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ABSTRACT

Text-to-music models allow users to generate nearly realis-

tic musical audio with textual commands. However, editing

music audios remains challenging due to the conflicting

desiderata of performing fine-grained alterations on the au-

dio while maintaining a simple user interface. To address

this challenge, we propose Audio Prompt Adapter (or AP-

Adapter), a lightweight addition to pretrained text-to-music

models. We utilize AudioMAE to extract features from the

input audio, and construct attention-based adapters to feed

these features into the internal layers of AudioLDM2, a

diffusion-based text-to-music model. With 22M trainable

parameters, AP-Adapter empowers users to harness both

global (e.g., genre and timbre) and local (e.g., melody) as-

pects of music, using the original audio and a short text

as inputs. Through objective and subjective studies, we

evaluate AP-Adapter on three tasks: timbre transfer, genre

transfer, and accompaniment generation. Additionally, we

demonstrate its effectiveness on out-of-domain audios con-

taining unseen instruments during training.

1. INTRODUCTION

Advancements in text-to-music generation have made it

possible for users to create music audio signals from sim-

ple textual descriptions [1–4]. To improve the control over

the generated music beyond textual input, several newer

models have been proposed, using additional conditioning

signals indicating the intended global or time-varying mu-

sical attributes such as melody, chord progression, rhythm,

or loudness for generation [5–9] (see Section 2 for a brief

review). Such controllability is important for musicians,

practitioners, as well as common users in the human-AI

co-creation process [10, 11].

However, one area that remains challenging, which we

refer to as text-to-music editing below, is the precise editing
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of a piece of music, provided by a user as an audio input

x alongside the text input y for the textual prompts. The

goal here for the model is to create an “edited” version of

the input music, denoted as x̃, according to the text input.

This is a crucial capability for users who wish to refine

either an original or machine-generated music without com-

promising its musicality and audio quality, while keeping

the simplicity of text-based human-computer interaction.

Namely, the desired properties of the output x̃ are:

• Transferability: x̃ should reflect what y specifies, e.g.,

timbre, genre, instrumentation, or mood.

• Fidelity: x̃ should retain all other musical content in x

that y does not concern, e.g., melody and rhythm.

While a text-to-music generation model takes in general

only the text input y and generates music freely, a text-to-

music editing model takes both audio and text inputs x and

y. The primary challenge arises from the conflicting goals

of maintaining high fidelity to the input audio x while incor-

porating specific changes dictated by textual commands y.

As we review in Section 2, existing methods [14–16] either

lack the granularity needed for detailed audio manipulation

or need complex prompt engineering that detracts from user

accessibility or requires iterative refinements.

A secondary challenge arises from the large number of

trainable parameters needed for models to achieve high mu-

sical quality and diversity (e.g., MusicGen-medium [5] has

1.5B parameters). Without much computational resource,

it is more feasible to treat existing models as “foundation

models” and finetune them to fulfill specific needs, instead

of training a model from scratch [17].

In view of these challenges, we propose in this paper

the Audio Prompt Adapter (or, AP-Adapter for short), a

novel approach inspired by the Image Prompt Adapter (IP-

Adapter) [18] from the neighboring field of text-to-image

editing. This lightweight (22M parameters), attention-based

module integrates seamlessly with existing text-to-music

generation models, specifically leveraging the pre-trained

AudioLDM2 model [12] enhanced by the AudioMAE en-

coder [13] to extract audio features. Our method uniquely

combines text and audio inputs through decoupled cross-

attention layers, allowing precise control in the genera-

tion process. After training the AP-adapter with a single

NVIDIA RTX 3090, our method can zero-shot edit a given
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Figure 1: Our AP-Adapter is an add-on to AudioLDM2 [12]. Users provide an original audio to AudioMAE [13] to

extract audio features, and an editing command to the text encoder. The decoupled audio and text cross-attention layers of

AP-Adapter contribute to the fidelity with the input audio and transferability of the editing command in the edited audio.

audio prompt according to the text prompt.

