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ABSTRACT

In the domain of symbolic music research, the progress

of developing scalable systems has been notably hindered

by the scarcity of available training data and the demand

for models tailored to specific tasks. To address these is-

sues, we propose MelodyT5, a novel unified framework

that leverages an encoder-decoder architecture tailored for

symbolic music processing in ABC notation. This frame-

work challenges the conventional task-specific approach,

considering various symbolic music tasks as score-to-score

transformations. Consequently, it integrates seven melody-

centric tasks, from generation to harmonization and seg-

mentation, within a single model. Pre-trained on Melody-

Hub, a newly curated collection featuring over 261K

unique melodies encoded in ABC notation and encom-

passing more than one million task instances, MelodyT5

demonstrates superior performance in symbolic music pro-

cessing via multi-task transfer learning. Our findings high-

light the efficacy of multi-task transfer learning in sym-

bolic music processing, particularly for data-scarce tasks,

challenging the prevailing task-specific paradigms and of-

fering a comprehensive dataset and framework for future

explorations in this domain.

1. INTRODUCTION

In the field of artificial intelligence, symbolic music pro-

cessing—including the analysis and generation of musi-

cal scores—presents a unique challenge that merges mu-

sical creativity with computational complexity. Symbolic

music, which represents musical information with discrete

symbols rather than continuous audio signals, facilitates

the precise manipulation and analysis of elements such

as melody, harmony, and rhythm. Historically, the appli-

cation of AI in this area has sought not only to mimic

the creative process of human composers [1–4] but also

♯ These authors contributed equally.
♭ Corresponding author.

© S. Wu, Y. Wang, X. Li, F. Yu, and M. Sun. Licensed

under a Creative Commons Attribution 4.0 International License (CC

BY 4.0). Attribution: S. Wu, Y. Wang, X. Li, F. Yu, and M. Sun,

“MelodyT5: A Unified Score-to-Score Transformer for Symbolic Mu-

sic Processing”, in Proc. of the 25th Int. Society for Music Information

Retrieval Conf., San Francisco, United States, 2024.

to uncover the underlying patterns of musical composi-

tion [5–7].

Despite significant progress, the field still faces persis-

tent limitations. One notable challenge is the prevalence

of task-specific models [8–11]. These models offer ben-

efits for specific applications but lack adaptability to the

broader spectrum of symbolic music processing. This frag-

mentation is further compounded by the scarcity of anno-

tated datasets [12–14], which serve as the lifeblood of deep

learning models. Unlike other domains where data may

be abundant and easy-to-collect, annotated symbolic mu-

sic datasets are both rare and costly to produce. Without

access to ample and diverse data, models struggle to gen-

eralize and may exhibit biases or limitations [15] in their

analysis and generation of symbolic music.

In addressing the challenges inherent to symbolic music

processing, insights from the Natural Language Processing

(NLP) domain offer a promising avenue for advancement.

Techniques such as transfer learning [16–18] and multi-

task learning [19–21] have played a pivotal role in advanc-

ing NLP by promoting the transfer of knowledge from pre-

trained language models and exploiting common patterns

across various tasks. Prominent models like GPT [22],

BERT [23], and T5 [24] demonstrate the efficacy of these

strategies in understanding and generating language across

diverse contexts. Notably, the T5 model, with its text-to-

text framework, mirrors the conceptual shift necessary for

symbolic music by treating all tasks as variations of con-

verting input scores to output scores. By embracing such

methodologies, which regard tasks as facets of a unified

problem, we seek to develop models for symbolic music

that not only excel in specific tasks but are also adaptable

and proficient across a wide range of tasks.

In this paper, we introduce MelodyT5, which leverages

an encoder-decoder framework to perform multiple sym-

bolic music tasks as unified score-to-score transformations.

Pre-trained on the MelodyHub dataset, which contains

over 1 million task instances across seven melody-centric

tasks in ABC notation, MelodyT5 overcomes the limita-

tions of task-specific models and sparse data availability in

symbolic music processing. By implementing bar patch-

ing [7, 25], MelodyT5 can handle longer sequences effec-

tively, expanding its applicability to a wider range of tasks

while maintaining computational efficiency. Our results

underscore the promise of employing multi-task learning

approaches in symbolic music processing, demonstrating
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Figure 1. The MelodyT5 framework employs a Transformer encoder-decoder architecture with bar patching for music

processing. It uses linear projection of input bar patches, fed into a patch-level Transformer encoder. The encoder output

provides context for a patch-level Transformer decoder to autoregressively produce target bar features. A character-level

Transformer decoder then uses these features to generate detailed characters for each bar, forming the target musical score.

the superior performance of MelodyT5 across a spectrum

of tasks and providing a rich dataset for future research.

