
THEGLUENOTE: LEARNED REPRESENTATIONS
FOR ROBUST AND FLEXIBLE NOTE ALIGNMENT

Silvan David Peter1 Gerhard Widmer1,2

1 Institute of Computational Perception, Johannes Kepler University Linz, Austria
2 LIT AI Lab, Linz Institute of Technology, Austria

ABSTRACT

Note alignment refers to the task of matching individual
notes of two versions of the same symbolically encoded
piece. Methods addressing this task commonly rely on
sequence alignment algorithms such as Hidden Markov
Models or Dynamic Time Warping (DTW) applied di-
rectly to note or onset sequences. While successful in
many cases, such methods struggle with large mismatches
between the versions. In this work, we learn note-wise
representations from data augmented with various com-
plex mismatch cases, e.g. repeats, skips, block insertions,
and long trills. At the heart of our approach lies a trans-
former encoder network — TheGlueNote 1 — which pre-
dicts pairwise note similarities for two 512 note subse-
quences. We postprocess the predicted similarities using
flavors of weightedDTW and pitch-separated onsetDTW to
retrieve note matches for two sequences of arbitrary length.
Our approach performs on par with the state of the art in
terms of note alignment accuracy, is considerably more ro-
bust to version mismatches, and works directly on any pair
of MIDI files.

1. INTRODUCTION

Note alignment refers to the task of matching individual
symbolically encoded notes in two versions of the same
piece. Note matches can be derived for any two ver-
sions, however, this task is usually addressed for pairs of
MIDI performances and scores encoded in various formats.
The resulting performance-to-score alignments provide the
data for several research directions in MIR and computa-
tional musicology, such as expressive performance gener-
ation, score quantization, and performance research.

To match notes can sometimes be a near-trivial task,
especially with well corresponding versions, minimal ex-
pressive playing, and simple pieces. However, more often
than not the unaligned data of interest and availability does
not fit these criteria: performers make mistakes; play extra

1 https://github.com/sildater/thegluenote

© S. Peter and G. Widmer. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution: S.
Peter and G. Widmer, “TheGlueNote: learned representations for robust
and flexible note alignment”, in Proc. of the 25th Int. Society for Music

Information Retrieval Conf., San Francisco, United States, 2024.

repeats, variations, and ornamentations; rehearsal record-
ings discontinue or restart; automatic transcriptions con-
tain various amounts of note mismatches; and the musical
material tends towards the virtuosic, dense, and complex.

Due to its close similarity with sequence alignment,
note alignment is usually approached with flavors of Dy-
namic Time Warping (DTW) or Hidden Markov Models
(HMM) based on note or chord representations. Such
representations are typically localized, and the alignment
methods process them sequentially. The aforementioned
common difficulties in MIDI performances do not harmo-
nize well with these constraints: e.g., differently ordered
chord onsets clash with DTW’s monotonicity condition,
trills create (sometimes substantial) mismatches with simi-
lar pitches and thus misleading local distances, and repeats,
skips, recording takes, etc. introduce large mismatches be-
tween the sequences which require a more zoomed-out per-
spective. To be clear, there is nothing that a priori prevents
sequence alignment methods from working in these sce-
narios, however, in practice, the propensity of alignment
methods for propagating errors render the matching qual-
ity hit-and-miss.

In this work, we address note alignment via learned
representations which leverage non-local information, i.e.,
the entire sequence of notes influences the representation
of each note. We train an attention-based encoder —
TheGlueNote — to predict note representations for two
512 note subsequences. Before being passed to the net-
work, the subsequences are augmented with a variety of
challenging and large mismatch cases. At the network’s
output, we compute a pairwise similarity matrix between
the note representations and compare this matrix to tar-
get note matches via two classification loss terms. That
is, the notes are guided towards similar representations if
they match, and dissimilar representations for all others.
In the process, TheGlueNote is trained to robustly predict
note similarities even in the presence of substantial mis-
matches.

We took care to design TheGlueNote as annotation-
agnostic as possible. Prior approaches mitigate edge cases
by introducing additional submethods, e.g., by modeling
left-right hand streams separately, excluding notated or-
naments from certain steps, or requiring coinciding chord
notes (see section 2). This introduces limitations on the
types of files which can be processed, requiring staff or
voice information, scores with ornament information, or
even just quantized scores. In contrast, our model is trained

603



directly on data from MIDI files with no quantization or
score annotation requirement.