Our AP-Adapter offers great improvements over some

baseline models by enabling detailed and context-sensitive

audio manipulations, achieving a balance between fidelity

and the transferability effects dictated by user inputs. Our

experiments across timbre transfer, genre transfer, and ac-

companiment generation tasks demonstrate the effective-

ness of our approach in handling diverse and complex edit-

ing requirements. In short, our key contributions are:

• Proposing a framework that equips an audio input modal-

ity for a pre-trained text-to-music generation model.

• Performing zero-shot music editing with a lightweight

adapter, which permits flexible balance of the effects of

the text and audio inputs.

• Demonstrating three tasks: timbre transfer, genre transfer,

accompaniment generation, and discussing the impact of

tunable hyperparameters.

We provide audio examples in our demo website. 1 We also

share source code and model checkpoints on GitHub. 2

2. RELATED WORK

Generating desired music from text prompts alone is com-

plex and often requires intricate prompt engineering. Mus-

tango [7] enhanced prompts with information-rich captions

specifying chords, beats, tempo, and key. MusicGen [5]

conditioned music generation on melodies by extracting

chroma features [19] and inputting them with the text

prompt into a Transformer model. Coco-Mulla [6] and Mu-

siConGen [9] extended MusicGen by adding time-varying

chord- and rhythm-related controls. Music ControlNet [8]

incorporated time-varying conditions like melody, rhythm,

and dynamics for diffusion-based text-to-music models.

These methods utilize low-level features to guide genera-

tion but do not take reference audio as input, limiting their

potential for editing existing audio tracks.

Recently, several music editing methods were proposed.

InstructME [14] uses a VAE and a chord-conditioned dif-

fusion model for music editing but requires a large dataset

1 Demo: https://rebrand.ly/AP-adapter
2 Code: https://github.com/fundwotsai2001/AP-adapter

of audio files with multiple instrumental tracks and triplet

data of text instructions, source music, and target music for

supervised training. M2UGen [15] leverages large language

models to understand and generate music across different

modalities, supporting music editing via natural language,

but it requires a three-step training process and complex

preprocessing. MusicMagus [16] implements latent space

manipulation during inference for music editing but requires

an additional music captioning model and the InstructGPT

LLM to address discrepancies between the text prompt dis-

tribution of AudioLDM2 and the music captioning model.

Compared to these methods, our AP-Adapter is more

straightforward to train and can achieve multiple music

editing tasks in a zero-shot manner.

3. BACKGROUND

3.1 Diffusion Model

Denoising diffusion probabilistic models (DDPMs) [20],

also known as diffusion models, are a class of generative

models that approximates some distribution p(x) via de-

noising through a sequence of T − 1 latent variables:

pθ(x) =

∫

[

T
∏

t=1

pθ(xt−1 |xt)
]

p(xT )dx1:T , (1)

where θ is the set of learnable parameters, x0 := x, and

p(xT ) := N (0, I) (i.e., an uninformative Gaussian prior).

To train the model, we run forward diffusion: sample

some data point x ∼ p(x) and some t ∈ [1, T ], and add

noise ϵ ∼ N (0, I) to x to produce a noised data point

xt :=
√

β̄tx+
√

1− β̄tϵ, where β̄t is the pre-defined noise

level for step t. The model is asked to perform backward dif-

fusion, namely, to recover the added noise via the objective

minθ Ex,ϵ,t

[

∥ϵ− ϵθ(xt, t)∥
2
2

]

, where ϵθ(·) is the model’s

prediction, that is equivalent to maximizing the evidence

lower bound (ELBO) of pθ(x). During inference, we start

from an xT ∼ N (0, I) and iteratively remove the predicted

noise ϵθ(xt, t) to generate data. Song et al. [21] offered a

crucial interpretation that each denoising step can be seen

as ascending along ∇x log pθ(x), also known as the score

of pθ(x). Any input condition y can be incorporated into a
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diffusion model by injecting embeddings of y via, for exam-

ple, cross-attention [22], thereby modeling pθ(x |y) (and

∇x log pθ(x |y)). To reduce memory footprint and acceler-

ate training/inference, latent diffusion models (LDMs) [22]

proposed to first compress data points x into latent vectors

using a variational autoencoder (VAE) [23], and then learn

a diffusion model for the latent vectors.