The key contributions of our paper are as follows:

• MelodyT5, employing an encoder-decoder ap-

proach, redefines symbolic music processing by

including multiple tasks as unified score-to-score

transformations, demonstrating versatility and

breaking traditional task-specific constraints.

• MelodyHub, a dataset comprising 261,900 unique

melodies in ABC notation across over 1 million task

instances for seven different tasks, serves as the cor-

nerstone for effective pre-training of MelodyT5.

• Our experimental results demonstrate the efficacy of

multi-task transfer learning in symbolic music, with

models trained across multiple tasks outperforming

those trained in isolation.

2. METHODOLOGY

In this section, we delve into the methodology behind

MelodyT5. We first introduce the ABC notation and bar

patching for music representation, then present the archi-

tectural design of MelodyT5, and finally outline the pre-

training objective of our model, which focuses on score-to-

score transformations as the basis for multi-task learning.

2.1 Data Representation

We utilize ABC notation, a concise symbolic music for-

mat, for encoding musical scores with ASCII characters.

This text-based format elegantly represents musical ele-

ments like notes, rhythms, and articulations in a human-

readable manner, thereby facilitating thorough music doc-

umentation. Additionally, it promotes the utilization of

NLP techniques for both music analysis and generation,

as evidenced by recent studies [4, 26, 27].

To process musical scores encoded in ABC notation

more efficiently, we implement the bar patching technique

[7, 25]. Bar patching involves breaking down musical se-

quences into units called bar patches. Each of these units

corresponds to either a bar or an information field (such

as key and meter), including a sequence of characters

that represent musical symbols within that patch. Unlike

the conventional character-level or token-level tokeniza-

tion of ABC notation [28, 29], where individual characters

or tokens are processed independently, bar patching groups

multiple characters into cohesive semantic units. Typically,

each patch comprises 10 or more tokens, thus effectively

reducing the overall sequence length of musical scores.

2.2 Model Architecture

As shown in Fig. 1, the MelodyT5 framework employs

an encoder-decoder architecture based on the Transformer

network [30], tailored for symbolic music processing. In-

tegrating bar patching into MelodyT5 requires the incor-

poration of two additional components: a linear projec-

tion layer and a character-level decoder. Consequently, the

model architecture encompasses the following modules:

Linear Projection: This component converts each bar

patch into a dense embedding. It takes a multi-hot vector as

input, formed by concatenating one-hot vectors represent-

ing characters within the bar patch with the shape S × V ,

where S represents the patch size (i.e., the maximum num-

ber of characters in a patch) and V represents the vocab-

ulary size. If a patch contains fewer than S characters, it

will be padded with a special token to make it a S-character

patch. The vector is then mapped to a dense embedding,

serving as input to the patch-level encoder or decoder.

Patch-level Encoder: It is responsible for generating

contextualized representations to understand the input mu-

sical score by operating on the dense embeddings produced

by the linear projection layer. Leveraging mechanisms like

self-attention and feed-forward neural networks, it cap-

tures global dependencies within the input musical score.

Patch-level Decoder: Tasked with generating the dense

representation of the next bar patch, the patch-level de-

coder utilizes contextualized representations from the en-

coder and patch embeddings of previously generated con-

tent. It employs cross-attention and autoregressive genera-

tion mechanisms, ensuring global coherence and continu-

ity in the sequence of generated bar patches.
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Table 1. The MelodyHub collection statistics include the number of instances for each task along with the corresponding

data sources. The JSB Chorales dataset is augmented to 15 keys due to its small size and original data in the C key.

Data Sources Cataloging Generation Harmonization Melodization Segmentation Transcription Variation

ABC Notation [31] 184,660 184,738 31,732 31,690 —— 174,779 ——

FolkWiki [32] 6,610 6,767 1,207 1,205 —— 6,218 ——

JSB Chorales [33] 4,980 4,980 4,950 4,950 19,125 4,980 ——

KernScores [34] 1,731 1,776 —— —— 1,275 1,754 ——

Meertens Tune Collections [35] 16,662 16,662 —— —— 16,660 16,297 ——

Nottingham [36] 1,031 1,031 1,014 1,014 —— 1,021 ——

OpenScore Lieder [37] 1,326 1,326 —— —— —— 1,255 ——

The Session [38] 44,620 44,620 3,081 3,078 —— 42,838 174,104

Total 261,620 261,900 41,984 41,937 37,060 249,142 174,104

Character-level Decoder: Operating in a step-by-step

manner, the character-level decoder produces characters

within the next bar patch based on the dense representa-

tion generated by the patch-level decoder. By utilizing the

dense representation as a context vector, it decodes each

character within the bar, focusing on local information, and

sequentially reconstructs every bar patch until it completes

the generation of the target musical score.

