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ABSTRACT

Representing symbolic music with compound tokens, where

each token consists of several different sub-tokens repre-

senting a distinct musical feature or attribute, offers the

advantage of reducing sequence length. While previous

research has validated the efficacy of compound tokens in

music sequence modeling, predicting all sub-tokens simul-

taneously can lead to suboptimal results as it may not fully

capture the interdependencies between them. We intro-

duce the Nested Music Transformer (NMT), an architecture

tailored for decoding compound tokens autoregressively,

similar to processing flattened tokens, but with low memory

usage. The NMT consists of two transformers: the main de-

coder that models a sequence of compound tokens and the

sub-decoder for modeling sub-tokens of each compound to-

ken. The experiment results showed that applying the NMT

to compound tokens can enhance the performance in terms

of better perplexity in processing various symbolic music

datasets and discrete audio tokens from the MAESTRO

dataset.

1. INTRODUCTION

The effectiveness of the autoregressive language model be-

comes dominant in generative tasks in various domains,

including music. The language model has been the most

widely used generative model in symbolic music gener-

ation [1–4]. After the success of vector quantization or

residual vector quantization [5], the language model is also

widely applied to audio-domain music generation [6–8].

The power of the language model comes from its au-

toregressive modeling of sequential information. Once the

data is flattened to a sequence of discrete tokens, the lan-

guage model can be applied in a straightforward manner.

There have been many successive works on representing

symbolic music data in a sequence of flattened tokens, such

as MIDI-like encoding [9] or REMI [3].

However, a limitation of this approach is that the se-

quence length is quite lengthy, with the average number
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Figure 1: Diagram of the nested architecture with three

different methods for predicting sub-tokens.

of tokens for pieces within the Lakh MIDI dataset [10]

reaching 14,647. To overcome this limitation, the Com-

pound Word Transformer [4] proposed an encoding scheme

named Compound word that represents symbolic music as

a sequence of compound tokens, in which several musi-

cal features or attributes are encoded into a single multi-

dimensional token. By grouping musical features into two

different compound token types, metric and note, Com-

pound word shortens the sequence length to less than half

of what is encoded with REMI as depicted in Figure 2. Sim-

ilarly, Multitrack Music Transformer [11] employed a com-

pound token scheme that encodes beat position, instrument,

pitch, and duration into a single token, resulting in a se-

quence length approximately one-third of that encoded with

REMI. Furthermore, note-level compound tokens demon-

strated a clear advantage in performance for discriminative

tasks such as identifying the genre or style of music and

suggesting accompaniments [12].

Despite these attempts to reduce the sequence length by

packing musical features into a single compound token for

various purposes, encoding schemes which flatten tokens

like REMI are still dominant in symbolic music generation.

Both [4] and [11] in symbolic music generation showed that

the generation with REMI was favored in their listening

tests. One of the causes is that the previous models are

designed to predict multiple features in a parallel [11] or

partial-sequential [4] way without considering interdepen-

dencies between different musical features encoded within
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Figure 2: An example illustrating the proposed representations, note-based (NB) encoding (c) NB-Metric1st and (d)

NB-Pitch1st, alongside REMI and Compound word. All encodings represent the same piece of music by using five musical

features. Specifically, REMI and Compound word were not originally designed for multi-instrument pieces, which is why

we renamed the encodings with “+I” to (a) and (b). Here, k denotes the number of notes and sequence length for NB, while

r and c represent the ratios for REMI and Compound word, with values greater than 1.

the compound token, as depicted in Figure 1.

To address this challenge, we introduce a novel decoding

framework called the Nested Music Transformer (NMT).

The primary goal of this framework is to decode compound

tokens in a fully sequential manner while maintaining ef-

ficient memory usage. The proposed NMT combines two

distinct cross-attention architectures within its sub-decoder:

the intra-token decoder and the Embedding Enricher. The

intra-token decoder autoregressively decodes the sub-tokens

of a single compound token, while the Embedding Enricher

updates embedding of each sub-token by attending to the

hidden states of previous compound tokens.

