyze the
internal representations of music generative models (Mu-
sicGen and Jukebox) and handcrafted audio features (mel
spectrograms, MFCC, and chroma) for music theory con-
cept encoding.

4.1 Evaluation

A “probe” is a simple or shallow classifier, often a linear
model, trained on the activations of a neural network [14].
Accurate performance of such classifiers suggests that in-
formation relevant to the class exists in the latent repre-
sentation within the network. As such, probes may be
used as a proxy for measuring a model’s “understanding”
or encoding of abstract concepts. Motivated by the use

of probes to discover linguistic structure and semantics in
NLP [31] and more recently in MIR [4], we use probes
to assess whether music theory concepts are discernable in
foundation models.

We adopt the same probing paradigm as [4] and frame
concept understanding as multiclass classification for dis-
crete concepts (notes, intervals, scales, chords, chord pro-
gressions, and time signatures) and regression for continu-
ous concepts (tempo). We train linear and two-layer MLP
probes on the embeddings of the internal representations of
Jukebox and MusicGen and the handcrafted features. We
measure the classification accuracy of our trained probes
on the SynTheory tasks using the following classes:

• Notes (12): C, C#, D, D#, E, F, F#, G, G#, A, A#,
and B

• Intervals (12): minor 2nd, Major 2nd, minor 3rd,
Major 3rd, Perfect 4th, Tritone, Perfect 5th, minor
6th, Major 6th, minor 7th, Major 7th, and Perfect
octave

• Scales (7): Ionian, Dorian, Phrygian, Lydian,
Mixolydian, Aeolian, and Locrian

• Chords (4): Major, Minor, Diminished, and Aug-
mented

• Chord Progressions (19): (I–IV–V–I), (I–IV–vi–V),
(I–V–vi–IV), (I–vi–IV–V), (ii–V–I–Vi), (IV–I–V–Vi),
(IV–V–iii–Vi), (V–IV–I–V), (V–vi–IV–I), (vi–IV–I–V),
(i–ii◦–v–i), (i–III–iv–i), (i–iv–v–i), (i–VI–III–VII),
(i–VI–VII–i), (i–VI–VII–III), (i–VII–VI–IV),
(iv–VII–i–i), and (VII–vi–VII–i)

• Time Signatures (8): 22, 24, 34, 38, 44, 68, 98, and 128
These tasks are trained on a 70% train, 15% test, and 15%
validation split, using the Adam optimizer and Cross En-
tropy loss.

For the Tempos dataset, we train a regression probe,
over the 161 tempo values. To increase complexity in the
probing task and test generalization to unseen BPMs, the
training set consists of the middle 70% of the BPMs. The
test and validation sets consist of the top 15% BPMs and
the bottom 15% BPMs, randomly shuffled and split in half.
We use MSE loss and report the R2 score.

Each probe is trained independently for its correspond-
ing concept task. That is, the probe trained to identify notes
from Jukebox embeddings will not be used to identify in-
tervals, for example.

To select the best performing probe for each concept us-
ing the MusicGen audio codec, mel spectrogram, MFCC,
chroma, and aggregate handcrafted features, we perform a
grid search across various hyperparameters for each task,
following those defined in [4]:

• Data Normalization: {True, False}
• Model Type: {Linear, two-layer MLP with 512 hid-

den units and ReLU activation}
• Batch Size: {64, 256}
• Learning Rate: {10−5, 10−4, 10−3}
• Dropout: {0.25, 0.5, 0.75}
• L2 Weight Decay: {off, 10−4, 10−3}

For the decoder LMs (MusicGen small, medium, and
large and Jukebox) as detailed in Section 4.2, we use a
fixed set of hyperparameters and select the probe with the
best performing layer for each concept, in the interest of
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computational efficiency:
• Data Normalization: True
• Model Type: two-layer MLP with 512 hidden units

and ReLU activation
• Batch Size: 64
• Learning Rate: 10−3

• Dropout: 0.5
• L2 Weight Decay: off

We selected these hyperparameters from the best overall
performing probe by fixing a layer in the decoder LMs and
performing a hyperparameter search, following the sweep
approach outlined in [4].

4.2 Model representations

We extract representations from two text-to-music gen-
erative foundation models, Jukebox [3] and MusicGen
[1]. We benchmark the probing classifier performance
of these representations against that of three handcrafted,
spectral features following [4]: mel spectrograms, mel-
frequency cepstral coefficients (MFCC), and constant-Q
chromagrams (chroma). These handcrafted features are
common in traditional methods of MIR and are a more
interpretable baseline against the embeddings of the pre-
trained music generative models. We additionally report
probing classifier performance on the concatenation of all
the aforementioned handcrafted features.