3.2 AudioLDM2

We choose AudioLDM2 [12], a latent diffusion-based [22]

text-to-audio model, as our pretrained backbone. To en-

able text control over generated audio, AudioLDM2 uses

AudioMAE [13] to extract acoustic features, named the lan-

guage of audio (LOA), from the target audio. LOA serves

as the bridge between acoustic and text-centric semantic

information—the text prompt is encoded by both the FLAN-

T5 [24] language model and CLAP [25] text encoder (which

has a joint audio-text embedding space), and then passed to

a trainable GPT-2 [26] to approximate the LOA via a regres-

sion loss that aligns the semantic representations with LOA.

The aligned text information is then fed into the U-Net [27]

for diffusion process to influence the generation. We pick

AudioLDM2 to be the backbone since the use of LOA likely

promotes the affinity to accepting audio conditions, which

is crucial to our fidelity goal.

3.3 Classifier-free Guidance

Classifier-free guidance (CFG) [28] is a simple yet effective

inference-time method to enhance the input text condition’s

influence, which is directly linked to our transferability goal.

As mentioned in Sec. 3.1, diffusion models can predict both

the unconditioned score ∇x log p(x) and the conditioned

score ∇x log p(x | y). In addition, by Bayes’ rule, we

know that p(x | y) ∝ p(x)p(y | x). As the goal is the

amplify y’s influence, we define:

pλ(x | y) :∝ p(x)p(y | x)λ , (2)

where λ is a knob, named CFG scale, that controls the

strength of y. Taking (∇x log) on both sides gives us:

∇x log pλ(x | y) = λ∇x log p(y | x) +∇x log p(x) .
(3)

Meanwhile, we can rearrange the Bayes’ rule terms to get:

∇x log p(y | x) = ∇x log p(x | y)−∇x log p(x) . (4)

Note that a diffusion model can predict both RHS terms.

Plugging Eqn. (4) into Eqn. (3), CFG performs

∇x log pλ(x | y) = ∇x log p(x)

+ λ(∇x log p(x | y)−∇x log p(x)) (5)

at every inference iteration, where ∇x log p(x) is obtained

by inputting an empty string as y.

4. PROPOSED AUDIO PROMPT ADAPTER

To effectively condition AudioLDM2 on the input audio

and achieve our transferability and fidelity goals, our AP-

Adapter adds two components to AudioLDM2: an audio

encoder to extract acoustic features, and decoupled cross-

attention adapters to incorporate the acoustic features while

maintaining text conditioning capability.

4.1 Audio Encoder and Feature Pooling

We adopt AudioMAE as the audio encoder, which is used

by AudioLDM2 to produce the language of audio (LOA;

see Section 3.2) during its training. In our pilot study, we

find that using the LOA directly as the condition causes

nearly verbatim reconstruction, i.e., information in the input

audio is mostly retained. This is undesirable as it greatly

limits transferability. To address this issue, we apply a

combination of max and mean pooling on the LOA, and

leave the pooling rate, which we denote by ω, tunable by

the user to trade off between fidelity and transferability.

4.2 Decoupled Cross-attention Adapters

According to the analyses in [29, 30] performed on text-to-

image diffusion models finetuned for image editing [31],

the cross-attention layers, which allow interaction between

text prompt and the diffusion process, undergo the most

drastic changes during fine-tuning. Hence, we implement

our AP-Adapter also as a set of cross-attention layers.

Recall that the audio and text prompts are transformed

to internal features before interacting with the U-Net for

diffusion. We define these features as:

cx := Pool(AudioMAE(x)) (6)

cy := GPT2([FlanT5(y);CLAP(y)]) , (7)

where cx and cy are the audio and text features respectively.