We demonstrated that our proposed architecture achieves

performance comparable to that of flattening-based mod-

els, while requiring fewer computational resources in terms

of GPU memory and training time. This was confirmed

through both quantitative evaluations and subjective listen-

ing tests for symbolic music generation. Furthermore, our

experiments showed that the NMT and other nested archi-

tectures perform similarly to strong baseline models when

generating audio samples using discrete audio tokens. All

source code, pretrained models and generated samples are

available at https://github.com/JudeJiwoo/nmt.

2. NOTE-BASED ENCODING

Before we introduce the Nested Music Transformer, we

explain Note-based encoding (NB), a compound token en-

coding scheme that we utilized as the primary encoding

method. NB stands out for its ability to encapsulate the

most comprehensive set of musical features within a single

compound token, as illustrated in Figure 2.

2.1 Musical Features in Symbolic Encoding

As depicted in Figure 2, REMI, Compound word, and NB

utilize several musical features to represent music pieces.

We used a total of eight features: beat (position), pitch, and

duration were essential, while instrument, chord, tempo,

and velocity were selectively included based on the dataset

characteristics. To encode other information, such as mea-

sure boundary and change in time signature, we also em-

ployed one additional feature Type or Metric following [4].

In Compound word (CP), musical features are catego-

rized into two groups: “metrical” and “note.” Consequently,

the encoding employs two Type tokens to specify the group

of each compound token. Unlike CP, NB does not require

group indicator tokens however, since each note token in

NB is assigned a beat, unlike REMI and CP, we designed

the Metric feature to encode changes in the metrical struc-

ture. This allows the model to efficiently represent metrical

changes within a single sub-token. Specifically, the Metric

feature indicates whether the current note introduces a new

time signature, measure, or beat, or continues the previous

metrical context. For this purpose, we define four distinct

values for the Metric feature vocabulary, each representing a

different combination of metrical changes or continuations.

The Beat indicates the relative position of each note

within a measure. The Chord was derived using a rule-

based algorithm from [4]. The Tempo was set to follow an

exponential scale for value changes, with this application

varying across datasets. The Instrument feature specifies

the instrument playing the note. In order to keep the vari-

ety of instruments manageable, we adopted the approach

suggested in [11], trimming to 61 types of instruments. The

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

589



Pitch feature utilized 128 categories of pitch values repre-

sented in MIDI. The Duration refers to the length of time

each note is played. The Velocity represents MIDI velocity

(dynamics) of each note.

For the NB encoding method, a music piece P with K

number of notes, P = {n1, n2, n3, ..., nK} can be concep-

tualized as a sequence of compound tokens, denoted by

Pnb = {x1, x2, x3, . . . , xK}, wherein each event xi is a

compound token comprising up to eight sub-tokens in the

orders like followings:

(xmetric
i , xbeat

i , xchord
i , x

tempo
i , xinst

i , x
pitch
i , xdur

i , xvel
i )

2.2 Compound Shift

By reordering the sub-tokens within a compound token,

we can position the target sub-token to be predicted first.

This adjustment enhances the objective metric of the target

sub-token, as it benefits from being processed primarily

by the more powerful main decoder rather than the sub-

decoder. Each event xi which is shifted to pitch-first option

comprises features like following:

(xpitch
i−1 , x

dur
i−1, x

vel
i−1, x

metric
i , xbeat

i , xchord
i , x

tempo
i , xinst

i )

Note that the order of prediction of each sub-token in the

entire flattened sequence does not change, and only the

grouping boundary for a single compound token is shifted

as depicted in Figure 2 (d). We will refer to the non-shifted

representation as NB-MF and the shifted version as NB-PF.