To extract final note matches from the similarity matrix,
we present three possible additional methods. First, we
simply match the notes with maximal similarity. Second,
we add a decoder head to our note representation back-
bone – a network which predicts matching notes based on
the similarity matrix. Third, we use DTW alignment tech-
niques to extract a mapping from the similarity matrix and
in turn use this mapping to match individual notes. Putting
the pieces together, TheGlueNote leverages learned rep-
resentations for note alignment, performs on par with the
state of the art, excels at complex mismatch cases, and
works with plain MIDI input data.

The rest of the paper is structured as follows: Section 2
discusses related work. Section 3 describes the model ar-
chitecture and match extractor variants. Section 4 intro-
duces training specifications, data processing, and met-
rics which are applied in Section 5 where we evaluate the
trained model in an ablation study on the variations of ar-
chitecture and match extraction, and in comparison with
state-of-the-art methods both in regular and complex mis-
match cases. Section 6, the discussion, concludes the pa-
per.

2. RELATED WORK

Note alignment is a basic technology vital to many down-
stream tasks in symbolic music processing and computa-
tional musicology. We structure this review of related lit-
erature into a part on current state-of-the-art methods, rel-
evant work in the neighboring domains of audio and real-
time alignment, and pertinent literature on matching tasks
for non-music data.

Note alignment methods almost universally make use
of either Dynamic Time Warping or Bayesian Networks
on pitch-based representations of either individual notes
or chords [1–9]. As the principal formulation is straight-
forward, most recent efforts have focused on formaliza-
tions and heuristics that mitigate specific problems in edge
cases. Skips and repeats present a major difficulty which
can be directly modelled at the cost of computational com-
plexity [5] or side-stepped if the use of annotated anchor
points is possible [8]. Another difficulty are ornamenta-
tion notes which can be modelled as separate states [4] or
excluded from a first coarse alignment and handled sepa-
rately in a fine-grained note matching step [9]. Nakamura
et al. [3] further model left-right hand asynchrony in pi-
ano performance. In their most recent work, note align-
ment is framed as a hierarchical refinement with explicit
modelling of an alignment error identification step [6]. In
recent work by Peter [9], sequence non-ordinality is miti-
gated by a score-based chord representation, the resulting
model is thus limited to performance to score alignment.
The current state of the art (SOTA) which we will use for
reference in this work is given by two DTW-based meth-
ods [8, 9] and one HMM-based method [6].

Realtime alignment or score following methods have
been developed since the 1980s [10, 11] and largely mir-

ror the previous methods in their core elements: On-Line
Time Warping (OLTW), [12] and Bayesian Networks, in
particular HMM [3, 7, 13].

Alignment of musical audio is an important idea genera-
tor for symbolic note alignment. For introductions of audio
alignment, we refer the reader to Arzt [14] and Müller [15].
Audio alignment is prone to memory and compute bottle-
necks. Several versions of DTW addressing these issues
have been developed [16].

Deep Learning has largely been absent from music
alignment, with notable exceptions in real-time audio-
image matching [17, 18] and in symbolic score follow-
ing [9]. On the other hand, we take inspiration from im-
age processing, in particular from the task of local feature
matching [19]: the matching of pixels encoding the same
location on an object in two images of the same object. Lo-
cal feature matching often uses neural network-based fea-
ture extractors [20,21] and our proposed model in particu-
lar is informed by the MatchFormer [21].

3. MODEL

In this article, we present a model which is trained to cre-
ate note representations for two sequences such that the
representations’ pairwise similarity corresponds to the se-
quences’ alignment ground truth. Using these represen-
tations, we aim to uniquely match individual notes.The
proposed model consists of a fixed-length tokenization, an
encoder backbone, and a dual classification loss. Further-
more, we introduce three variants of match extraction from
the model’s output similarity matrix: direct similarity ma-
trix processing, using a decoder head for classification,
and DTW-based match extraction. Figure 1 presents an
overview of the components.

3.1 TheGlueNote

At the heart of our model is a non-causal transformer en-
coder (see Figure 1 middle left). Its purpose is to learn note
representations for two note sequences s1 and s2, and its
target is the alignment between the sequences. A pairwise
similarity matrix computed between the note representa-
tions of two sequences mediates between output and target.
We treat the matrix as a match classifier for each note, i.e.,
for each row (a note in s1) the column (a note in s2) with
maximal similarity should correspond to matching notes,
and vice versa.