The encoder-decoder architecture with bar patching in

MelodyT5 enables efficient score-to-score transformations

by hierarchically modelling music at both patch and char-

acter levels, capturing global structure and local details in-

herent in compositions.

2.3 Pre-training Objective

The pre-training objective of MelodyT5 aims to optimize

a unified encoder-decoder framework for processing and

generating symbolic music across a variety of tasks, utiliz-

ing cross-entropy loss for next token prediction.

We consider a dataset D consisting of pairs (X,Y ),
where X is an input musical score and Y is the tar-

get musical score. Each score is represented as a se-

quence of bar patches {B1, B2, . . . , Bn}, with each bar

patch Bi further decomposed into a sequence of characters

{c1, c2, . . . , cm}. The model is trained to predict each to-

ken (i.e., character) of the target score given the input score

and the previously generated tokens in an autoregressive

manner.

Formally, the pre-training objective can be represented

as minimizing the cross-entropy loss across all tokens in

the target sequence:

L(θ) = −
∑

(X,Y )∈D

n∑

i=1

m∑

j=1

logPθ(c
i
j |X,B<i, c

i
<j) (1)

where cij is the j-th character in the i-th bar patch of score

Y , B<i includes all bar patches before the i-th, ci<j are

characters before the j-th in the current patch, and Pθ is the

probability of the model, parameterized by θ, of predicting

the correct character.

This objective incorporates the fundamental principle

that the vast majority of symbolic music tasks can be con-

sidered as transformations from score to score, or, in other

words, from an input musical score to a target musical

score. By pre-training on this objective, MelodyT5 ac-

quires the ability to understand and replicate a wide array

of patterns and structures inherent to different music tasks,

which is pivotal for its success across various applications

within symbolic music processing.

3. DATASET

This section outlines the melody curation and task def-

inition of the MelodyHub dataset. MelodyHub, crucial

for training MelodyT5, comprises seven melody-centric

tasks. This collection, sourced from sheet music datasets,

includes folk songs and other non-copyrighted musical

scores from various traditions and epochs.

3.1 Melody Curation

The MelodyHub dataset was curated using publicly avail-

able sheet music datasets and online platforms, with orig-

inal formats like ABC notation, MusicXML, and Hum-

drum. The data curation process included several steps:

1. Entries featuring explicit copyright indicators such

as “copyright” or “©” symbols were excluded.

2. All data was converted to MusicXML format for

standardization and subsequently transformed into

ABC notation to ensure format consistency.

3. Melodies consisting of fewer than eight bars were

omitted from the dataset to maintain adequate com-

plexity and musical richness.

4. Removal of lyrics and non-musical content (e.g.,

contact information of transcribers and URL links)

aimed to focus solely on musical notation.

5. Leading and trailing bars of complete rest were re-

moved from each piece.

6. Each piece underwent verification for the presence

of a final barline, with addition if absent.

7. Entries were deduplicated to prevent redundancy.

By ensuring the quality and consistency of the Melody-

Hub dataset, these steps led to a substantial collection of

261,900 melodies with uniform formatting, making it suit-

able for training and evaluating symbolic music models

like MelodyT5.
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3.2 Task Definition

Following the curation of melody data, the MelodyHub

dataset was segmented into seven tasks, as summarized in

Table 1, presented in a score-to-score format with input-

output pairs. In MelodyHub, every input data includes a

task identifier (e.g., %%harmonization) at the outset

to specify the intended task. Below are the definitions of

these tasks:

Cataloging: This task selects melodies with music-

related metadata like titles, composers, and geographical

origins (e.g., C:J.S. Bach, O:Germany). The in-

put data includes information fields with these attributes,

while specific information is removed and the order is ran-

domized. The output includes the corresponding metadata

without the musical score.

Generation: Here, the input solely consists of a task

identifier (i.e., %%generation), while the output com-

prises comprehensive musical scores. Following Tunes-

Former [25], control codes are affixed to all melodies as

information fields to denote musical structure information.