The original AudioLDM2 incorporates the text feature into

each U-Net layer via cross-attention:

ztext := Attention(zW (q), cyW
(k), cyW

(v)) , (8)

where z is the U-Net’s internal feature, and W (q), W (k),

W (v) are learnable projections that respectively produce

the cross-attention query, key, and values from z or cy.

We keep this cross-attention for text intact (i.e., frozen),

anticipating it to satisfy transferability out of the box.

To incorporate the audio features for fidelity, we place a

decoupled audio cross-attention layer as the adapter along-

side each text cross-attention in a similar light to [18]:

zaudio := Attention(zW (q), cxW
′(k), cxW

′(v)) , (9)

where W ′(k) and W ′(v) are the newly introduced adapter

weights. Since during AudioLDM2 training, the text fea-

ture cy is trained to mimic the LOA from AudioMAE, we

initialize W ′(k) and W ′(v) respectively from W (k) and

W (v) for all the cross-attention layers in the Unet, and

find that this significantly shortens our fine-tuning process

compared to random initialization.

Finally, we obtain the final output of the decoupled text

and audio cross-attentions via a weighted sum:

zfusion := ztext + αzaudio , (10)
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where α ∈ R, named AP scale, is a hyperparameter that

controls the strength of the audio prompt (fixed to α =
1 during training), and zfusion becomes the input of the

subsequent U-Net layer. We expect zfusion to capture the

information mixture from audio and text prompts, inducing

the model to generate plausible music that adheres to both.

4.3 Training

We freeze all the parameters in the pretrained AudioLDM2

and AudioMAE, except for the decoupled audio cross-

attention adapters with 22M parameters. The loss function

follows that of standard (latent) diffusion models:

L = E(x,y),ϵ,t ∥ϵ− ϵθ (xt, cx, cy, t)∥
2
2 , (11)

where (x,y) are naturally existing paired audio and text,

ϵ ∼ N (0, I), t is the diffusion step, xt is the noised audio

latent features, cx, cy are the extracted features from text

and audio prompts (cf. Eqn. (6) and (7)), and ϵθ(·) is the

model’s predicted noise. Minimizing L is equivalent to

maximizing the lower bound of p(x | cx, cy). During train-

ing, we select the audio feature’s pooling rate ω from the

set {1, 2, 4, 8} uniformly at random, making the adapters

recognize audio features with different resolutions, thereby

allowing users to balance fidelity and transferability at in-

ference. Additionally, we randomly dropout audio and text

conditions, i.e., setting cx to a zero matrix, and y to an

empty string, to facilitate classifier-free guidance.

4.4 Inference

At inference, users are free to input any text prompt y as the

editing command to achieve their desired edits, i.e, x → x̃.

In addition, following [32,33], we modify the unconditioned

terms in Eqn. (5) using a negative text prompt y−. Letting

cxy := {cx, cy}, our inference step is:

∇x̃ log pλ(x̃ | cxy, cy−) = ∇x̃ log p(x̃ | cy−)

+ λ
(

∇x̃ log p(x̃ | cxy)−∇x̃ log p(x̃ | cy−)
)

(12)

We find that specifying y− is an effective way to avoid

unwanted properties in x̃, e.g., the original timbre for the

timbre transfer task, or low-quality music in general.

5. EXPERIMENT SETUP

5.1 Dataset Preparation

For the training data of our AP-Adapter, due to our limited

computation resource, we use 200K 10-second-long audios

with text tags randomly sampled from AudioSet [34] (about

500 hours, or ∼10% of the whole dataset).

For the audio input x used in evaluation, we compile

two datasets: in-domain and out-of-domain, according to

whether the AudioSet ontology includes the instrument.

• In-domain: We choose 8 common instruments: piano,

violin, cello, flute, marimba, organ, harp

and acoustic guitar. For each instrument, we

manually download 5 high-quality monophonic audios

from YouTube (i.e., 40 samples in total) and crop them

each to 10 seconds.

• Out-of-domain: We collect a dataset of monophonic

melodies played by ethnic instruments, including 2 Chi-

nese instruments (collected by one of our co-authors) and

5 Korean instruments (downloaded from AIHub [35]).

We use 5 audio samples for each instrument (35 audios

in total), cropped to 10 seconds each. We note that these

instruments are not seen during the training time.