Technically, two at least partially matching subse-
quences s1 and s2 of 512 notes each are prepended with
a default note and processed using the fixed-length struc-
tured tokenization [22, 23], which encodes relative onset,
pitch, duration, and velocity. The now 513 note (2052
token) sequences s1 and s2 are concatenated and passed
to the encoder. The encoder sums the four tokens per
note and adds a learned positional embedding for a note-
wise sequence of length 1026. Layer normalization is ap-
plied before the first encoder block and within the atten-
tion and feedforward blocks but not again on the residual
stream. Self-attention is applied to the full concatenated

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

604



Figure 1. Overview of the proposed model. During training (top row), the data flows from Data Processing (black, top
left) through TheGlueNote (blue, middle left) into the Decoder Head (blue, middle right) and the aggregated Loss (yellow,
top right). Concretely, a MIDI file is loaded into the Data Processing module which outputs matching targets to the loss
module and the concatenated sequences s1 and s2 to TheGlueNote. TheGlueNote (middle row) consist of a transformer
encoder with learned positional embeddings (LPE) and repeated attention blocks (center module with multihead-attention
MHA and a two-layer feedforward network 2L FF). The note-wise representations are split and multiplied for a pairwise
similarity matrix with s1 in the row and s2 in the column dimension shown in the loss module. Two cross-entropy loss
terms are computed from this matrix and it is also forwarded to the decoder head whose classifier output adds a third loss
term. During inference (bottom row), two MIDI files to be matched are directly passed to TheGlueNote. The resulting
similarity matrix can be processed in three ways: 1) direct maximal similarity match extraction (Matrix Match box) 2)
using the decoder head’s output, or 3) using a DTW-based match extraction (red, bottom right).

sequence, which amounts to combined within-sequence at-
tention (s1-s1, s2-s2) and between-sequence attention (s1-
s2, s2-s1). The final residual is normalized after the last
block and fed through a single dimension-conserving lin-
ear layer. For dimensions and hyperparameters of different
versions see section 4.2 and in particular Table 3.

The 1026 final output vectors of size corresponding to
the residual stream are treated as representations of indi-
vidual notes. The sequences are split again and pairwise
similarities between all 513 notes of s1 and all 513 notes
of s2 are obtained via dot product. The resulting similarity
matrix (s1 in the rows and s2 in the columns, see Figure 1
top right) is compared to two classification targets: Soft-
max across row dimension is the model’s prediction of the
matching note in s1 for each note in s2 (except for the
prepended default note), and softmax across the column
dimension is the model’s prediction of the matching note
in s2 for each note in s1 (again, except for its prepended
default note). Both are compared against the ground truth
via a cross-entropy loss (CEL). Unmatched notes in the
ground truth receive a target corresponding to the default
note in the other sequence, the default notes itself receive
no loss.

3.2 Match Extractors

Note similarities are a useful intermediary, however, they
do not yet define note matches. In this section, we de-
tail three possible note match extractors. The simplest way
of producing matches is to directly use similarity matrix-

based match extraction. That is, for each note in s2, we
match it to its most similar note in s1, including the de-
fault note (=unmatched) as possibility. A little bit of index
housekeeping avoids conflicting matches and notes with-
out prediction.

A second approach is to train TheGlueNote with an ad-
ditional decoder head for match extraction. The decoder
is also an non-causal neural network with the same high-
level structure as the encoder 2 (see Figure 1 middle right).
The decoder head processes the pairwise similarity matrix
for each actual note of s2 (hence a 512 by 513 matrix, ex-
cluding the default note in s2) and directly predicts the
matching note in s1 via 513 output logits (including the
default note in s1 for unmatched notes). During training,
its classification CEL is added to the other two losses in an

2 The "decoder head" is technically also a transformer encoder without
memory input, however, it decodes the representation towards classifica-
tion logits, so we opt for this name.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

605



unweighted fashion (see Figure 1 top right).

DTW match extraction offers a way of introducing
meaningful constraints to the note matching. Concretely,
naive note matching via maximum similarity in the pre-
diction treats every note separately and ignores informa-
tion on predictions for notes in its vicinity and previously
matched notes. To introduce this information, we adapt the
DTW-based mapping and matching procedure introduced
by Peter [9] for similarity matrix post-processing.

