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ABSTRACT

Deep learning models have become a critical tool for analy-
sis and classification of musical data. These models operate
either on the audio signal, e.g. waveform or spectrogram,
or on a symbolic representation, such as MIDI. In the latter,
musical information is often reduced to basic features, i.e.

durations, pitches and velocities. Most existing works then
rely on generic tokenization strategies from classical natural
language processing, or matrix representations, e.g. piano
roll. In this work, we evaluate how enriched representations
of symbolic data can impact deep models, i.e. Transformers
and RNN, for music style classification. In particular, we
examine representations that explicitly incorporate musical
information implicitly present in MIDI-like encodings, such
as rhythmic organization, and show that they outperform
generic tokenization strategies. We introduce a new tree-
based representation of MIDI data built upon a context-free
musical grammar. We show that this grammar represen-
tation accurately encodes high-level rhythmic information
and outperforms existing encodings on the GrooveMIDI
Dataset for drumming style classification, while being more
compact and parameter-efficient.

1. INTRODUCTION

In the last few years, machine learning (ML) has signifi-
cantly changed how the Music Information Retrieval (MIR)
community deals with tasks such as style and composer
classification, music generation, pitch and rhythm detection,
etc. Yet, training deep learning models on music raises the
question of the representation of this data. Depending on
the input format (audio, MIDI, musical score. . . ), different
representations, i.e. different encodings, are possible. Each
encoding has advantages and drawbacks: some represen-
tations, e.g. waveforms, focus on raw low-level acoustic
features, while others, e.g. sheet music, encode high-level
abstract semantics of the musical language.

While deep neural networks had great success on audio
signal, i.e. waveforms and spectrograms, machine learning
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for symbolic MIDI remains understudied. In this work, we
seek to build effective representations of symbolic music,
with a focus on recorded MIDI performances. Multiple pos-
sible representations of MIDI music coexist in the literature.
Most of them contains only low-level information, such as
the timing of the onset and the offset of each note and their
velocity. This is due to practical constraints: typical MIDI
recordings usually do not contain any information about
tonality, tempo, time-signature or rhythm. Hence, a model
trained on such MIDI samples typically needs to allocate
a part of its weights to extract these relevant high-level
features from the data. Building better representations of
MIDI data to encode semantic musical information could
therefore be beneficial to the training of deep models and
their efficiency, as they could directly focus on using these
features rather than extracting them from the data first.

Music classification has been a task of choice for MIDI
performances. Preliminary works from [1] in 2007 encoded
MIDI as strings and used Kolmogorov complexity to com-
pare music pieces. [2] introduced jSymbolic, a library to
extract high level features from MIDI files, such as pitch
histograms, a line of work extended by music21 [3] and
musif [4]. As new MIDI datasets have been introduced
for composer [5] and style classification [6], efforts have
been made to evaluate how MIDI representations affect
deep models. [7] introduced MidiTok, a tokenization frame-
work to encode MIDI files as a sequence of tokens, suitable
for Transformers and Recurrent Neural Networks (RNN).
More recently, [8] compared different neural architectures
for various MIDI encodings: Convolutional Neural Net-
works (CNN) trained on Piano rolls, Transformers trained
on sequences of tokens, and Graph Neural Networks (GNN)
trained on graphs extracted from MIDI files.

In this line of work, we aim to design a representation
of MIDI files that is both efficient and discriminative for
classification tasks, by incorporating high level musical
information directly in the preprocessing. To do so, we
explore a new representation based on the rhythmic tree

structure, built from a context-free grammar tailored to sym-
bolic music. We show that this representation outperforms
existing encodings, such as tokenizations or piano rolls, on
a drumming style classification built upon the GrooveMIDI
Dataset [6]. In addition, our rhythmic tree-based encoding
results in smaller deep models, with less parameters, able to
be trained on less data compared to existing representations.
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(a) Base score (b) Piano roll
DrumOn_42, Velocity_43,

TimeShift_0.1.8,

DrumOff_42,

TimeShift_0.1.8,

DrumOn_42, Velocity_39,

DrumOn_38, Velocity_23,

TimeShift_0.1.8,

DrumOff_42, DrumOff_38...