3. NESTED MUSIC TRANSFORMER

In this section, we introduce the architecture of Nested

Music Transformer (NMT), which is designed to handle

compound tokens. The structure is composed of three pri-

mary components: token embedding, main decoder, and

sub-decoder. The token embedding component summa-

rizes the embeddings of each sub-token into a single vector

which represents each compound token. Subsequently, the

main decoder processes the sequence of these vectors us-

ing a decoder-only transformer architecture. Lastly, the

sub-decoder decodes sub-tokens from the output of the

main decoder. The proposed NMT integrates two distinct

cross-attention architectures within its sub-decoder: the

intra-token decoder and the Embedding Enricher. As the

NMT generates sub-tokens, their embeddings are updated

with contextual information by the Embedding Enricher, as

illustrated in Figure 3.

3.1 Token Embedding & Main Decoder

To summarize multiple embeddings from each sub-token,

we simply sum them along the sub-token axis following [6,

11]. Additionally, we integrate learnable absolute positional

embedding [13] to denote the position of compound tokens

within the sequence. Specifically, the i-th compound token

xi in the sequence is converted into a vector through the

token embedding process and aggregated with its positional

embedding. This combined vector is then fed into the main

decoder, producing the output of the main decoder, also

known as the hidden vector hi.

3.2 Sub-decoder with Cross Attention

The main goal of the sub-decoder is to obtain proper hidden

state to predict output sub-token s
j
i which is j-th sub-token

of i-th compound token, based on output of the main de-

coder hi and the preceding output sub-tokens s0i , . . . , s
j−1
i

that are predicted before.

Many previous works have suggested using a similar

sub-decoder to sequentially predict the sub-token sequence,

such as updating hidden state by concatenating with the

embedding of sub-tokens [4], using RNN [14] or causal

self-attention [8]. However, through comparative experi-

ments presented in Section 4, we found that applying cross-

attention is one of the most effective way to model the

compound token sequence in symbolic music.

The cross-attention-based sub-decoder operates by itera-

tively concatenating a key/value pair sequence K/Vi with

embeddings of sub-tokens Emb(si), starting with an initial

key/value sequence that contains only the beginning-of-

sequence BOS token. For each sub-token to be sampled,

the architecture computes multi-head scaled dot-product

cross-attention between the query sequence, consisting of

positionally encoded output of the main decoder hi, and

the current key/value sequence. The positional encoding

of hi ensures that the hidden vector has a distinct bias for

predicting target sub-token. From the attention output a
j
i ,

the matrix W
j
logits is applied to create logits. This iterative

process continues until all sub-tokens are sampled. The

process can be expressed as follows:

Query
j
i = PositionalEncoding(hi), (1)

K/V
j
i =

{

BOS if j = 0,

Concat(BOS, . . . ,Emb(sj−1
i )) if j > 0,

,

(2)

a
j
i = Cross-Attention(Query

j
i ,K/V

j
i ), (3)

s
j
i = Sampling(Softmax(ajiW

j
logits)) (4)

3.2.1 Embedding Enricher

Since the embedding of a sub-token is a shallower vector

compared to the output of the main decoder, we designed a

cross-attention architecture called the Embedding Enricher.

This architecture updates embedding of sub-token Emb(si)
with a context sequence derived from the prior outputs of

the main decoder hi−(w−1), ..., hi, where w represents the

window size.

Contexti = Concat(BOS, hi−(w−1), ..., hi), (5)

Enrichedi = Cross-Attention(Emb(si),Contexti) (6)

In the Nested Music Transformer, the output vector

Enrichedi replaces the original embedding of sub-tokens

before being concatenated into the key/value pair sequence

in Equation (2) as depicted in Figure 3. These context-

enriched embeddings allow the architecture to process at-

tention with deeper vectors than the original embeddings,

resulting in better performance on the objective metric com-

pared to the standalone cross-attention-based sub-decoder,

as demonstrated in Table 1.
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Figure 3: Illustrations of the proposed Nested Music Transformer (NMT) and other sub-decoder structures

3.3 Other Comparative Structures

3.3.1 Feed-forward-based Architecture

The Feed-forward-based sub-decoder, inspired by [4], iter-

atively updates the output of the main decoder to predict

sub-tokens. It concatenates the previously used hidden state

with the embedding of the last sampled output to predict

the next sub-token.

