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ABSTRACT

The synchronization of motor responses to rhythmic au-

ditory cues is a fundamental biological phenomenon ob-

served across various species. While the importance

of temporal alignment varies across different contexts,

achieving precise temporal synchronization is a prominent

goal in musical performances. Musicians often incorporate

expressive timing variations, which require precise control

over timing and synchronization, particularly in ensemble

performance. This is crucial because both deliberate ex-

pressive nuances and accidental timing deviations can af-

fect the overall timing of a performance. This discussion

prompts the question of how musicians adjust their tem-

poral dynamics to achieve synchronization within an en-

semble. This paper introduces a novel feedback correction

model based on the Kalman Filter, aimed at improving the

understanding of interpersonal timing in ensemble music

performances. The proposed model performs similarly to

other linear correction models in the literature, with the ad-

vantage of low computational cost and good performance

even in scenarios where the underlying tempo varies.

1. INTRODUCTION

Synchronization of motor responses to rhythmic auditory

cues represents a biological phenomenon found across var-

ious species [1], and social collectives often engage in ac-

tivities necessitating precise temporal coordination among

members, a crucial factor for successful group endeavors.

For example, in scenarios such as rowing eights, tempo-

ral alignment may not be the primary focus, but individ-

ual timing remains tied to collective timing dynamics [2].

In domains like musical performances, achieving precise

temporal synchronization serves as a prominent goal [3].

Typically, musicians do not adhere strictly to the exact

timing of note onsets as indicated in the musical score: due

to expressiveness, they often introduce deviations from the
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prescribed timing [4]. These fluctuations require a high

level of control over relative timing, where the phase of

notes produced by the musician deviating from the tim-

ing aligns differently with the phases of other musicians.

Rehearsals often involve reaching a consensus on expres-

sive variations, ensuring that timing deviations are syn-

chronized among players while maintaining relative tim-

ing [5]. Nevertheless, even with a unified understanding of

the musical interpretation, individual musicians may opt

to vary the timing of note onsets in specific passages be-

tween different performances [5, 6]. Musical performance

timing is also susceptible to inadvertent variations due to

factors such as rhythmic intricacies, technical demands be-

yond timing (e.g., pitch, volume), lapses in concentration,

and the inherent variability of biological timing [7]. While

extensive individual practice can mitigate some of these

unintended variations, complete elimination is unlikely.

The previous discussion raises the inquiry: how do mu-

sicians within an ensemble modulate their temporal dy-

namics to achieve synchronization with one another? In

this paper a novel feedback correction model is presented,

based on the Kalman Filter and aimed at improving tim-

ing accuracy in ensemble music performances. The pro-

posed model generalizes the linear autoregressive model

in [8] with the improvement of allowing two important

quantities, the phase and period correction gains, to vary

along time, since it makes the model suitable to describe

synchronization in scenarios where the underlying tempo

greatly varies (a realistic case in ensemble performance).

The paper is organized as follows: Section 2 recalls

some linear models for synchronization, and the dynamic

generalization of the model in [8] is presented, which is

formulated as a Kalman Filter in Section 4; the fundamen-

tals of the Kalman Filter are briefly recalled in Section 3;

the computational experiments are shown and discussed in

Section 5; conclusions are presented in Section 6. Direc-

tions for future work are identified throughout the paper.

2. LINEAR MODELS FOR ENSEMBLE

SYNCHRONIZATION

The starting point for contextualizing the proposed model

is [9], where a phase-correction model is presented as a

method for an individual performer to achieve synchrony

with a periodic metronome click or with another performer
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(see also [10]). The fundamental concept revolves around

utilizing the asynchrony, termed as a phase error, between

a tone onset and the metronome click (or between two tone

onsets produced by different performers) in a feedback

mechanism, that guides the performer to adjust the time

interval preceding the next tone onset. Consequently, the

performer either decreases or increases the interval leading

up to the subsequent tone onset proportionally to the pre-

ceding asynchrony. This process aims to achieve greater

synchrony (“in phase”) between the next tone onset and

the metronome click (or pair of tone onsets). This syn-

chronization scheme can be represented by Equation (1):