DTW extraction is split in two processes (see Figure 1
bottom right). First, understanding similarity as the recip-
rocal of learned pairwise distance, we use the network’s
output as input to a weighted DTW with possible directions
[[0, 1], [1, 1], [1, 0]] and associated weights [1, 2, 1]. This
choice of weights normalizes the directions under the Man-
hattan distance, i.e., any direction is equally costly overall
and the diagonal is not favored. A standard DTW path is
computed starting at the top left and ending at the bottom
right of the similarity matrix. Note that extracting a min-
imizing path through the learned distances discards infor-
mation relevant to local non-ordinality in favor of added in-
formation about each note’s neighborhood. The extracted
path should not be used as direct note match prediction,
instead it defines a coarse sequence to sequence mapping
m : R → R by linear interpolation between the onset times
of notes in the path.

In a second process, we separate all notes in both se-
quences by pitch. For subsequences s

p
1

and s
p
2

of pitch p,
we match onset sequences using a DTW pass to find onset
pairs that minimize the distance between s

p
2

and m(sp
1
).

Newly matched notes are then added to or overwritten in
the original DTW path and the mapping m is updated. If
the MIDI files to be aligned do not fit within the 512 note
contexts of the model, which is often the case, we compute
several similarity matrices for 512 note windows with a
stride of 256 notes. We then aggregate the resulting output
matrices to a global similarity matrix.

Feature Noise and Mismatch Probabilities
Tempo Tt gTt2

nt , g ∼ N (1, 0.5), nt ∼ N (0, 0.5)
Onset Ot Ot + nt, nt ∼ U(−50, 50)
Velocity Vt Vt + nt, nt ∼ U(−10, 10)
Duration Dt Dt + nt, nt ∼ U(−250, 250)

Repeats Prepeat = 1,#noterepeat ∼ U(8, 200)
Skips Pskip = 1,#noteskip ∼ U(8, 200)
Insertions Pinsertion = 0.2, random location
Deletions Pdeletions = 0.2, random location
Trills Ptrill = 1,#notetrill ∼ U(20, 100)

Table 1. Augmentations to synthesize complex mismatch
cases. Four noise terms are added to note features in the
first row terms. Sampled noise is clipped to avoid degener-
ate cases like negative durations. Duration and onset noise
are indicated in MIDI ticks. Skips, repeats, and trills are in-
troduced with the indicated probability and uniformly sam-
pled length. Insertions and deletions are added at random
locations with overall probabilities given.

4. EXPERIMENTS

We report several experiments to asses the qualities of our
proposed model. In this section, we describe the dataset,
data preprocessing, and training as well as model configu-
rations.

4.1 Data

A data sample for our model is a pair of 512 note subse-
quences. Note alignment ground truth data of real pieces
and performances is available [8,24,25], however, this data
is biased towards cases where prior note alignment meth-
ods could successfully be applied. To present the model
with a wide variety of (mis)match cases we use synthet-
ically augmented MIDI data for training. The original
MIDI tracks are taken from the (n)ASAP dataset [8], albeit
not its note alignments, only the score and performance
MIDI files directly.

Ground truth match data is created entirely synthetically
by copying each MIDI file and augmenting it with a combi-
nation of the processes which we describe in the following,
and whose parameters are given in Table 1. The original
inter-onset intervals (as a proxy for tempo) are stretched
by a global factor g, and by note-wise factors nt, these
factors are multiplicative and normally distributed. Note
onsets and durations are also changed note-wise, yet by
additive uniform noise in MIDI ticks. All MIDI files are
encoded using 480 ticks per beat and 120 beats per minute,
one MIDI tick is thus slightly longer than one millisecond.
Velocities are modified by additive uniform noise within
the 128 standard MIDI velocity values. For repeats, skips,
and trills, the probability of generating the mismatch per
512 note sequence is given, as well as note quantities sam-
pled uniformly. The mismatches are inserted contiguously
into the sequence and there is at most one augmentation of
each mismatch type per 512 note sequence. Finally, inser-
tions and deletions are generated from the existing notes,
each note is deleted or copied and randomized (i.e., in-
serted) with the given probability. All augmentations are
recomputed for every batch of training data. The values
in Table 1 are given for reproducibility and transparency,
although different variations were tested, we do not claim
that these are optimal values.