3.3.2 RNN-based Architecture

RNN-based sub-decoder capitalizes on the sequential na-

ture of recurrent neural network to update hidden state. The

initial input sequence and hidden state utilize the output

of the main decoder hi, and through the iteration the em-

bedding of the sampled output is appended to the input

sequence until all the sub-tokens are generated.

3.3.3 Self-attention-based Architecture 1

The self-attention-based sub-decoder aims to get the se-

quence vector Seqi by iteratively concatenaing it with the

embeddings of the sampled output Emb(si). The initial

sequence vector consists of the output of the main decoder

hi and BOS token to ensure that the initial attention values

can be properly processed. This sequence vector Seqi is

then used as the query, key, and value in the self-attention

mechanism. The process can be summarized as follows:

Seq
j
i =

{

Concat(hi, BOS) if j = 0,

Concat(hi, BOS, ...,Emb(sj−1
i )) if j > 0,

,

(7)

a
j
i = Self-Attention(Seq

j
i ), (8)

s
j
i = Sampling(Softmax(ajiW

j
logits)) (9)

1 The proposed self-attention-based sub-decoder operates differently
from the method described in [8]. Unlike ours, [8] used hi as a base of ev-
ery vector in the sequence, which is updated by the embedding of generated
sub-tokens, similar to the operation of our proposed cross-attention-based
sub-decoder. Experimental results indicate that the architecture in [8]
outperforms our self-attention-based architecture and delivers comparable
results to our cross-attention-based architecture.

3.4 Self-attention versus Cross-attention

The preference for cross-attention over self-attention arises

from the observation that the output of the main decoder,

hi, already contains sufficient information to predict sub-

tokens, as demonstrated in the parallel prediction method

used in the Multitrack Music Transformer [11]. On the other

hand, the embedding of the sampled output is comparatively

shallow, lacking the previous context despite having the

same dimension as hi. Additionally, since both attention

layers use a residual connection for the vectors used as

keys, utilizing hi as the key facilitates a direct gradient flow.

Therefore, updating hi as the key with cross-attention can

be more advantageous than updating the embedding of the

sampled sub-token with self-attention.

3.5 Applying to Audio Tokens

MusicGen [6] has employed a four-level residual vector

quantization technique for a single token, which bears simi-

larity to using four musical features or sub-tokens for com-

pound tokens in symbolic music. Given that the optimal

architecture, particularly for decoding compound features in

a fully-sequential manner, is still being explored for audio

tokens [8], we employed the Nested Music Transformer on

discrete audio tokens to assess the potential of our proposed

architecture.

4. EXPERIMENTS

4.1 Dataset Preparation

We selected four datasets to conduct our experiments on

symbolic music generation: Pop1k7 [4], Pop909 [15], the

Symbolic Orchestral Database (SOD) [16], and the clean

version of the Lakh MIDI Dataset (LMD clean) [10], which

is free of data leakage problems. During preprocessing,

MIDI files without a time signature or with excessive or

insufficient length were filtered out, and we specifically

selected pieces featuring a minimum of four instruments

for LMD clean. Note quantization varied across datasets:

twelve resolutions per beat for SOD and four resolutions
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SOD Lakh Pop1k7 Pop909

GPU mem.(GB) Time(s) / iter. Token Len. Mean↓ Beat Pitch Mean Beat Pitch Mean Beat Pitch Mean Beat Pitch