Except for the Korean data which is not licensed outside of

Korea, we share information to get the data on GitHub.

5.2 Evaluation Tasks

By varying the edit command y, we evaluate AP-Adapter

on three music editing tasks:

• Timbre transfer: The model is expected to change a

melody’s timbre to that of the target instrument, and keep

all other contents unchanged. For this task, the edit-

ing command (y) is set to “a recording of a [target

instrument] solo”. The negative prompt (y−) is

“a recording of the [original instrument] solo”.

For in-domain input, the target is one of the other 7 in-

domain instruments. For out-of-domain input, the target

is one of the 8 in-domain instruments. We only use in-

domain instruments as the target because our evaluation

metrics CLAP [25] and FAD [36] (see Section 5.5) do

not recognize the out-of-domain instruments.

• Genre transfer: We expect the genre (e.g., jazz and coun-

try) to change according to the text prompt, but we wish to

retain most of the other content such as melody, rhythm

and timbre. Here, we set y := “[target genre]

style music”, and y− := “low quality music”. Here, we

target 8 genres: jazz, reggae, rock, metal, pop,

hip-hop, disco, country.

• Accompaniment generation: We expect that all con-

tent in the input melody remains unchanged, but a new

instrument is added to accompany the original audio in

a pleasant-sounding and harmonic way. We set y :=
“Duet, played with [accomp instrument] accom-

paniment”, and y− := “low quality music”. The [accomp

instrument] is selected in the same way as the [target in-

strument] in the timbre transfer task.

We include these representative tasks which musicians may

find useful for their daily workflow, but since y is free-form

text, AP-Adapter has the potential for many other tasks.

5.3 Training and Inference Specifics

We use AudioLDM2-large (1.5B parameters), available on

HuggingFace, as our backbone model, and only train our

22M-parameter adapters. Training is done on a single one

RTX 3090 (24GB) for 35K steps with an effective batch size

of 32. We use AdamW optimizer with fixed learning rate

10−4 and weight decay 10−2. To enable CFG, we randomly

dropout text and audio features with a 5% probability.

For inference, we choose the critical hyperparameters,

i.e., pooling rate ω, AP scale α, and CFG scale λ, by ex-

ploring the transferability-fidelity tradeoff space as will be

reported in Section 6.1. For timbre transfer and accompani-

ment generation, we select ω = 2, α = 0.5, λ = 7.5. For the
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(a) Tuning pooling rate ω (b) Tuning AP scale α (c) Tuning classifier-free guidance scale λ

Figure 2: Transferability-fidelity tradeoff effects of different hyperparameters on the timbre transfer task. The hyperparame-

ters are set to ω = 2, α = 0.55, and λ = 7.5 when they are not the hyperparameter of interest.

genre transfer , we select ω = 1, α = 0.4, λ = 7.5. Following

AudioLDM2, we use 50 diffusion steps.

5.4 Baselines

We choose two well-known and publicly-available audio

generation models, AudioLDM2 [12] and MusicGen [5],

as our baselines. Both of them can generate nearly realistic

music. We describe below how we use them for editing:

• AudioLDM2: Following SDEdit [37], we perform the

forward process (i.e., adding noise to the audio input x)

partially for 0.75T steps, where T is the original number

diffusion steps, and then denoise it back with the editing

command y to obtain x̃.

• MusicGen: MusicGen is a Transformer-based text-to-

audio model that generates discrete audio tokens. We

use MusicGen-Melody (1.5B), which achieves melody

conditioning using chromagram [19] as a proxy. We input

y as the text prompt, and the chromagram of x as the

audio condition, for MusicGen to generate x̃.

We do not include the recent text-to-music editing methods

InstructME [14] or MusicMagus [16], as they have not re-

leased the code and models, and also exclude M2UGen [15]

as it is heavily focused on music understanding and visually-

conditioned music generation.