tn = tn−1 + Tn − αAn−1 + εn, (1)

where tn and tn−1 represent the current and previous ob-

served tone onset event times respectively, Tn denotes the

time interval generated by an internal timekeeping mecha-

nism, α is the phase correction strength or phase correc-

tion gain, An−1 refers to the asynchrony of the previous

onset event, and εn represents a random error term, which

includes the internal timekeeper noise. The complete re-

duction of asynchrony to zero hinges on the value assigned

to the gain, α, since this parameter determines the propor-

tion of the preceding phase error that the performer en-

deavors to eliminate.

Following [11], period correction can also be incorpo-

rated in the model in Equation (1), by imposing that

Tn = Tn−1 − βAn−1, (2)

where β is the period correction strength or period correc-

tion gain. Phase correction involves a local, within-cycle

adjustment to the timing, while period correction entails

a more enduring alteration to the underlying tempo, influ-

encing subsequent cycles as well. Phase correction typi-

cally occurs automatically, without the need for conscious

awareness of synchronization discrepancies. However, pe-

riod correction appears to be more cognitively demanding,

relying on the conscious detection of tempo variations in

the external rhythm [12, 13].

As previously mentioned, Equations (1) and (2) model

the asynchrony correction of an individual tapping accord-

ing to a periodic metronome, or between two individuals

tapping together. In [8] it is argued that the same mod-

eling framework is also suited to describe synchronization

in music ensemble performance, where a specific musician

now tries to reduce asynchrony between him/her and every

other performer. Therefore, Equations (1) and (2) can be

jointly generalized to an ensemble of K performers as:

ti,n = ti,n−1 + Ti,n −

K
∑

i=1
j ̸=i

αijAij,n−1 + εi,n (3)

Ti,n = Ti,n−1 −

K
∑

i=1
j ̸=i

βijAij,n−1, (4)

where i = 1, . . . ,K indicate a specific performer, ti,n
and ti,n−1 are respectively the current and previous ob-

served tone onset event times for player i, Ti,n is the time-

keeper interval for player i at time instant n, Aij,n−1 =
(ti,n−1 − tj,n−1) is the asynchrony at the time instant n−1
between players i and j, αij and βij are respectively the

phase and period correction gain applied by player i to

compensate for Aij,n−1, and εi,n is a noise term identi-

fied with the internal timekeeper. Estimation of the values

of αij and βij can be performed using the bounded Gener-

alized Least Squares method (bGLS) [14, 15].

In [8], the model in Equation (3) is implemented and

largely investigated for the case of a string quartet ensem-

ble playing a homophonic section from the string quartet

Op. 74 no. 1 by Joseph Haydn (fourth movement, bars

13–24), as this part has a steady tempo and all player’s

quarter notes are aligned. In [14] the coupling of Equa-

tions (3) and (4) is investigated, with a simulated string

quartet data with mild tempo changes, and the bGLS al-

gorithm is shown to be capable of recovering the values

of α and β. However, due to the nature of the bGLS al-

gorithm, the authors point out that many data points are

necessary for robust estimation of these variables, which

may not be available or is an unrealistic aim in the case

of a real-time implementation of the correction model (eg.

for a virtual reality musical ensemble). In [16] the ADAM

model (ADaptation and Anticipation Model) is proposed,

including not only correction terms but also anticipatory

ones, and in [17] this model is tested with tempo-changing

tapping data, but since there is no adaptation of the bGLS

algorithm to this new set of equations, the parameter es-

timation is done by exhaustive search, which is infeasible

for real-life applications. Moreover, due to the nature of its

parameters, the ADAM model is non-identifiable, meaning

that more than one configuration of the parameters leads to

the same estimate.