REMI [3] 19.90 0.461 6,638(±7,518) 0.474 0.229 0.753 0.294 0.293 0.408 1.087 0.470 1.138 0.716 0.368 0.984

CP [4] 7.93 0.119 3,230(±3,480) 0.604 0.257 0.971 0.361 0.288 0.527 1.172 0.495 1.219 0.911 0.410 1.220

CP* + NMT 16.13 0.224 – 0.545 0.237 0.864 0.327 0.288 0.466 1.103 0.483 1.154 0.724 0.334 0.969

NB-MF + Par. [11] 8.40 0.123 2,398(±2,764) 0.712 0.466 1.084 0.431 0.431 0.604 1.480 0.871 1.802 1.003 0.674 1.393

NB-MF + NMT 16.14 0.215 – 0.567 0.246 0.906 0.324 0.276 0.466 1.168 0.503 1.304 0.803 0.264 1.114

NB-PF + Par. 8.30 0.120 – 0.632 0.565 0.913 0.376 0.502 0.481 1.396 0.998 1.604 0.986 0.824 1.359

NB-PF + CA 14.74 0.174 – 0.564 0.276 0.867 0.305 0.287 0.424 1.161 0.538 1.244 0.767 0.357 1.052

NB-PF + NMT 16.13 0.217 – 0.549 0.263 0.855 0.306 0.285 0.427 1.149 0.515 1.243 0.771 0.345 1.090

NB-PF + FF 8.12 0.122 – 0.607 0.361 0.881 0.338 0.372 0.449 1.280 0.635 1.396 0.850 0.431 1.121

NB-PF + RNN 9.77 0.144 – 0.591 0.300 0.915 0.315 0.297 0.437 1.166 0.531 1.257 0.792 0.366 1.077

NB-PF + SA 15.67 0.181 – 0.574 0.287 0.902 0.311 0.287 0.431 1.204 0.553 1.320 0.849 0.417 1.150

CP*: Compound word representation NB-MF: metric-first NB NB-PF: pitch-first NB NMT: cross-attention-based sub-decoder + Embedding Enricher CA:

cross-attention-based sub-decoder FF: Feed-forward-based sub-decoder SA: self-attention-based sub-decoder

Table 1: Model comparison on their average NLL loss for symbolic music. The GPU memory usage and iteration times for

each model in SOD is included. Additionally, we included the average token length and standard deviation across all pieces

in SOD.

per beat for the others. We also filtered out MIDI files

with expressive tempo and timing. We split the prepared

data, reserving 10% for validation and 10% for testing.

Additionally, augmentation techniques for pitch and chord

involved random semitone shifts s ∈ Z within a range of

s ∼ U(−5, 6).

4.2 EnCodec for MAESTRO

For discrete audio tokens, we prepared MAESTRO

dataset [9], which has 200 hours piano performance au-

dio files. We fine-tuned the audio tokenizer proposed by [6]

with MAESTRO audio files to create sequences of discrete

audio tokens, each with 30 seconds of length. The sampling

rate of the token is 50 Hz, which means 30 seconds of audio

is represented with 1500 audio tokens, each with 4 different

codebooks.

4.3 Model and Hyperparameter Configuration

The baseline models for symbolic music generation are de-

fined as follows: flattening for REMI [3], partial-sequential

Feed-forward-based sub-decoder for Compound word [4],

and parallel prediction with NB-MF [11]. Additionally, the

delay method proposed by [6] is explored as a baseline for

generating audio tokens, which utilizes rearranged residual

vectors or sub-tokens in a parallel manner. In exploring both

symbolic music and audio token generation, we conducted

experiments using the Nested Music Transformer (NMT)

and various sub-decoder architectures to assess the effec-

tiveness of our proposed model. To ensure a fair comparison

among these models, we aimed for a comparable number of

model parameters, approximately 40 million for symbolic

music and 62 million for discrete audio tokens 2 . To en-

hance efficiency in processing long sequences within the

transformer architecture, we integrated Flash attention [17].