5.5 Objective Metrics

We employ the following metrics:

• CLAP [25] is used to evaluate transferability, as it is

trained with contrastive losses to align the representations

for audio and text. We compute the cosine similarity

between CLAP audio embedding for the edited audio x̃

and CLAP text embedding for the command y. 3 Higher

scores show high semantic relevance between x̃ and y.

• Chroma similarity computes the similarity of the origi-

nal and edited audios x̃ and x harmonically and rhythmi-

cally, thereby evaluates fidelity. We adopt librosa’s [38]

CQT chroma method to extract the 12-dimensional chro-

magrams [19] to compute framewise cosine similarity.

3 For accompaniment generation task, text input to CLAP is modified
to include both instruments, e.g., “Piano duet, played with violin.”

Model
CLAP ↑

(transferability)

Chroma ↑
(fidelity)

FAD ↓
(overall)

MusicGen 0.339 0.771 8.443

AudioLDM2 0.284 0.643 5.389

AP-Adapter 0.314 0.777 5.986

Table 1: Objective evaluation on in-domain audio inputs

of MusicGen-Melody [5], AudioLDM2-SDEdit [12, 37],

and the proposed AP-Adapter. Results are the average of

the three tasks. Best results are highlighted in bold (↑ / ↓:

the higher / lower the better).

• Fréchet audio distance (FAD) [36] uses a pretrained

audio classifier to extract audio features, collects features

from all audios, and estimates the feature covariance ma-

trix. Then, the Fréchet distance is computed between the

two covariance matrices (one from generated audios, one

from real audios). We adopt FAD to evaluate the overall

quality/realisticness of the generations. Following the

official implementation, we use VGGish architecture [39]

as the feature extractor. We use the in-domain evaluation

dataset as real audios.

5.6 Subjective Study

We design a listening test that contains 2 sets of music

for each of the three tasks. The sets are independent from

one another, and each contains a 10-second original audio

prompt x, an editing text command y, and three edited

audios x̃ generated by our model and the two baselines

(with order randomized and kept secret to participants).

Participants rate each edited audio on a 5-point Likert scale,

according to the following 3 aspects:

• Transferability: Do you feel that the generated audio

matches what the text prompt asks for?

• Fidelity: Do you feel that the generated audio faithfully

keeps the original musical content that should not be

changed by the text prompt?

• Overall preference: Overall, how much do you like the

generated audio?

We recruit 30 participants from our social circle and ran-

domly assign them one of the 6 test suites (3 for in-domain,

3 for out-of-domain). The study takes about 10 minutes.
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Metric Transferability MOS Fidelity MOS Overall MOS

Eval. audios Task Timbre Genre Accomp. Timbre Genre Accomp. Timbre Genre Accomp.

In-domain

MusicGen 3.35 3.15 3.32 2.62 2.85 2.76 3.06 3.03 2.91

AudioLDM2 3.21 2.74 3.12 2.21 2.21 2.26 2.47 2.56 2.47

AP-Adapter 3.59 3.44 3.41 3.47 3.74 3.41 3.26 3.44 3.12

Out-of-domain

MusicGen 2.92 3.96 3.00 2.73 3.31 2.54 2.58 3.58 2.65

AudioLDM2 2.62 2.12 2.96 2.42 2.69 2.23 2.58 2.31 2.81

AP-Adapter 2.92 3.19 3.54 3.81 3.58 3.96 3.08 3.12 3.31

Table 2: Subjective study results (mean opinion scores ∈ [1, 5]) with 17 and 13 participants for in-domain and out-of-domain

input audios, respectively, for the three evaluation tasks: timbre transfer, genre transfer, and accompaniment generation.

6. RESULTS AND DISCUSSION

6.1 Hyperparameter Choices

We discover in our early experiments that several hyperpa-

rameters, which are tunable during inference, can drastically

affect the edited outputs. Therefore, we conduct a system-

atic study on the effects of audio pooling rate ω (Sec. 4.1),

AP scale in decoupled cross-attention α (Sec. 4.2), and

classifier-free guidance scale λ (Sec. 3.3). Specifically, we

observe how their various values induce different behaviors

on the transferability-fidelity plane spanned by CLAP and

chroma similarity metrics.