In order to circumvent the aforementioned issues, an al-

ternative is to consider not a single value of α and β for

each pair of performers through time, but time-dependent

correction gains. Developing this intuition, a dynamic

αij allows that a performer changes the phase correction

at each onset, and a dynamic βij would allow him/her to

correct differently for tempo variations during the perfor-

mance of an excerpt. To model a dynamic variable, a good

balance between simplicity and accuracy is a random walk,

and in this case phase and period correction occur accord-

ing to Equations (3) and (4), respectively, but with addi-

tional equations to allow the evolution of both correction

gains. This new model is summarized in Equations (5),

(6), (7), and (8):

ti,n = ti,n−1 + Ti,n −

K
∑

i=1
j ̸=i

αij,nAij,n−1 + εi,n (5)

Ti,n = Ti,n−1 −

K
∑

i=1
j ̸=i

βij,nAij,n−1 (6)

αij,n = αij,n−1 + w
(α)
ij,n (7)

βij,n = βij,n−1 + w
(β)
ij,n, (8)
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where w
(α)
ij,n and w

(β)
ij,n are independent zero-mean Gaus-

sian random variables, allowing the evolution of αij,n and

βij,n through time, respectively (notice the novel subscript

“n” in both αij and βij).

However, in the model proposed in Equations (5), (6),

(7), and (8), it is not clear how to employ the bGLS method

to obtain estimate of the variables of interest, and two dis-

tinct paths can now be followed: generalize the bGLS al-

gorithm to this new situation, or resort to estimation tech-

niques within the theory of dynamic models [18]. This

work follows the latter, adopting the Kalman Filter as a

framework to analyze Equations (5), (6), (7), and (8), due

to its balance between flexibility and simplicity, as well as

its simple and highly interpretable update equations. Sec-

tion 3 recalls the basics of the Kalman Filter and Section 4

formulates the proposed model in this scenario.

3. A BRIEF RECALL ON THE KALMAN FILTER

The Kalman Filter (KF) was developed in the 1960’s, and

served originally as a way to produce accurate estimates of

variables of interest (eg. position of an object) by reaching

a consensus between physical models and noisy measure-

ments [19]. More generally, the KF can be seen as a state-

space dynamic model, employed to describe more general

time-series as a dynamic linear regression model as func-

tion of an underlying Markov model [18].

The main contribution of this paper is to propose the

model in Equations (5), (6), (7), and (8), and formulate it

as a KF, employing its filtering and smoothing equations

to estimate the phase and period correction gains through

time. The choice of a KF to achieve this goal are: linear

nature of the model in Equations (5), (6), (7), and (8), high

interpretability of the KF and its update equations, and po-

tential low computational cost of its implementation.

The notation and basic equations of the KF are now

briefly recalled, following [18]. In what follows, the in-

dex n ranges from 1 to N . Let yn ∈ R
m be a sequence of

observed variables (or measurements), and θn ∈ R
p be a

sequence of unobserved vectors, which are called the hid-

den (or state) variables. The KF model assumes that these

two entities are related by Equations (9) and (10):

yn = Fnθn + vn (9)

θn = Gnθn−1 +wn, (10)

where Fn ∈ R
m×p and Gn ∈ R

p×p are sequences

of known matrices (observation model and the state-

transition model, respectively). Vectors vn ∈ R
m and

wn ∈ R
p are independent observation and process noise

terms, respectively, and it is assumed that they follow

Gaussian probability distributions, that is, vn ∼ N(0,Vn)
and wn ∼ N(0,Wn),

1 where Vn ∈ R
m×m and Wn ∈

R
p×p are sequences of known covariance matrices of the

observation and process noise terms respectively.

1 The symbol ∼ means “follows the probability distribution”, and
N(µ,Σ) denotes a multivariate Gaussian distribution with mean vector
µ and covariance matrix Σ. The dimension of the support of the random
vector is omitted, and compatibility between dimensions of µ and Σ is
always assumed.

The KF dynamically estimates variables θn and yn

based on observations up to time n − 1, and updates the

estimate of θn when the observation at time n is available.