(c) Tokenization (MIDI-Like)

(p=42,v=0.35,d=0.1,t=0.000),

(p=42,v=0.32,d=0.1,t=0.175),

(p=38,v=0.17,d=0.1,t=0.006),

(p=36,v=0.32,d=0.1,t=0.181),

(p=42,v=0.35,d=0.1,t=0.017),

(p=42,v=0.48,d=0.1,t=0.358),

(p=38,v=0.41,d=0.1,t=0.034),

(p=46,v=0.51,d=0.1,t=0.158)...

(d) Note Tuples

(e) Linearized Rhythmic Tree

Figure 1: Different representations of the same two bars of
drums. Score (a) is present for reference only.

2. BACKGROUND

2.1 MIDI Representations

MIDI is a lightweight musical information exchange format.
It does not carry audio data, but only timestamped events,
e.g. a note being played, featuring its pitch and velocity, a
note being released, a pedal change, etc. It is suitable for
recording as it captures the performer’s expressiveness, but
does not require metadata that are found in a score, such as
tempo, time-signature 1 , tonality and voices [9]. We discuss
below the most common MIDI representations for ML.

2.1.1 Piano Roll

The piano roll is a visual representation of MIDI files in-
spired by the analog rolls for piano players. It consists in
a 2D matrix with one dimension for pitches, and one for
time. A note at pitch p with a NOTE_ON event at xon and
NOTE_OFF event at xoff is given a positive value at posi-
tions (x, p)x∈[xon,xoff], as shown in Figure 1b. Often, the
value in a matrix cell is one of the properties of the MIDI
event, e.g. the velocity. This representation is popular, as
its 2D structure allows to easily adapt deep models inspired
by image processing (e.g. CNN) to music tasks [10–12].
However, it can result in large sparse matrices with many
zeros, since the time dimension must be discretized with a
time step smaller than the shortest MIDI event. In addition,
piano rolls tend to be very long and redundant, since many
successive vectors will be identical.

1 MIDI recordings can contain tempo and time-signature, but only
through manual addition a posteriori.

2.1.2 Sequence of Tokens or Notes

Similar to Natural Language Processing (NLP) techniques,
recent works have adopted sequence-like representations,
especially suitable for RNN and Transformers architectures.
They encode MIDI files as sequences of events. These
events are in turn transformed into tokens, i.e. discrete val-
ues from a vocabulary V . Many tokenizations exist, some
consisting in a simple token/event mapping with MIDI files
(MIDI-Like [13, 14], see Figure 1c), while others include
note durations (Structured [15], TSD [16]). More sophisti-
cated tokenizers include higher level information about bar
and position in the bar, such as REMI [17].

Finally, MIDI files can be represented as “note tuples”,
i.e. sequences of notes with attributes. For example, [18]
represents each note by a set of four values: pitch, velocity,
duration and time-shift compared to the previous note (cf.
Figure 1d). This representation is much more compact than
piano rolls or sequence of tokens.

2.2 Formal Grammar

This work designs a symbolic music representation for deep
networks based on a grammar-based rhythmic tree. As a
starting point, a formal grammar defines the syntax of a
language L. It consists in a set of symbols, associated with
production rules used to rewrite non-terminal symbols into
other (non-)terminal symbols. Applied successively, those
rules can produce every possible sentence of L.

2.2.1 Context-Free Grammar

Succinctly, a context-free grammar [19] is a type of formal
grammar for which the production rules do not depend on
other context than the left-hand-side symbol. It is defined as
a 4-tuple G = (V,Σ, R, S). V is a finite set of non-terminal
symbols, including the special start symbol S. Σ is a finite
set of terminal symbols, called the alphabet. Finally, R is
a finite set of production rules of the form a → b, where
(a, b) ∈ V × (V ∪ Σ)∗ in which ∗ denotes the Kleene star
operator, i.e. a pattern repeated of 0, 1 or more times.