Training the model entailed 100K steps for symbolic

music and 200k for discrete audio tokens, utilizing the

2 Both models have 8 attention heads and a dimension size of 512,
with a single layer for all sub-decoder architectures and an additional
single layer for the Embedding Enricher when using the NMT. However,
they have a total of 12 and 15 decoder layers, respectively.

AdamW optimizer [18], with a segment batch size of 8 and

16 for each task, where β1 were set to 0.9, β2 to 0.95, and a

gradient clipping threshold was set to 1.0. We implemented

a cosine learning rate schedule with a warm-up phase of

2000 or 4000 steps for each task. During this warm-up

phase, the learning rate gradually increased before reaching

its maximum value 1×e−4. To address overfitting concerns,

we applied dataset-specific dropout rates instead of using

early stopping. These dropout rates were chosen to ensure

that the optimal validation loss remained stable until the

end of training. We utilized mixed precision techniques.

4.4 Quantitative Evaluation on Symbolic Music

We evaluated the symbolic music generation task using the

average negative log-likelihood (NLL). However, directly

comparing the loss values across models using different

encoding schemes posed challenges. To address this, we

first adjusted the input sequence length for each encoding

scheme to ensure that the NLL is derived from a similar

amount of context regardless of the encoding scheme. Fur-

thermore, instead of calculating the average NLL as done

during the training steps, we calculated it based on the set

of probabilities of tokens processed with full context. To

achieve this, we used a moving-window method with a win-

dow size equal to the input sequence length to create a set

of overlapping input sequences.

Secondly, we adjusted the probabilities for each sub-

token in a compound token to account for discrepancies

between REMI and other encoding schemes like CP and

NB. REMI omits redundant tokens such as repetitive posi-

tions (beat), as depicted in Figure 2. Thus, when predicting

a new note, a model based on REMI must decide whether

to add the note at a new position by predicting a new beat

token, or to add the note at the same position by predicting

a pitch token. In contrast, CP and NB, due to the nature

of their encoding schemes, split this prediction into two

steps: first, they determine the beat position, and then they

predict the pitch. This means they have more prior infor-

mation when predicting the pitch token since changes in

beat are already fixed and provided as a condition. To ad-
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FAD-uncon↓ FAD-cond↓ KLD↓ mean NLL↓

Parallel 0.166 0.206 0.075 4.669

Flatten 0.140 0.176 0.068 4.482

Delay [6] 0.168 0.188 0.066 4.564

Self-attention 0.131 0.186 0.074 4.353

Cross-attention 0.145 0.190 0.065 4.314

NMT 0.165 0.198 0.067 4.318

Table 2: Model comparison for discrete audio tokens

just the probability of sub-tokens in NB and CP, which

differ due to the discrepancy, we accumulated the proba-

bility of each sub-token to the next token in NB or CP if

that sub-token was omitted in its corresponding REMI en-

coding. For example, when predicting a pitch token at the

same beat, P (pitch | context) in REMI can be compared to

P (same_beat | context) × P (pitch | context, same_beat)
in NB or CP.

From the results, we observe several key tendencies.

First, applying the Nested Music Transformer (NMT) en-

hances the overall performance across all types of com-

pound token encodings, including previously suggested

schemes like CP and NB-MF (similar to [11]). Second, the

NMT demonstrates a clear advantage in using the cross-

attention-based sub-decoder and the Embedding Enricher

compared to other baseline architectures. Finally, our pitch-

first NB (NB-PF) encoding outperforms the metric-first NB

(NB-MF) encoding in predicting pitch. This is because the

model can predict the next pitch feature through the main

decoder by leveraging the previously inferred note position

information. Conversely, NB-MF showed lower loss in beat

prediction. This difference arises from which sub-token

relationships are calculated through the main decoder in-

stead of the sub-decoder. Overall, the results indicate that

pitch-first token grouping is an efficient strategy.