Jukebox consists of a VQ-VAE model that codifies au-
dio waveforms into discrete codes at a lower sample rate
and a language model that generates codified audio with
a transformer decoder. We trim all audio to four seconds
and ensure it is mono. We utilize Jukemirlib [4] to pass this
audio through the frozen audio encoder and through the de-
coder language model. We downsample the activation to a
target rate of half that in [4], due to resource constraints,
using the Librosa FFT algorithm [32]. Then, we meanpool
the representations across time to reduce the dimensional-
ity of the embeddings, resulting a dimension of (72, 4800)
per sample, where 72 is the number of layers and 4800 is
the dimension of the activations. We reduce the dimension-
ality of these representations by defining a layer selection
process similar to [4]; that is, each probing classifier trains
on only one of the 72 layers. We train the probe classifiers
with fixed hyperparameters on the music concept tasks as
described in Section 4.1. For each concept, we select the
layer that results in the highest probing score. The final
dimension of the Jukebox representation is 4800.

MusicGen consists of a pretrained convolutional auto-
encoder (EnCodec) [33], a pretrained T5 text encoder, and
an acoustic transformer decoder. We resample the audio
to 32 kHz (the sampling rate used in the EnCodec model)
trim to four seconds, convert to mono, and pass the audio
through the frozen EnCodec audio codec. We do not pass
text through the text encoder, as we focus on audio rep-
resentations. We then extract representations from several
regions of the model: the final layer of the audio codec be-
fore residual vector quantization and the hidden states of
the decoder language model. The number of decoder hid-
den states vary based on the model size: small (24 layers),

Figure 2. Probing evaluation metrics averaged across all
SynTheory concepts over the model layers of Jukebox and
MusicGen decoder models. The probing evaluation metric
is R2 for tempos and accuracy for the rest of the SynThe-
ory concepts (notes, intervals, scales, chords, chord pro-
gressions, and time signatures). Features extracted from
deeper layers generally perform better, with a slight drop-
off near the final layers.

medium (48 layers), and large (48 layers).
For our four second audio clips, the audio codec repre-

sentations are of dimension (128, 200), where 128 is the
dimension of the activation after the final layer of the au-
dio codec and 200 is the sequence length. We meanpool
the values of the representations across time, resulting in a
final dimension of 128 for the MusicGen audio codec.

The decoder hidden states for the small, medium, and
large MusicGen models have dimensions (24, 200, 1024),
(48, 200, 1536), (48, 200, 2048) respectively, where the
first axis corresponds to the number of layers, second cor-
responds to sequence length, and third corresponds to hid-
den size. To reduce the dimensionality of these representa-
tions, similar to what was done with Jukebox, we select the
most optimal layer for each decoder model size based on
probing scores. We visualize results from probing across
layers per model (MusicGen and Jukebox) averaged across
concepts in Figure 2. After selecting the best perform-
ing layer per concept and model size, the dimensions of
the representations are (200, 1024) for MusicGen small,
(200, 1536) for MusicGen medium, and (200, 2048) for
MusicGen large. To further reduce the dimensions, we also
meanpool across time as done in Jukebox representations,
resulting in dimensions of 1024 for MusicGen small de-
coder, 1536 for MusicGen medium decoder, and 2048 for
MusicGen large decoder.

We extract the handcrafted features (mel spectrograms,
mel-frequency cepstral coefficients, and constant-Q chro-
magrams) with librosa [32]. Similar to [4], we concate-
nate the mean and standard deviation across time of these
features along with their first- and second-order discrete
differences. Furthermore, we concatenate the mel spec-
trogram, chroma, and MFCC features and obtain their
mean and standard deviation across time and their first-
and second-order differences to obtain an aggregate repre-
sentation of the handcrafted features.
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Notes Intervals Scales Chords
Chord

Progressions
Tempos

Time

Signatures
Average

Jukebox LM 0.951 0.995 0.978 0.997 0.971 0.993 1.000 0.984
MusicGen LM (S) 0.897 0.995 0.949 0.990 0.942 0.969 0.911 0.950
MusicGen LM (M) 0.851 0.983 0.863 0.989 0.870 0.956 0.883 0.914
MusicGen LM (L) 0.866 0.972 0.905 0.989 0.901 0.965 0.905 0.929
MusicGen Audio Codec 0.729 0.965 0.383 0.879 0.330 0.947 0.677 0.701