We further add transposition to the maximal extent
available on a piano keyboard as general augmentation af-
fecting both subsequences. The augmentation is carried
out in the data loader so each epoch will produce differ-
ent samples from the 1032 valid MIDI files in our dataset.
Data augmentation is only used during training, at infer-
ence two MIDI files are matched as is (see Figure 1).

For testing, we obtained the exact test files used in
the reference literature [9]. These files stem from propri-
etary datasets [26, 27] and were chosen due to the align-
ment complexity they provide. To test for robustness under
challenging mismatch scenarios, we augment these perfor-
mances for an experiment including extended (100+ note)
mismatches that cover approximately 20% of the notes.
Each 512 note subsequence pair contains exactly two mis-
matching segments, one in s1 and one in s2, each segment

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

606



Data Source Vienna 4x22 Training Data
Match Extractor Sim Matrix Decoder Head DTW n.a.
Unit Prec Rec F Prec Rec F Prec Rec F TL VL VA
Pitch-Onset Similarity Matrix 7 7 7 - - - 85 89 82 - - -
TGN-large 97 97 97 96 97 96 99 100 99 0.183 0.126 0.958
TGN-mid 81 81 81 87 88 87 99 99 98 0.171 0.145 0.996
TGN-small 75 75 75 83 87 81 99 99 99 0.374 0.280 0.902

Table 2. Ablation of Model configuration and match extraction. All match results are computed on the Vienna4x22 Dataset.
Values reported are average note match precision, recall, and F-score across all performances. The results are computed for
each match extractor / model combination. The first line serves as a simple baseline for the similarity matrix-based and the
DTW-based match extractors: we report results of their processing a pitch and onset-based similarity matrix. We further
report the average training loss (TL), validation loss (VL), and validation accuracy (VA) in the final epoch for each model.

is contiguous and its notes are randomly sampled. Note
that such randomized contiguous mismatches are different
from the synthetic mismatch segments seen during train-
ing (i.e., trills, repeats, skips, see Table 1). For comparison
with our reference models, we have to limit ourselves to
score to performance alignment instead of general MIDI
to MIDI alignment, as some of the compared models only
work with this type of musical material. To compare differ-
ent model configurations and match extractors, we further
use the public Vienna 4x22 Dataset [24]. This dataset con-
sists of 4 pieces with 22 performances each. The pieces are
comparatively simple and mismatches minimal.

Model #p rd #b #h bs #ph
TGN-large 28M 512 8 8 8 27M
TGN-mid 5.7M 256 6 8 16 2M
TGN-small 1.1M 128 4 8 24 0.6M

Table 3. Hyperparameters for TheGlueNote (TGN) vari-
ations: #p = parameter count, rd = residual dimension,
#b = number of blocks, #h = number of attention heads,
bs = batch size, and #p dh = parameter count of decoder
head. Parameter counts of the TheGlueNote models (#p)
and their decoder heads (#ph) are approximate.

4.2 Training Setup

We train model variations differentiated in three sizes. All
our models are trained on a single GeForce GTX 1080 Ti
with 12 GB of memory. We train for 200k steps, indepen-
dent of batch size, which is set to the maximal capacity of
the GPU for each model. The learning rate is initialized
at 5 ∗ 10−4 and is scheduled using cosine annealing with
warm restarts at an interval of 2k steps. Table 3 details
the hyperparameters for model variations. For all attention
blocks, the inverted bottleneck of the feedforward network
is four times the residual dimension.

5. EVALUATION

In this section, we evaluate our proposed model. The first
part compares different model configurations, the second
part compares against state-of-the-art reference methods.
To evaluate our models, we use note matching precision,

recall, and F-score as our main metrics. We further report
mean final classification losses of the predicted similarity
matrix which corresponds to direct note matching on the
training and validation data as well as the runtime of dif-
ferent model setups.

5.1 Ablation Study of Model Configurations

In a first experiment we train three model configura-
tions. We evaluate their note matching quality on the Vi-
enna4x22 dataset using three different match extractors:
direct similarity matrix processing, decoder head predic-
tion, and DTW-based match extraction. Table 2 details
the results. For all model configurations the match ex-
tractors are clearly ranked with DTW-based processing
the most promising. DTW-based match extraction in it-
self is, however, not enough for good matching. To il-
lustrate this point, we compute a simple pitch and onset
based similarity matrix (the closer in pitch and onset, the
higher the similarity) akin to what would be used to as-
sess local distances in standard approaches. We then apply
the similarity matrix-based match extractor and the DTW-
based match extractor directly on this matrix. The first row
in Table 2 shows these reference methods, which perform
subpar.