This process is done accordingly to Equations (11), (12)

and (13), called the filtering equations: 2

Prediction step for hidden variables:

θn|y1:n−1 ∼ N(an,Rn) (11)

Prediction step for observed variables:

yn|y1:n−1 ∼ N(fn,Qn) (12)

Update step (compare predictions to measurements):

θn|y1:n ∼ N(kn,Cn), (13)

where 3

an = Gnkn−1 (14)

Rn = GnCn−1G
T
n +Wn (15)

fn = Fnan (16)

Qn = FnRnF
T
n +Vn (17)

kn = an +
[

RnF
T
nQ

−1
n

]

en (18)

en = yn − fn (19)

Cn = Rn −
[

RnF
T
nQ

−1
n

]

FnRn, (20)

assuming that the initial state is chosen according to a nor-

mal distribution, that is, θ0 ∼ N(k0,C0). For more details

on the KF, see [18, 19].

One of the appealing aspects of the KF is its abil-

ity to perform estimation and forecasting sequentially, as

new data emerge. However, if observations yn for n =
1, . . . , N are available beforehand, one is also able to ret-

rospectively reconstruct the system’s states, in order to an-

alyze its behavior given all the observations. For this pur-

pose, a backward-recursive algorithm can be employed to

compute the conditional distributions of θn given y1:N , for

any n < N [18,19]. The main ingredient of this algorithm

is the smoothing equation (21):

θn|y1:N ∼ N(sn,Sn), (21)

where

sn = kn +CnG
T
n+1R

−1
n+1 [sn+1 − an+1] (22)

Sn = Cn −CnG
T
n+1R

−1
n+1×

[Rn+1 − Sn+1]R
−1
n+1Gn+1Cn, (23)

assuming that θn+1|y1:N ∼ N(sn+1,Sn+1). Notice that

since the smoothing is performed backwards, it is necessar-

ily to previously filter the set of observations to gain access

to vectors kn and an, and matrices Cn and Rn.

4. KALMAN FILTER MODEL FOR ENSEMBLE

SYNCHRONIZATION

Equations (5), (6), (7), and (8) can be written as a KF by

considering proper choices for the observed and hidden

2 The conditional distribution of u given z is denoted by u|z, and i : j
means “observations from time instants i to j”, both extremes included.

3 The superscript T after a vector or matrix denotes its transpose; the
superscript −1 after a matrix denotes its inverse.
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variables, as well as the observation and state-transition

matrices. The main goal of this section is to construct a

sequence of matrices Fn and Gn, as well as vectors yn

and θn of observed and hidden variables respectively, such

that Equations (9) and (10) recover the model proposed in

Equations (5), (6), (7), and (8). Firstly, to simplify the

formulation of the model, the observed variables are not

the tone onset times for each player, but rather the inter-

onset-intervals (IOIs), denoted by ri,k = ti,n − ti,n−1, for

i = 1, . . . ,K. These values are assembled as in Equation

(24):

yn = [r1,n . . . rK,n] ∈ R
K . (24)

The hidden variable θn can be written as in Equation (25):

θn =
[

TT
n

∣

∣ rTn
∣

∣ αT
n

∣

∣ βT
n

]T
∈ R

2K2

, (25)

where

Tn = [T1,n . . . tK,n]
T
∈ R

K (26)

rn = [r1,n . . . rK,n]
T
∈ R

K (27)

αn = [αij,n in the lexicographical order on ij,

for 1 ≤ i, j ≤ K, i ̸= j] ∈ R
K(K−1) (28)

βn = [βij,n in the lexicographical order on ij,

for 1 ≤ i, j ≤ K, i ̸= j] ∈ R
K(K−1). (29)

The relation between θn and yn is described by the obser-

vation matrix in Equation (30): 4

Fn =
[

0K

∣

∣ IK
∣

∣ 0K×K(K−1)

∣

∣ 0K×K(K−1)

]

. (30)