• The pooling rate ω controls the amount of information

from the audio prompt. Figure 2a shows clearly that when

the pooling rate is low, the fidelity is higher, but at the

cost of transferability. For example, the audio generated

with ω = 1 preserves abundant acoustic information, thus

the edited audio sounds like the input audio, but it might

not reflect the editing command. The opposite can be said

for ω = 8. Overall, ω = 2 or 4 strikes a good balance.

• The AP scale α adjusts the relative importance between

the text and audio decoupled cross-attentions. As opposed

to pooling rate, it enhances fidelity at the expense of

transferability at higher values, as shown in Figure 2b,

and α ∈ [0.4, 0.6] leads to a more balanced performance.

• The CFG guidance scale λ dictates the strength of text

condition as detailed in Eqn. (5). As shown in Figure 2c,

somewhat unexpectedly, λ does not impact the tradeoff

too much when λ ≥ 3.5. Hence, we use λ = 7.5 across

all tasks following AudioLDM2.

6.2 Objective Evaluations

We show the metrics computed on in-domain audios in Ta-

ble 1, taking the average across the three editing tasks. (We

do not report the result for out-of-domain audio inputs as we

expect CLAP and FAD to be less reliable there.) In general,

AP-Adapter exhibits the most well-rounded performance

without significant weaknesses—MusicGen scores high on

transferability, but has a much worse FAD score, indicating

issues on quality or distributional deviation. We infer that,

since MusicGen only considers melody as input rather than

the entire audio, it has fewer limitations in the generating

process and thus achieves a higher transferability score. On

the other hand, AudioLDM2 consistently achieves the best

FAD score but lacks fidelity and transferability.

We also evaluate the ablated version of AP-Adapter with-

out using the negative prompt (y−). For the timber transfer

task, not using the negative prompt induces worse transfer-

ability, degrading the CLAP score from 0.405 to 0.378, but

does not negatively impact chroma similarity and FAD.

6.3 Subjective Evaluations

Table 2 shows the results from our listening test. Our AP-

adapter outperforms the two other baseline models in 16 out

of 18 comparisons. On top of preserving fine-grained de-

tails in the input audio, AP-adapter also tightly follows the

editing commands and generate relatively high-quality mu-

sic, leading in transferability and overall preference except

for only the genre transfer task on out-of-domain audios.

MusicGen performs better in transferability for genre trans-

fer, but its fidelity is weaker as it only considers the melody

of the input audio. With the additional audio-modality con-

dition, AP-adapter has the advantage of “listening” to all

the details of the input audio, receiving significantly higher

scores on fidelity on both in- and out-of-domain cases.

The advantage of AP-adapter in fidelity is much stronger

in Table 2 rahter than in Table 1. We conjecture that chroma

similarity paints only a partial picture for fidelity as it is

focused primarily on harmonic properties, leaving out other

musical elements such as dynamics and percussive patterns.

7. CONCLUSIONS

We presented AP-Adapter, a lightweight add-on to Audi-

oLDM2 that empowers it for music editing. AP-Adapter

leverages AudioMAE to extract fine-grained features from

the audio prompt, and feeds such features into AudioLDM2

via decoupled cross-attention adapters for effective condi-

tioning. With only 500 hours of training data and 22M

trainable parameters, AP-Adapter delivers compelling per-

formance across useful editing tasks, namely, timbre trans-

fer, genre transfer, and accompaniment generation. Addi-

tionally, it enables users to manipulate the transferability-

fidelity tradeoff, and edit out-of-domain audios, which pro-

motes creative endeavors with ethnic instrument audios that

are usually scarce in publicly available datasets.

Promising directions for follow-up works include: (i) ex-

ploring more diverse editing tasks under our framework

with various editing commands, (ii) extending AP-Adapter

to other generative backbones, e.g., autoregressive mod-

els, and (iii) adding support for localized edits that can be

stitched seamlessly with unchanged audio segments.
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