5.2 Comparison to Reference Models

We compare our proposed model against three SOTA refer-
ence models: Nakamura’s HMM matcher [6], Peter’s Du-
alDTWMatcher [9] and AutomaticNoteMatcher [8]. The
first one is implemented in C++ and compiled locally 3 ,
the other’s are part of a python package 4 . The test data
consists of five challenging pieces for solo piano in two
settings, one default and one with mismatches. Table 4 de-
tails the results. All values are note match F-scores given
in percent, except for the runtime given in seconds. In
the default setting, all three model configurations perform
on par with the best model with the best reference model
"DualDTWMatcher". In the mismatch setting, all refer-
ence models show (partial) failure. Note that not all align-
ments fail, however, no reference model stays consistently

3 downloaded from: https://midialignment.github.io/

AlignmentTool_v190813.zip
4 downloaded from: https://github.com/sildater/

parangonar

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

607



Data Source Default Data 20 % Mismatch Data

Piece B
.O

p.
53

3r
d.

m
.

C
.O

p.
9

N
o.

1

C
.O

p.
9

N
o.

2

C
.O

p.
10

N
o.

11

C
.O

p.
60

m
ea

n
of

5
pi

ec
es

to
ta

l
ru

nt
im

e

B
.O

p.
53

3r
d.

m
.

C
.O

p.
9

N
o.

1

C
.O

p.
9

N
o.

2

C
.O

p.
10

N
o.

11

C
.O

p.
60

m
ea

n
of

5
pi

ec
es

to
ta

l
ru

nt
im

e

Unit Match F-Score in % s Match F-Score in % s

Nakamura HMM 98 99 98 94 95 98 152 39 65 35 20 63 44 6458
Peter AutomaticNoteMatcher 99 84 94 96 89 92 588 82 74 89 71 75 78 808
Peter DualDTWMatcher 99 98 99 96 98 98 96 85 96 94 80 83 88 208
TGN-large + DTW 99 99 98 96 97 98 33 94 96 95 93 94 94 42
TGN-mid + DTW 96 98 98 96 98 97 27 92 95 96 92 95 94 38
TGN-small + DTW 99 98 98 96 97 98 21 94 97 95 93 94 95 31

Table 4. F-scores of three reference models and our proposed models across five challenging pieces. The matching results
are given as f-scores in % and the runtime in seconds. The data is split in two groups: a default case with the original
performances, and a mismatch case, where challenging skips and repeats which in total constitue 2̃0% of the notes have
been introduced. The models are split in two groups: three state-of-the-art reference models and our proposed model in
three configurations.

above 90 %. Our proposed models take a performance loss
as well, yet only in the range of 0-7 % and the F-score
stays above 92 % throughout. In terms of F-score, no sig-
nificant difference between TheGlueNote configurations is
found. Despite several forward passes to retrieve local sim-
ilarity matrices, TheGlueNote configurations also require
the lowest runtime. Unlike for the reference models the
runtime does not seem to vary with the complexity of the
match to be performed, only with the number of notes and
the network size. The advantageous runtime comparison
with the reference models is surprising and to be taken with
a grain of salt as implementation details possibly outweigh
the merits of each algorithm.

6. DISCUSSION

In this article, we presented TheGlueNote, a note represen-
tation model which effectively predicts note matching sim-
ilarities. Despite the fundamental role of (note) alignment
in several MIR areas, machine learning approaches have
seen limited adoption so far — in contrast with many other
areas of MIR, where machine learning models virtually su-
perseded more traditional approaches. We can only con-
jecture on the reasons for this absence, however, it seems
to us that sequence alignment methods faithfully model a
variety of alignment problems and the established meth-
ods’ correspondingly high performance leaves little room
for improvement. However, this observation does not hold
for the question which sequence representations are to be
processed by alignment algorithms, a question that is not
settled, neither in the symbolic nor in the audio domain.
Feature representations and local metrics abound, and have
myriad downstream implications for alignment success or
failure which are often hard to predict.