The application of a sequence of rules can be represented
as a tree, in which the parent node is represented by the left-
hand-side of each rule, and the child nodes are the symbols
on the right-hand-side. Once every non-terminal symbol
has been resolved into a terminal symbol, we obtain a parse

tree representing the structure of a sentence of L according
to G, with elements of Σ as leaves, and S as root.

2.2.2 Musical Grammar

In a homophonic musical score (monophonic voice that
can include chords [20]), rhythm can be represented as a
tree [21, 22]. For example, in a 4/4 music piece, a measure
could be split into two half notes. Then, each half note can
be further divided into two quarter notes, or into a triplet of
quarter notes, etc. The qparse library [23] is a MIDI-to-
score transcription framework that produces a sheet music
by parsing a MIDI file with a weighted context-free gram-
mar and dynamic programming, with applications e.g. to
automatic drum transcription [24]. While designed for a
handcrafted music transcription algorithm, the intermediate
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MIDI

IDs = [1, 5, 7, 9, 12, 0, 0,

           0, 11, 0, 0, 0, 0, 7,

           10, 0, 0, 0, 0, ...]

...

...

...

pre-order

depth-first

linearization

qparse

OHE of rule IDs 

+ pitch and velocity

for leaf nodes (ID=0)

Figure 2: Example of tree built by qparse after rules simplification and re-rooting of measures (right), with its associated
linearization and vector representation (left). In the matrix, the part above the dashed line contains the one-hot encoded rules
(blue/yellow for 0/1), and the one below contains the playing instruments for terminal nodes (color representing velocity).

parsing tree computed by qparse contains rich rhythmic
information that is also valuable as an input to deep mod-
els. Note that, while we our work uses qparse to obtain
rhythmic trees, our contribution lies in evaluating this tree
representation of music, regardless of its construction. We
expect our representation to generalize to other parsers.

3. METHODOLOGY

3.1 Linearized Rhythmic Tree

To build our high-level MIDI representation, we linearize
a rhythmic tree obtained using a context-free grammar, en-
riched by information about pitch and velocity in leaves. We
call this representation Linearized Rhythmic Tree (LRT). To
achieve this goal, we leverage the transcription framework
qparse [23] to extract its internal intermediate rhythmic
tree representation. Note that we only consider homophonic
inputs since this is what qparse MIDI grammar supports.
qparse needs the time-signature and the tempo of the
track (because measures are parsed separately), as well as
the specification of a weighted grammar. We use a rhythm-
oriented grammar similar to [24], detailed in appendix.

As described in [25], the root of the intermediate rhyth-
mic tree is the first measure. Its left child is a tree describing
its beat decomposition, and its right child is a node pointing
at the root of the next measure. We rewrite this tree so
that all measures are children of the same global root. A
n-measures-long track will therefore have a root with n
children. This rewriting allows us to reduce the maximum
depth of the rhythmic tree, which would otherwise grow
linearly with n. The resulting tree is shown on the right of
Figure 2. In this tree, each node is labeled by the identifier
of the associated production rule in the grammar. 2 Each
leaf is a terminal symbol, labeled by the note and properties
from the associated MIDI events, i.e. pitch 3 and velocity.
Note that multiple instruments can be playing at the same
time, so a leaf can be associated to several events.

As an example, in Figure 2, the first bar (red frame) is
split in two sections, each of half note length (rule 5). Then,

2 See the ruleset with IDs in Section 2 of the supplementary material.
3 In the case of drums, the “pitch” corresponds to the drum used, e.g.

cymbal, snare, tom, etc.

the first half gets split into two quarter-length sections (rule
7). The second child of this node, a quarter note, is split
into four sixteenth notes (rule 11). Finally, each of those
sixteenth notes leads to a terminal symbol (rule 0), with
MIDI events attached to it, e.g., the second child has two
NOTE_ON events, respectively with pitch 36 and velocity
0.3, and with pitch 46 and velocity 0.5.