4.5 Quantitative Evaluation on Discrete Audio Tokens

We evaluated models with discrete audio tokens using fol-

lowing metrics: Fréchet Audio Distance (FAD), Kullback-

Leibler Divergence (KL), and the mean NLL loss over

sequences. A lower FAD score suggests that the generated

audio is more plausible. To mitigate sample number bias for

the test set, we employed adaptive FAD as proposed by [19],

along with CLAP [20] embeddings for each sample. FAD

scores were computed based on 500 unconditionally gen-

erated samples and 345 samples generated given prompts.

Following [6], we computed the KL-divergence over the

probabilities of the labels between the original and the gen-

erated audio samples. Table 2 shows the evaluation results.

We observe that using a cross-attention-based sub-

decoder or the NMT achieves better NLL compared to

a self-attention-based sub-decoder. However, the tendency

differs from that seen in symbolic music. Adding the Em-

bedding Enricher did not significantly improve performance

in the audio domain. We hypothesize that this disparity

arises from the distinct characteristics of tokens in both

domains. In the symbolic domain, each musical feature

requires context to form sufficient semantic information,

whereas each token in the audio domain, with a 2048 vocab-

Coherence↑ Richness↑ Consistency↑ Overall↑

Mean(±margin of error)

REMI [3] 3.18 ± 0.20 3.33 ± 0.18 3.33 ± 0.18 3.17 ± 0.18

CP [4] 2.94 ± 0.22 3.24 ± 0.18 2.97 ± 0.20 3.06 ± 0.20

CP + NMT 3.22 ± 0.19 3.35 ± 0.17 3.39 ± 0.17 3.32 ± 0.17

NB-PF + NMT 3.37 ± 0.19 3.44 ± 0.18 3.37 ± 0.19 3.36 ± 0.20

Table 3: Results of subjective listening test, presenting

mean values with 95% confidence intervals.

ulary size codebook, contains more standalone information.

This observation suggests potential avenues for future re-

search, such as exploring effective methods to integrate the

semantic information of symbolic music with discrete audio

tokens.

4.6 Subjective Listening Test

For the subjective listening test, we used the Symbolic

Orchestral Database (SOD) [16] to generate MIDI sam-

ples given four-measure prompts. We carefully selected

eight prompts from the test split and generated continuation

results using four different models: two baseline models

(REMI and CP) and two proposed models (CP + NMT and

NB-PF + NMT). We applied different sampling methods to

each model. 3 We conducted the test with 29 participants,

asking them to evaluate the generated outputs based on

three criteria: Coherence (the naturalness of transitions),

Richness (the variety of harmony and rhythm), and Con-

sistency (the lack of errors in composition), as well as an

Overall rating for the perceptual quality of the samples as a

whole.

As summarized in Table 3, our proposed models gener-

ated samples of comparable quality to REMI, outperform-

ing the baseline CP. The smaller gap between REMI and

NB + NMT in the subjective listening test compared to the

teacher-forcing NLL evaluation suggests that NB + NMT

may be more robust to exposure bias during sequence gen-

eration. Another possible explanation is that compound

tokens are more effective at capturing the given context, as

also demonstrated in the experiments of [4].

5. CONCLUSION

In summary, this work presents the Nested Music Trans-

former, an advanced architecture that decodes compound

tokens in music generation, applicable to both in the sym-

bolic and audio domain. Our architecture distinguishes

itself by addressing the twin challenges of sequence length

and feature interdependencies through a nested transformer

setup that efficiently manages GPU resources and training

processes. The experiments validate the competitiveness of

our model over previous methods, achieving on par results

in both objective metrics and subjective listening tests while

lowering training costs.

3 During the generation process, we used nucleus sampling (top-p
sampling) with p = 0.99. Our proposed models were sensitive to the
choice of the temperature parameter, where an improperly selected temper-
ature would result in excessive repetition regardless of encoding schemes.
Therefore, we searched for the optimal temperature value for each model
within the range of [1.0, 1.3] on the validation set.
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