These codes, namely S:, B:, and E:, signify the number

of sections, bars per section, and edit distance similarity

between every pair of sections within the tune.

Harmonization: This task involves melodies contain-

ing chord symbols. The chord symbols are removed from

the input, while the original data is retained as the output.

An additional information field denoting edit distance sim-

ilarity (E:) is appended to the output, indicating the simi-

larity between the input and output, ranging from 0 to 10

(no match at all to exact match). Lower similarity values

suggest the need for more chord symbols.

Melodization: In contrast to harmonization, this task

operates inversely and also employs melodies containing

chord symbols. The notes in the original score are replaced

with rests, and adjacent rest durations are combined. The

resultant score, comprising rests and chord symbols, serves

as the input. Similar to harmonization, an E: field is added

at the outset of the output, with lower values facilitating the

generation of more intricate melodies.

Segmentation: Melodies in Humdrum format (i.e.,

KernScores and Meertens Tune Collections) containing

curly braces indicating segmentation or voices from the

JSB Chorales dataset (four-part compositions) with fer-

matas are chosen. These markers are transformed into

breath marks. The input data omits all breath marks, while

the output introduces an E: field at the beginning to aid the

generation of breath marks, with lower values implying the

need for more breath marks to be added.

Transcription: ABC notation is initially converted

to MIDI, then reconverted back to ABC. The resultant

ABC from the MIDI conversion loses substantial score in-

formation, such as distinguishing enharmonic equivalents

and missing musical ornaments (e.g., trill). The MIDI-

converted ABC serves as the input, while the original

ABC, appended with an added E: field, constitutes the

output. Lower E: values denote greater discrepancies be-

tween the transcribed and input scores, particularly due to

absent repeat symbols.

Variation: This task centres on data from The Session,

wherein each ABC notation file may contain multiple vari-

ants of the same tune. Tunes with two or more variations

are selected, with every possible pair of variants utilized

as both input and output. The output initiates with an E:

field signifying the extent of disparities between the input

and output scores, with lower values suggesting substantial

variations in the musical scores.

Together, resulting in 1,067,747 task instances in total,

these tasks include various MIR challenges from analyt-

ical to generative, providing a comprehensive resource 1

for developing symbolic music models like MelodyT5.

4. EXPERIMENTS

This section evaluates the effectiveness of MelodyT5 in

symbolic music processing through a series of experi-

ments. It outlines experimental settings, conducts abla-

tion studies on multi-task learning impact, and compares

MelodyT5 with baseline models in various tasks.

4.1 Settings

The experiments are structured to systematically assess the

capabilities of MelodyT5 for diverse symbolic music tasks.

We utilize the MelodyHub dataset, which is randomly split

into 99% for training and 1% for validation.

MelodyT5 features a 9-layer patch-level encoder and

decoder with shared weights, a 3-layer character-level de-

coder, and a hidden size of 768, amounting to 113 million

parameters. This configuration processes ABC sequences

up to 16,384 characters, with a 256 patch length and a 64

patch size. It employs a 128-size ASCII-based vocabulary,

using characters 0-2 for special tokens (pad, bos, and eos).

The AdamW optimizer [39] is used, setting a learning

rate of 2e-4. The process includes a 3-epoch warmup, a

constant learning rate over 32 epochs, and a batch size of

10 for each GPU, ensuring consistency in hyperparameter

settings across all tasks. It took approximately 2 days to

complete the pre-training using 6 RTX 3090 GPUs.

In ablation studies, we investigate the effects of multi-

task learning on MelodyT5, considering three settings: 1)

omitting pre-training, 2) using only the downstream task-

specific data from MelodyHub, or 3) utilizing the entire

MelodyHub dataset, which includes all tasks.

In terms of comparative evaluations, we select open-

source models that excel in their respective domains

for benchmarking. MelodyT5 is fine-tuned on identical

datasets to these models, ensuring fairness in comparison.

For models trained on proprietary datasets, we retrain them

using accessible datasets to ensure reproducibility.

Our objective evaluation strategy includes ablation

studies focused on bits-per-byte (BPB) for consistent mea-

surement, alongside task-specific metrics for comparative

evaluations. Additionally, A/B tests are conducted for the

subjective evaluation against baseline models.