Our approach excels at this point by producing learned
representations which leverage non-local information.
The representations play well with DTW-based post-

processing, however, end-to-end note matching remains
challenging. Learning representations shifts the problem
of edge cases from the modeling stage (or even post-hoc
engineering) towards the training data. Augmenting data
with complex mismatches in combination with a model
that effectively predicts matches frees us from having to
address all possible cases explicitly. Randomized training
mismatches enable the model to learn robust representa-
tion for a variety of mismatching sequences. In practice,
this also leads to greater flexibility, as no quantized music,
score annotations, or any attributes beyond the basic MIDI
notes are required.

Many extensions of our approach are possible. The hy-
perparameter and architectural space of plausible represen-
tation models open several possibilities for future research.
Furthermore, the data used to train and test the model is
specific: solo piano pieces and performances of common
practice period music. This is due to the fact that refer-
ence models work on the piano data, and large symbolic
piano datasets are available. Note that this data presents
one of the most challenging note alignment scenarios and
we expect our core ideas to translate to other symbolic
data — after retraining. An open question is whether this
type of token-based match representation learning can be
used in audio or multimodal domains, e.g. by applying
it to discrete audio encodings. Lastly, the representation
learning backbone is trained without any information about
the DTW post-processing. SoftDTW [28] approaches ap-
pear promising to bridge this gap while keeping sensible
alignment constraints in an end-to-end model. However,
we want to stress again that the monotonicity condition of
(soft)DTW does not strictly hold in symbolic music even
though it has proven an effective heuristic. Many ques-
tions remain open, yet we hope to have shown that repre-
sentation learning can be integrated successfully and ben-
eficially into note alignment methods.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

608



7. REPRODUCIBILITY

Code and pre-trained checkpoints and public data
available at: https://github.com/sildater/

thegluenote

8. ACKNOWLEDGMENTS

This work receives funding from the European Research
Council (ERC), under the European Union’s Horizon
2020 research and innovation programme, grant agreement
No. 101019375 (Whither Music?). The LIT AI Lab is sup-
ported by the Federal State of Upper Austria.

9. REFERENCES

[1] B. Gingras and S. McAdams, “Improved Score-
Performance Matching using Both Structural and Tem-
poral Information from MIDI Recordings,” Journal of

New Music Research, vol. 40, no. 1, pp. 43–57, 2011.

[2] C.-T. Chen, J.-S. R. Jang, and W. Liou, “Improved
Score-Performance Alignment Algorithms on Poly-
phonic Music,” in 2014 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2014, pp. 1365–1369.

[3] E. Nakamura, N. Ono, Y. Saito, and S. Sagayama,
“Merged-Output Hidden Markov Model for Score Fol-
lowing of MIDI Performance with Ornaments, Desyn-
chronized Voices, Repeats and Skips,” in International

Conference on Mathematics and Computing, 2014.

[4] E. Nakamura, N. Ono, S. Sagayama, and K. Watanabe,
“A Stochastic Temporal Model of Polyphonic MIDI
Performance with Ornaments,” Journal of New Music

Research, vol. 44, no. 4, pp. 287–304, 2015.

[5] E. Nakamura, T. Nakamura, Y. Saito, N. Ono, and
S. Sagayama, “Outer-product hidden markov model
and polyphonic midi score following,” Journal of New

Music Research, vol. 43, no. 2, pp. 183–201, 2014.

[6] E. Nakamura, K. Yoshii, and H. Katayose, “Perfor-
mance Error Detection and Post-Processing for Fast
and Accurate Symbolic Music Alignment,” in Pro-

ceedings of the International Society for Music Infor-

mation Retrieval Conference (ISMIR), 2017, pp. 347–
353.

[7] E. Nakamura, P. Cuvillier, A. Cont, N. Ono, and
S. Sagayama, “Autoregressive hidden semi-markov
model of symbolic music performance for score fol-
lowing,” in 16th International Society for Music Infor-

mation Retrieval Conference (ISMIR), 2015.

[8] S. D. Peter, C. E. Cancino-Chacón, F. Foscarin, A. P.
McLeod, F. Henkel, E. Karystinaios, and G. Widmer,
“Automatic note-level score-to-performance align-
ments in the asap dataset,” Transactions of the Inter-

national Society for Music Information Retrieval, Jun
2023.

[9] S. D. Peter, “Online symbolic music alignment with
offline reinforcement learning,” in Proceedings of the

24th International Society for Music Information Re-

trieval Conference (ISMIR), 2023.