As we cannot directly feed the tree structure to the mod-
els, we first linearize it using a pre-order depth-first traver-
sal: we start from root, and traverse the nodes recursively
following the left-most child, only going back up when the
current branch has been fully traversed. This produces a
sequence of nodes containing the identifier of their rule in
the grammar, as well as, in the case of leaves, the list of
playing instruments and their velocity. We encode every
node into a d = (m + n)-dimensional vector. m is the
number of rules in the grammar, and the first part of the
vector is the one-hot-encoded identifier of the production
rule associated with the node. n is the number of possible
instruments, and the second part of the vector contains the
normalized velocity for each instrument. If an instrument
is not playing for this note, its velocity is set to zero. For
non-terminal rules, this second part is entirely zero. This
linearization results in the matrix on the left of Figure 2,
i.e. a sequence S = {s}t∈J1,T K where st ∈ R

d is the vector
associated to a node, and T is the total number of nodes.
Therefore, our linearized rhythmic tree results in a multi-
dimensional sequence S, that can be fed in all usual deep
models such as RNN and Transformers.

Note that this representation is significantly shorter than
tokenizations or piano rolls. In average, the sequences are
only around 18% longer than note tuples, while containing
much more information about the rhythm structure.

3.2 Tree-based Positional Encoding for Transformers

While RNN can model the position in the sequence through
their hidden state, Transformers process sequences as a bag
of words, without any positional information. To overcome
this issue, positional encoding [26] was introduced to incor-
porate information about the position of an element in the
Transformer model.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

582



Classical positional encoding [26] creates a vector PE of
dimension d using sine and cosine functions of increasing
frequencies:

ωpos,i =
pos

τ(
2i

d )
,
PE(pos, 2i) = sin (ωpos,i)
PE(pos, 2i+ 1) = cos (ωpos,i)

(1)

where pos is the position of the element in the sequence, d
the size of the embedding, i ∈ J1, d/2K the dimension, and
τ = 10000 as in [26].

3.2.1 Continuous Positional Encoding

For musical data, this positional encoding is not related to
the temporal organization of the notes. Depending on how
the sequence S was built, the position pos of an element
can be arbitrary, such as e.g. tokenizations where a note
is split into several tokens for pitch, velocity and duration,
or note tuples where two simultaneous notes can be inter-
changed. For encoding note tuples, we therefore introduce
a continuous positional encoding that replaces the position
in the sequence by the timestamp of the note in the track:

ωt,i =
2π

TS

·
t

(TL/TS)
2i

d

,
PE(t, 2i) = sin (ωt,i)
PE(t, 2i+ 1) = cos (ωt,i)

(2)
where t is the absolute starting time of the note in seconds
and TS and TL are respectively the smallest and largest
periods of the sine functions. This encoding allows two
simultaneous notes to share the same positional encoding.

3.2.2 Tree-based Positional Encoding

A downside of linearizing the rhythmic tree is that we lose
the explicit hierarchical structure between a parent node and
its children. The structure is still implicitly encoded in the
linearized sequence S in the rule identifiers, but the model
would have to learn how the grammatical rules operate to
rebuild the tree and leverage its structure.