1 https://huggingface.co/datasets/sander-wood/melodyhub
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Table 2. Experimental results from ablation studies illustrate the impact of multi-task learning on diverse symbolic music

tasks, evaluated through BPB (bits-per-byte) to compare performance across various pre-training settings.

Pre-training
Cataloging Generation Harmonization Melodization Segmentation Transcription Variation

WikiMT [40] Wikifonia [41] CMD [42] EWLD [43] Essen [44] Liederschatz [45] The Session [38]

None 0.0376 1.2382 0.5680 0.7949 0.0272 1.1938 0.4932

Task-Specific 0.0379 0.8850 0.3393 0.6322 0.0224 0.3432 –

Multi-Task 0.0350 0.8472 0.2925 0.5067 0.0119 0.2969 0.3949

4.2 Ablation Studies

In our ablation studies, MelodyT5 was evaluated on the test

sets of various symbolic music benchmarks. Due to the

lack of a directly suitable external dataset for the variation

task, we chose to evaluate using the validation set of The

Session. As a result, there was no task-specific pre-training

for the variation task.

The ablation studies aim to explore two aspects: 1) the

overall efficacy of pre-training, particularly in the context

of multi-task pre-training versus task-specific pre-training,

and 2) the extent to which performance gains from multi-

task pre-training vary among different tasks, especially

considering differences in the available volume of pre-

training data across these tasks.

The ablation studies, as depicted in Table 2, show that

pre-training is crucial for improving the performance of

symbolic music tasks. Models trained with pre-training

consistently outperform those without, indicating that pre-

training enhances model generalization and performance.

Multi-task pre-training is also superior to task-specific pre-

training, as models trained with multi-task pre-training

show lower BPB scores. This highlights the importance

of leveraging multi-task pre-training to effectively capture

shared patterns and structures in symbolic music data, en-

abling MelodyT5 to generalize better to downstream tasks.

Furthermore, it is noteworthy that while multi-task pre-

training consistently yields performance gains across most

tasks, the extent of improvement varies, which signif-

icantly correlates with the volume of task-specific data

available for pre-training. Specifically, tasks with less data,

such as segmentation and melodization, showcase more

substantial performance gains from multi-task learning.

On the other hand, tasks with more data, like generation

and cataloging, though still benefiting from multi-task pre-

training, show relatively smaller improvements. This ob-

servation suggests that while multi-task learning enhances

model performance across the board, its impact is espe-

cially notable in data-constrained scenarios.

In summary, the ablation studies demonstrate the ef-

fectiveness of multi-task learning and underscore the im-

pact of data volume on the benefits derived from such

an approach. Multi-task learning boosts model perfor-

mance across symbolic music tasks and provides notable

advantages for tasks with limited data by leveraging shared

knowledge across tasks.

4.3 Comparative Evaluations

For comparative evaluations, we compare MelodyT5,

which is multi-task pre-trained on MelodyHub, with sev-

eral task-specific baseline models, focusing on melody

generation, harmonization, melodization, and segmenta-

tion. These tasks are well-established and have open-

source models as competitive baselines. The following

baseline models have been selected for comparison:

• TunesFormer [25] is applied for melody generation,

featuring a Transformer-based architecture with bar

patching and control codes. This approach aims to

refine the efficiency of the generation process and

ensure adherence to musical forms.

• STHarm [46] is utilized as the baseline in melody

harmonization, employing a Transformer framework

to convert melodies into chords. Its primary focus

is on creating harmonies that preserve the structural

integrity of the original melody.

• CMT [9] is chosen for melodization, which involves

generating melodies based on chord progressions. It

employs a phased training approach, conditioning

the generation of rhythm and pitch on the chords to

produce dynamic and coherent musical outputs.

• Bi-LSTM-CRF [8] is used for melody segmenta-

tion, integrating Bi-LSTM and CRF to effectively

identify and segment melodic phrases for music

structure analysis.

For an objective and quantifiable performance assess-

ment that ensures reproducibility, we leverage previously

established task-specific metrics. The selected metrics for

our assessment include:

• CTRL (Controllability) [25]: Evaluates the preci-

sion of generation control through edit distance sim-

ilarity between intended and actual control codes.

• CTnCTR & PCS & MCTD [47]: These

chord/melody harmonicity metrics evaluate harmo-

nization and melodization tasks by assessing har-

monic and melodic compatibility between melodies

and chords.