Notice that matrices Fn ∈ R
K×2K2

are constant through

time. The evolution of the hidden variables in θn is mod-

elled by a sequence of state-transition matrices Gn ∈
R

2K2×2K2

, described in Equation (31):









IK 0K 0K×K(K−1) GTβ
n

IK 0K Grα
n Grβ

n

0K(K−1)×K 0K(K−1)×K IK(K−1) 0K(K−1)

0K(K−1)×K 0K(K−1)×K 0K(K−1) IK(K−1)









, (31)

where matrices GTβ
n , Grα

n , and Grβ
n (of dimensions K ×

K(K−1) each) describe the interaction between variables

in their respective superscripts. These three matrices are

equal to the matrix in Equation (32):











−AT
1:,n−1 01×(K−1) · · · 01×(K−1)

01×(K−1) −AT
2:,n−1 · · · 01×(K−1)

...
...

. . .
...

01×(K−1) 01×(K−1) · · · −AT
K:,n−1











, (32)

where each Ai:,n−1 ∈ R
K−1 contain the asynchronies

Aij,n−1 of player i to all players j, for j ̸= i, at time n−1.

Vector Ai:,n−1 is made explicit in Equation (33):

[

Ai1,n−1 . . . Ai(i−1),n−1Ai(i+1),n−1 . . . AiK,n−1

]T
. (33)

4 The identity matrix of dimensions L×L is denoted by IL; the matrix
of dimensions L × M filled with zeros is denoted by 0L×M ; a square
null matrix of dimensions L× L is abbreviated by 0L.

A simple (but tedious) verification using Equations (9)

and (10) with these choices for Fn, Gn, yn, and θn en-

sures that the model in Equations (5), (6), (7), and (8) is

recovered. It is also established that when K = 1 the

model in Equations (1) and (2) is recovered, with the im-

provement of dynamic α and β.

When compared to the bGLS algorithm [14, 15], the

state-of-the-art to estimate parameters in the scenario of

sensorimotor synchronization, the KF model presents a

great advantage, that is the possibility of performing on-

line estimation as more data become available: this feature

can be important if one desires to implement real-time syn-

chronization schemes. When the complete time-series of

onset times/IOIs is available, one can apply the smoothing

equation (21), in order to dynamically estimate the param-

eters of interest throughout the performance, as well as es-

timate them by applying the filtering equations (11), (12),

and (13), for example, to simulate an online scenario.

Notice that the dimensions of Fn, Gn, and θn scale

quadratically with the number of performers, which may

render the model overly complicated or cause computa-

tional issues when computing the KF update/filtering equa-

tions. 5 However, due to the sparsness of matrices Fn

and Gn, block-multiplication will highly reduce the num-

ber of operations when computing Equations (14) to (20),

mitigating the latter issue. Regarding the complexity of

the model, notice that in real large-scale scenarios (eg. a

symphony orchestra) it is not realistic to assume that each

musician synchronizes with every other, thus allowing for

potential simplifications, like considering a group of in-

struments as a single unity and synchronizing with every

other group. This procedure would diminish the value of

K from approximately 100 to less than 20. A useful topic

for future research would be to investigate the possibility

of modeling the synchronization scheme between perform-

ers (or group of performers) in a graph, in order to decrease

even more the number of relevant connections.

Another issue that is important to point out is the design

of the covariance matrices for the observation and process

noises, Vn and Wn respectively. On a first view, it makes

sense to consider Vn as diagonal matrices, for simplic-

ity, since the interaction between the performers is already

“captured” by the correction gains in the hidden variables;

however, it is not clear if Wn should be a sequence of

diagonal matrices, since it makes sense to consider at least

correlations between both correction gains of the same per-

former. This work employs a particular choice for these

covariance matrices, as will be further discussed in Sec-

tion 5. Further investigation on this question could involve

coupling the Expectation-Maximization algorithm with the

KF in order to estimate not only matrices Vn and Wn but

also Fn and Gn [20]. However a disadvantage would be

that these estimates would need to be static through time,

requiring a large amount of data, and being highly depen-

dent of the piece of music being analyzed.