To better represent the rhythmic tree, we use a hierarchi-
cal tree-based positional encoding (TBPE) that encodes the
position of a node in the tree, rather than its position in the
linearized sequence. Some TBPE have been proposed in
the literature, e.g. for code translation to help Transformers
process abstract syntax trees [27, 28]. Since our trees are
bounded in depth at dmax, we associate to each node N a
vector of size 2dmax that represents the path to a node from
the root of the tree. This process is illustrated in Figure 3.
Element k represents the index of the child traversed at
depth k, while element k + dmax is the total number of chil-
dren of the parent node at depth k. For example, to reach
node F , we go through node R (child #1 over 1), then node
A (child #1 over 4), then node F (child #2 over 2). If the
depth of the node N is less than dmax, then the remaining
elements of the vector are padded with zeros. This makes
explicit in the positional encoding the parent → child rela-
tions, along with depth and breadth properties. It becomes
easier for the model to understand that notes can belong to
a larger structures (e.g. triplet or four semiquavers).

R
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Figure 3: Example of tree-based positional encoding
(TBPE) for a tree of maximum depth dmax = 4.

4. EXPERIMENTS AND RESULTS

4.1 Dataset and Task

Our models are trained and evaluated for style classification
on the Groove MIDI Dataset (GMD) [6]. It consists in
13.6 hours of drumming music, played by humans with a
metronome. Each track is labelled with a style provided
by the drummer, alongside tempo and time-signature. The
dataset is composed of long sequences (few minutes) and
short beats and fills. We only consider long sequences, as
short sequences are less representative of a specific style.
We also discard non-4/4 tracks (around 1% of the dataset),
as we use a 4/4 musical grammar, and a few tracks that
qparse failed to parse 4 . We focus on the 4 most repre-
sented styles: funk, jazz, latin and rock. The final subset
contains 326 tracks, representing 7.5 hours of drumming,
split into the train/validation/test sets (80%/10%/10%) as
the original dataset [6]. Each track is then further divided
into multiple chunks of n measures with a sliding window.

4.2 Representations

In addition to our LRT, we evaluate common representations
of MIDI data for style classification.

Piano Roll We sample the MIDI data at frequency f .
We compare f = 30Hz ≈ 33.3ms per time step, as 30ms
is considered as the simultaneity threshold for the human
ear [29], and f = 50Hz = 20ms per time step, to see if
models would improve with finer granularity, at the expense
of sequence length. Every time step is represented by a
vector in v ∈ [0, 1]22. Each dimension represents one of
the 22 instruments of the drum kit. vi encodes the velocity
of the i-th instrument, normalized between 0 and 1 using
maximum normalization. Note that the duration of notes
in drums MIDI files is arbitrary, as only onset and velocity
matter. All durations are set to 100ms in the Groove MIDI
dataset. In our dataset, the average length of a piano roll is
around 2455 for f = 30Hz, and 4092 for f = 50Hz.

Sequence of Tokens We experiment with various tok-
enizers from the literature, that quantify velocities and tim-

4 As these tracks are only in the train and validation sets, this does not
affect the fairness of the final comparison.
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Representation used LSTM Transformer

Type Variation Avg. len. Test F1 score # params. # bars Test F1 score # params. # bars

Piano roll
50 steps/second 4092 0.618 ± 0.033 576 522 4 0.545 ± 0.011 253 130 2
30 steps/second 2455 0.663 ± 0.023 552 458 4 0.486 ± 0.026 20 330 4

Note Tuple - 733 0.568 ± 0.024 555 530 8 0.492 ± 0.014 216 506 2

Tokenization

MIDI-Like 2767 0.565 ± 0.026 42 442 4 0.576 ± 0.011 360 586 8
REMI 2502 0.475 ± 0.051 38 282 8 0.517 ± 0.028 17 626 4

Structured 2646 0.599 ± 0.014 282 826 2 0.598 ± 0.011 232 162 8
TSD 2464 0.487 ± 0.029 23 274 8 0.486 ± 0.032 20 178 4

LRT
Simple linearization 863 0.603 ± 0.014 1 358 346 8 0.556 ± 0.037 230 378 8

With TBPE 863 0.596 ± 0.014 252 170 4 0.660 ± 0.019 88 138 4

Table 1: Performance of the different representations and model combinations on the GrooveMIDI dataset. We report macro
F1 scores on the test set for the best model of each couple model/representation, alongside the model’s number of parameters,
the length (in bars) of input samples, and the average sequence length of each representation. Best results for each model
type are in bold, second best in italics.

ings to limit the size of the vocabulary: MIDI-Like [13, 14],
TSD [16], Structured [15] and REMI [17] tokenizers. We
use the default parameters from [7], except for pitch range
which is set to the min/max instrument ID from the GMD.
Models trained on tokenizations use a 64-dimensional em-
bedding, as recommended in [8]. Akin to piano rolls, tok-
enizers produce sequences with 2400 to 2800 elements.