• F1 Score: Measures the balance between preci-

sion and recall in identifying correctly segmented

melodic phrases.
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Table 3. Comparative objective evaluation of the MelodyT5 model against task-specific baselines across various symbolic

music tasks, utilizing task-related metrics previously established. The baselines include TunesFormer [25] for generation,

STHarm [46] for harmonization, CMT [9] for melodization, and Bi-LSTM-CRF [8] for segmentation.

Models
Generation Harmonization Melodization Segmentation

CTRL↑ CTnCTR↑ PCS↑ MCTD↓ CTnCTR↑ PCS↑ MCTD↓ F1 Score↑

MelodyT5 0.8664 0.7108 0.3274 1.2080 0.8438 0.5084 1.0320 0.9055

Baselines 0.8162 0.5963 0.2343 1.3125 0.8607 0.4863 1.0610 0.8400

Table 3 shows that MelodyT5 outperforms task-specific

baselines in all tasks. It surpasses the specialized base-

line TunesFormer in melody generation, demonstrating en-

hanced control and precision in generating melodies ac-

cording to specific musical forms. MelodyT5 leads in har-

monization, producing chords that are harmonically com-

patible with the given melodies while maintaining struc-

tural coherence. Although slightly trailing CMT in CT-

nCTR, it still shows robust performance in other met-

rics for melodization, demonstrating its ability to gen-

erate melodies well integrated with chord progressions.

Its performance in melody segmentation is significant,

indicating its ability to accurately discern and segment

melodic phrases. This performance, achieved without

task-specific modifications, highlights the effectiveness of

multi-task transfer learning combined with unified score-

to-score transformations in symbolic music processing.

In addition to the objective metrics presented in Table 3,

we recognize the limitations of solely relying on such mea-

sures to evaluate the quality of generated music. Thus, we

further explored these areas (i.e., generation, harmoniza-

tion, and melodization) through subjective experiments to

capture listener preferences.

For our subjective evaluation, we randomly chose 30

pieces from the test set for each task and conducted blind

A/B testing. Participants were presented with one ran-

domly chosen pair from each of these 30 pairs to compare

musical scores generated by MelodyT5 and baseline mod-

els under identical conditions. They were asked to choose

between MelodyT5, the baseline, or no preference. Each

comparison was included in two videos, showcasing both

the audio and the Sibelius-rendered musical scores.

For generation, we compared the quality of melodies

generated by MelodyT5 and TunesFormer, given the same

control codes and information fields. In harmonization and

melodization, comparisons were made against baselines

given identical melodies or chords, respectively. To en-

sure fairness, especially considering the baseline model for

melodization was limited to generating outputs of only 8

bars, we trimmed the MelodyT5-generated scores to match

the output length of this baseline model.

The study involved 155 responses from students and ed-

ucators with music specializations, ensuring deep under-

standing of melody and harmony. To secure data reliabil-

ity, submissions were filtered out of those completed in less

than half the overall average duration of 4 minutes and 39

seconds, i.e., those under 2 minutes and 20 seconds. This

resulted in a final tally of 124 valid questionnaires.
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Figure 2. Comparative subjective evaluation of MelodyT5

against task-specific baselines in symbolic music tasks,

showing vote counts for each model.

Based on the subjective evaluation in Fig. 2, we ob-

serve a notable preference for the MelodyT5 model over

the baseline in the tasks of melody generation and har-

monization, with MelodyT5 receiving a higher number of

votes. However, the preferences reverse in the task of

melodization, where the baseline model receives a greater

number of votes compared to MelodyT5. This indicates

that the baseline model CMT, which employs a two-phase

training process focusing separately on rhythm and pitch

conditioned on chord progressions, may align more closely

with human rhythmic tendencies in melodization, leading

to a preference for its outputs in the subjective evaluation.

Overall, MelodyT5 excels in symbolic music process-

ing, outperforming task-specific models in most tasks

and demonstrating the effectiveness of multi-task transfer

learning in this domain, despite occasional shortcomings.

5. CONCLUSIONS

This study presents MelodyT5, a model addressing chal-

lenges in symbolic music processing by providing a uni-

fied framework for diverse tasks. By treating music

tasks as score-to-score transformations, MelodyT5 signifi-

cantly improves symbolic music processing through multi-

task transfer learning. Objective and subjective evalua-

tions demonstrate that MelodyT5 generally outperforms or

matches task-specific baseline models without modifica-

tion. The MelodyHub dataset, with over one million task

instances, offers a rich resource for training and evaluating

models. While excelling in melody-centric tasks, further

optimization is required to tackle more complex musical

compositions, such as polyphonic arrangements.
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