5 Other computational issues on the Kalman Filter are largely dis-
cussed in [18].
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Figure 1. Smoothed time-series for the phase correction gain on three performance styles of an excerpt of the fourth

movement of the string quartet Op. 74 no. 1, by Joseph Haydn. See Section 5 for discussion.

5. RESULTS

To illustrate the effectiveness of the proposed model, a

set of simulations was performed, using an excerpt of the

dataset presented in [21], similar to the one used in [8]:

the homophonic section from the fourth movement of the

string quartet Op. 74 no. 1 by Joseph Haydn, from bars

13 to 24. In this excerpt the instruments play a sequence

of 47 quarter notes in rhytmic unison, with the first vio-

lin breaking the pattern near the end with an adornment of

four sixteenth notes, which are disregarded in this study.

Three performance styles are considered: Normal con-

dition (concert-style performance); Speed condition (in-

cluding a spontaneous accelerando and ritardando initi-

ated by a single musician – the designated leader, that can

be the first or second violin); and Deadpan condition (per-

formances with minimal expression in tempo and articu-

lation). All the simulation were performed on a computer

equipped with a 12th Generation Intel Core™ i7 processor

and 16GB of RAM, running Windows 11 Pro™; the im-

plementations were conducted in Python version 3.11.7. 6

6 Codes available at https://github.com/arme-project/ismir-2024.

Regarding the parameters of the KF, the covariance ma-

trix for the process noise, Wn, plays an important role,

since it indicates how the variables in θ interact. Based

on the interpretation of the hidden variables, a reasonable

choice for all the Wn is the block-diagonal matrix in Equa-

tion (34): 7









W(T )

Wr

Wα

Wβ









, (34)

where W(T ) and Wr are given respectively by σ2
T IK and

σ2
rIK , being σ2

T the timekeeper variance and σ2
r the mo-

tor variance. Since it is known that the motor variance

is way smaller than the timekeeper variance [8, 14, 15],

the conservatively high values σ2
T = 500 and σ2

r = 25
were considered. Both Wα and Wβ are also block-

diagonal matrices, consisting of K blocks, each of dimen-

7 Off-diagonal blocks are null matrices, that were omitted exception-
ally here, to avoid a line-break in the number of the equation. Moreover,

notation W
(T ) means to avoid confusion with the transpose matrix.
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sions (K − 1)× (K − 1) and as in Equation (35):











v c · · · c

c v · · · c
...

...
. . .

...

c c · · · v











, (35)

where v represents the variance of each αij (or βij) and c

is the covariance between two distinct αij (or βij).

The rationale behind this construction for Wα and Wβ

is that it makes sense to assume that for performer i there

is a correlation only between the αij (or βij) for j ̸= i.

This means that all the correction gains for performer i in-

teract among themselves, but not directly with the correc-

tion gains of other performers. Also, it is expected that the

correlation between two distinct αij (or βij) is negative,

since increasing correction towards a specific performer

may cause a decrease of the synchronization towards the

others. With this in mind, for matrix Wα the value of v

was chosen as 10−4; the value of c was chosen such that the

correlation between any two distinct αij is equal to −0.1. 8

In this preliminary set of experiments with the KF, the

effect of the βij was disregarded, by considering Wβ a

null matrix. It is known that the effect of the phase correc-

tion is way more relevant than the effect of the period cor-

rection [8, 14, 15], with the βij coefficients being usually

much smaller than the αij . Also, preliminary experiments

with artificial data also indicate that the dynamic values of

the phase correction may render the period correction un-

necessary. Since this is a point to be further investigated, it

seemed safe to first experiment only with phase correction.