Note Tuples We also consider the note tuples [18] repre-
sentation that uses a single vector for each note. Each vector
has 25 dimensions: the 22 one-hot-encoded instrument, fol-
lowed by normalized velocity, note duration and time-shift
to the previous note. This results in shorter sequences, with
as many elements as there are notes. Average sequence has
733 elements, 3.5× less than tokenization methods.

Linearized Rhythmic Tree We use a simplified rhythm
grammar of 15 rules on the GMD. As this grammar does not
allow notes shorter than a 1/32nd note, the maximum depth
dmax of a leaf in the rhythmic tree is 6. Although slightly
longer than note tuples, the resulting sequences remain on
the smaller side with an average of 863 elements.

4.3 Models

We chose to focus on sequential representations and there-
fore consider two popular architectures: LSTM [30] and
Transformers [26]. The model inputs are fed as chunks of
2, 4 or 8 measures. We perform a hyperparameter search
for the number of bars, number of layers and layer width
on the validation set and retain the best architectures for
each (model, representation) combination. As our grammar
parser uses the track’s tempo, we inject this information in
non-grammatical models for a fair comparison by concate-
nating the tempo to the features vector in the last layer.

LSTM architecture We consider bidirectional LSTM
models [31] and we experiment with a depth of 1 to 4 layers
and a fixed width of 8 to 256 neurons per layer. Even though
LSTMs do not require positional encoding, we also evaluate
our LRT representation with TBPE to assess whether the
explicit rhythmic structure is beneficial to the model.

Transformer architecture We use standard Transform-
ers with an embedding layer, i.e. a linear projection, be-
tween the input and the first Transformer block. The mod-
els have 1 to 4 encoder layers, each with 2 to 16 attention
heads. We also experiment with a feature size of 2 to 32
dimensions per head and 8 to 64 neurons in the feedforward
network. We use the classical positional encoding for token
sequences, the continuous positional encoding for piano
rolls and note tuples, and either the classical or the tree-
based positional encoding for LRTs. Regarding continuous
encoding, we use TS = 100ms so that even close notes
have a different encoding, and TL = 300 s, as temporal
context is unlikely to matter beyond several minutes.

Final models are trained with a batch size of 128, using
the AdamW optimizer [32] with a learning rate of 0.001,
decayed by a factor 10 every 50 epochs with weight decay
and dropout. Early stopping occurs when the validation F1
score plateaus with a patience of 200 epochs. Models are
trained using the standard cross-entropy loss. To alleviate
the class imbalance (185 rock tracks versus 50 for the other
classes), we use class inverse median frequency weighing.
We report the macro F1 scores averaged over all classes.

4.4 Main Results

We report in Table 1 the test scores of the best combinations
from the hyperparameter search, averaged over five runs.

LSTM with 30Hz piano rolls and Transformer with
LRT/TBPE are the combinations that lead to the best F1
scores overall (≈ 0.66). The former is a 3-layer LSTM
model, each composed of 64 neurons, performing on 2-bar-
long samples. The latter is a 4-layer Transformer model,
each using 2 heads with 32 features per head (so a 64-
dimensional input vector), and a feedforward network of 32
neurons trained on 4-bar-long chunks. Although both mod-
els achieve comparable performance, note that the Trans-
former model needs 6× fewer parameters than the LSTM.