[10] R. B. Dannenberg, “An On-Line Algorithm for Real-
Time Accompaniment,” in Proceedings of the Interna-

tional Computer Music Conference (ICMC), vol. 84,
1984, pp. 193–198.

[11] B. Vercoe, “The Synthetic Performer in the Context of
Live Performance,” in Proceedings of the International

Computer Music Conference (ICMC), 1984, pp. 199–
200.

[12] C. Cancino-Chacón, S. Peter, P. Hu, E. Karystinaios,
F. Henkel, F. Foscarin, N. Varga, and G. Widmer, “The
accompanion: Combining reactivity, robustness, and
musical expressivity in an automatic piano accompa-
nist,” in International Joint Conference on Artificial In-

telligence (IJCAI), 2023.

[13] C. Raphael and Y. Gu, “Orchestral Accompaniment for
a Reproducing Piano,” in International Conference on

Mathematics and Computing, 2009.

[14] A. Arzt, “Flexible and robust music tracking,” Ph.D.
dissertation, Johannes Kepler University Linz, Linz,
Austria, 2016.

[15] M. Müller, Fundamentals of Music Processing – Au-

dio, Analysis, Algorithms, Applications. Springer,
2015.

[16] M. Müller, Y. Özer, M. Krause, T. Prätzlich, and
J. Driedger, “Sync toolbox: A python package for ef-
ficient, robust, and accurate music synchronization,”
Journal of Open Source Software, p. 3434, 2021.

[17] M. Dorfer, F. Henkel, and G. Widmer, “Learning to
Listen, Read, and Follow: Score Following as a Rein-
forcement Learning Game,” in Proceedings of the 19th

International Society for Music Information Retrieval

Conference. Paris, France: ISMIR, 2018, pp. 784–
791.

[18] F. Henkel, S. Balke, M. Dorfer, and G. Widmer, “Score
following as a multi-modal reinforcement learning
problem,” Transactions of the International Society for

Music Information Retrieval, Nov 2019.

[19] S. Xu, S. Chen, R. Xu, C. Wang, P. Lu, and L. Guo,
“Local feature matching using deep learning: A sur-
vey,” arXiv preprint arXiv:2401.17592, 2024.

[20] P. Lindenberger, P.-E. Sarlin, and M. Pollefeys, “Light-
glue: Local feature matching at light speed,” in Pro-

ceedings of the IEEE/CVF International Conference on

Computer Vision, 2023, pp. 17 627–17 638.

[21] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Ra-
binovich, “Superglue: Learning feature matching
with graph neural networks,” in Proceedings of the

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

609



IEEE/CVF conference on computer vision and pattern

recognition, 2020, pp. 4938–4947.

[22] G. Hadjeres and L. Crestel, “The piano inpainting ap-
plication,” arXiv preprint arXiv:2107.05944, 2021.

[23] N. Fradet, J.-P. Briot, F. Chhel, A. El Fal-
lah Seghrouchni, and N. Gutowski, “MidiTok: A
python package for MIDI file tokenization,” in Ex-

tended Abstracts for the Late-Breaking Demo Session

of the 22nd International Society for Music Informa-

tion Retrieval Conference, 2021.

[24] W. Goebl. (1999) The Vienna 4x22 Piano Corpus.
[Online]. Available: http://repo.mdw.ac.at/projects/
IWK/the_vienna_4x22_piano_corpus/index.html

[25] P. Hu and G. Widmer, “The Batik-plays-Mozart Cor-
pus: Linking Performance to Score to Musicological
Annotations,” in Proceedings of the International So-

ciety for Music Information Retrieval Conference (IS-

MIR), 2023.

[26] C. E. Cancino-Chacón, T. Gadermaier, G. Widmer, and
M. Grachten, “An Evaluation of Linear and Non-linear
Models of Expressive Dynamics in Classical Piano and
Symphonic Music,” Machine Learning, vol. 106, no. 6,
pp. 887–909, 2017.

[27] S. Flossmann, W. Goebl, M. Grachten, B. Nieder-
mayer, and G. Widmer, “The Magaloff Project: An In-
terim Report,” Journal of New Music Research, vol. 39,
no. 4, pp. 363–377, 2010.

[28] M. Cuturi and M. Blondel, “Soft-dtw: a differentiable
loss function for time-series,” in International confer-

ence on machine learning. ICML, 2017, pp. 894–903.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

610