Mel Spectrogram 0.712 0.995 0.897 0.988 0.723 0.785 0.827 0.847
MFCC 0.467 0.822 0.370 0.863 0.872 0.923 0.688 0.715
Chroma 0.954 0.820 0.989 0.994 0.869 0.847 0.672 0.878
Aggregate Handcrafted 0.941 0.997 0.972 0.992 0.868 0.947 0.833 0.936

Table 2. We report probing results on the SynTheory dataset for the Jukebox LM, MusicGen Decoder LM (Small, Medium,
and Large), MusicGen Audio Codec models as well as handcrafted features (Mel Spectrogram, MFCC, Chroma, and
Aggregate Handcrafted). For the tempos dataset, we report the R2 score from the regression probe. For all other concepts
(notes, intervals, scales, chords, chord progressions, and time signatures), we report the probing classifier accuracy. For
MusicGen Audio Codec, Mel Spectrogram, MFCC, Chroma, and Aggregate Handcrafted, we report the metrics of the
best performing probe for each task using the best validation performance from our hyperparameter search. For MusicGen
Decoder LM (Small, Medium, and Large) and Jukebox models, we report the metrics of the best performing probe for each
task using layer selection. We also report an average performance across all concepts for each model/feature.

5. RESULTS AND DISCUSSION

We observe that Jukebox performs consistently well across
our SynTheory benchmark. All MusicGen Decoder mod-
els also exhibit competitive performance across concepts.
While [1] claims that larger MusicGen models produce
better quantitative and subjective scores and that larger
models better “understand” text prompts, our MusicGen
Decoder LM (Small) result seems to contrast with tra-
ditional discussions on scaling laws. Figure 2 displays
the consistent probing score of MusicGen Decoder LM
(Small) across all layers and highlights its higher perfor-
mance compared to that of its larger counterparts. Mean-
while, the larger MusicGen models exhibit a steep drop in
probing performance in initial layers, followed by a grad-
ual increase in performance, with the performance tapering
off in the final layers.

MusicGen slightly underperforms on the notes dataset.
We hypothesize this is because isolated notes in real-world
music are not as prominent as intervals, scales, and chords.
This reveals how the lowest-level building blocks of music
are even harder to distinguish.

In general, the probing results from the pretrained music
decoder LMs yield better probing performance compared
to the MusicGen Audio Codec representations and the in-
dividual handcrafted features. MusicGen Audio Codec
exhibits overall poorer performance on these tasks, since
these codecs were trained to reconstruct fine-grained, low-
level details localized by time.

Because chroma features encode pitch class informa-
tion, chroma features perform comparably well on tonal
tasks. However, they slightly underperform on rhyth-
mic tasks. Chroma features outperform MusicGen De-
coder LMs on stationary harmonic tasks (notes, scales, and
chords) but are worse for dynamic harmonic tasks (chord
progressions and intervals).

The aggregate handcrafted features perform compara-
bly to MusicGen Decoder LMs. This suggests that harder
music concept understanding benchmarks should address
concepts latent in foundation models but not easily en-
coded in handcrafted features. These harder benchmarks
may include entangled concepts, such as probing for both
chord progression type and tempo in a tempo-varying
chord progression sample. Probing for more composi-
tional tasks could further our understanding of more re-
alistic concept encoding in both model representations and
handcrafted features.

6. CONCLUSION

In this work, we introduce SynTheory, a synthetic dataset
of music theory concepts, that is concept-isolated, anno-
tated, and copyright-free. Further, we use this dataset to
evaluate the degree to which music theory concepts are en-
coded in existing state-of-the-art music generative models.
Our experiments suggest that music theory concepts are in-
deed discernible within the latent representations of these
generative models. We believe this is a prerequisite to fur-
ther understand how to isolate and manipulate such con-
cepts, which advances towards low-level controllable gen-
eration and music theory evaluation metrics. We encourage
the community to build more challenging probing datasets
with our framework to further understand the relationship
between symbolic and audio-based music generation.

7. ETHICS STATEMENT

Our work aims to understand if music generation models
encode music theory concepts in their internal representa-
tions. Our dataset may be used to assess music generation
models and may be applied towards fine-grained, music-
theory based controllable generation.
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impacts from the publication of our report or the release of
our dataset.
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