Matrices Vn were chosen to be constant and equal to

10−5IK : since the block Wr in matrix Wn already cap-

tures the motor variance, Vn should be a sequence of null

matrices, but a negligible diagonal term was added to avoid

numerical errors. Finally, the initialization of vector θ was

done by choosing its first K components and the compo-

nents from K + 1 to 2K to be equal to the first IOI of

each of the K instruments, all the αij were initially set to

0.25, and all the βij to zero. This initialization of αij is

supported by [8], where optimal correction values for en-

sembles of size K were derived.

Figure 1 summarizes one experiment performed in the

aforementioned scenario. Three repetitions of the Haydn

quartet excerpt were analyzed, being one for each of the

three performance conditions, having the second violin as

the leader in the “Speed” case. Each performance consists

of a sequence of 46 four-dimensional vectors containing

the IOIs for each instrument. Since it is not the goal of this

set of experiments to evaluate online performance of the

proposed model, these three sequences were smoothed by

the KF, 9 according to Equation 21. Each panel of Figure

1 displays the evolution of the αij , for j ̸= i, organized

as follows: each column contains a performance condition

(made explicit at its top), and each row displays the evo-

lution of αij for j ̸= i and a fixed value of i. The condi-

8 This procedure will not always lead to a positive-definite matrix, for
sufficiently high value of K and depending on c – not the case here.

9 The computational time of each smoothing is less than 100ms.

tioning of each αij on y1:N is omitted, and the instruments

are abbreviated by numbers, where 1, 2, 3, and 4 refers to

the first violin, second violin, viola, and cello, respectively.

On each panel of Figure 1 the values of αij promptly devi-

ates from the optimal initialization of 0.25 (but still varies

around it), and their respective behavior are now discussed.

In “Speed” condition (third column in Figure 1), on

each panel the phase correction parameter toward the sec-

ond violin (αi2, for i = 1, 3, 4) shows a small increase by

the end of the performance, when the change in speed oc-

curs, since the second violin is assigned as the leader to

initiate this change in speed. Notice also that his/her phase

correction parameters towards the other performers (α2j ,

for j = 1, 3, 4) decrease through time, specially near the

last notes, reinforcing its leadership in this tempo change.

In the “Normal” condition (second column in Figure

1) it is noticeable that the second violin, viola, and cello

are systematically synchronizing mainly to the first violin,

which plays the melody in this excerpt: notice the almost

constant value for αi1, for i = 2, 3, 4. While the cello

is synchronizing mainly with the first and second violin, it

presents the weaker “synchronization attractor”, as seen by

the significant decrease in αi4 through time, for i = 1, 2, 3.

Finally, in the “Deadpan” condition (first column in Fig-

ure 1) the first and second violin and the cello are syn-

chronizing mainly to the viola (steady increase of αi3 for

i = 1, 2, 4, and decrease in α3j for j = 1, 2, 4), which may

be the cause of the cello synchronizing systematically with

all the three other instruments.

This experiment indicates that the proposed model is ca-

pable of capturing local fluctuations in tempo, reinforces

the role of the phase correction gain in interpreting syn-

chronization mechanisms in musical ensembles, and as-

sess qualitatively the validity of a time-varying model to

the problem of ensemble synchronization. As a next step

in this new direction for the field, the proposed model will

be broadly tested and systematically compared with other

models. Some issues to be addressed in future work are:

perform experiments with other data contained on [21];

compare filtering and smoothing procedures, as well as in-

vestigate if the filtered estimates make sense from a music

cognition perspective; implement tools from the theory of

dynamic linear models to automatically estimate the co-

variance matrices Vn and Wn [18]; perform a systematic

comparison with the bGLS and ADAM algorithms.

6. CONCLUSION

This paper presented a novel model, based on the Kalman

Filter, for analysing asynchrony correction in music en-

semble performances. The proposed model is founded on

well-established models in the literature, and has the ad-

vantage of considering dynamic phase and period correc-

tion gains. A set of experiments (using only phase cor-

rection) on a homophonic section of a string quartet by J.

Haydn was conducted, illustrating the capabilities of the

model in explaining synchronization schemes within mu-

sical ensembles.
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