We observe that the TBPE provides important informa-
tion for style classification. Transformer models using a
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Figure 4: F1 scores on the validation set vs. number of
parameters for a selected set of models. We observe that
Transformers trained on LRT consistently outperform other
models at similar capacity.

classical positional encoding achieve lower classification
performance (≈ 0.56). Surprisingly, using TBPE is ben-
eficial for LSTMs also: both our LSTM models trained
on LRT achieve nearly identical F1 scores (≈ 0.6), how-
ever injecting the TBPE allows us to use a RNN with 5×
fewer parameters. This confirms that explicitly encoding
the node position in the tree makes it easier for the models
to understand the rhythmic structure of the track.

Finally, we observe that tokenization and note tuples
tend to underperform overall. Structured MIDI tokenization
achieves the best of tokenizer F1 score (≈ 0.6) both for
LSTM and Transformer architecture, followed by MIDI-
Like, however at the cost of a higher number of parameters.
Token or note tuple sequences seem difficult to learn for the
models. For RNN, we hypothesize that this is due to the
regular sampling assumption made by these models. Each
element is processed by the same recurrent loop, meaning
that the model needs to learn the structure of the sequence,
e.g. what each token represents. In comparison, piano rolls
with a fixed time step where all elements represent the same
object tend to have higher performances with LSTMs.

4.5 Model Parameter Efficiency

We evaluate some representative models by varying their
capacity, i.e. number of parameters. More specifically, we
experiment with 4, 8, 32 and 64 number of features per head
for the Transformer, and 16, 32, 48, 64, 96 and 128 neurons
in the hidden layers for LSTM. We report F1 scores on the
validation set in Figure 4. We observe that, at comparable
number of parameters, the Transformer trained on the LRT
always lead to higher F1 scores than the compared models.
This demonstrates that the rhythmic information embedded
in our rhythmic tree not only results in shorter sequences,
but also can be leveraged by smaller models for better or on
par performance compared to existing works.

4.6 Training Samples Efficiency

Finally, we evaluate how representation affects the amount
of data needed to train our models. We compare the same
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Figure 5: F1 scores on the validation set vs. percentage of
training samples used. Transformers trained on LRT exhibit
a less severe performance drop when the number of training
samples decreases compared to existing models.

models as in Section 4.5 and train them with a random
subset of 75%, 50%, 25% and 10% of the training set. F1
scores on the validation set are reported in Figure 5. We ob-
serve that the Transformer model trained with the linearized
rhythmic tree and the tree-based positional encoding con-
sistently outperforms the structured tokenizer and the piano
roll. The performance drop between 100% and 75% is
minimal, and overall the LRT-based Transformer degrades
more gracefully when the number of training samples de-
creases compared to the other models. This underlines the
relevance of the LRT, that encodes higher level musical
information and better represents the invariance of musical
style to spurious variations in the input MIDI file, such as
slight changes in timings or velocity.

5. CONCLUSION AND FUTURE WORK

We evaluated different representations of MIDI data for
drumming style classification. We introduced a new rep-
resentation based on the linearization of a rhythmic tree
obtained by parsing a MIDI file using a musical grammar.
This representation provides richer features while being
more compact than traditional piano rolls or tokenization
strategies. Associated with a Transformer architecture using
a tree-based positional encoding, we show that this repre-
sentation achieves style classification performance on par
with the best models from the literature with much fewer pa-
rameters. We also provide evidence that our representation
is more resilient when trained on smaller datasets.

Future works involve extending this tree-based represen-
tation beyond homophonic input, e.g. for polyphonic piano
pieces. Building the parsing tree could also be achieved on
music scores, making it possible to directly classify scores
at the mere symbolic level. In addition, we would like to
evaluate this approach on more diverse tasks, as representa-
tion could be beneficial not only for discriminative models,
but also for generative models, e.g. in music generation
tasks, to produce syntactically correct performances with
respect to the specified grammar [33].
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