
CLUSTER AND SEPARATE: A GNN APPROACH TO
VOICE AND STAFF PREDICTION FOR SCORE ENGRAVING

Francesco Foscarin∗1,2 Emmanouil Karystinaios∗1 Eita Nakamura3 Gerhard Widmer1,2

1 Johannes Kepler University, Linz, Austria
2 LIT AI Lab, Linz Institute of Technology, Austria

3 Kyushu University, Japan

firstname.lastname@jku.at

ABSTRACT

This paper approaches the problem of separating the notes

from a quantized symbolic music piece (e.g., a MIDI file)

into multiple voices and staves. This is a fundamental part

of the larger task of music score engraving (or score type-

setting), which aims to produce readable musical scores for

human performers. We focus on piano music and support

homophonic voices, i.e., voices that can contain chords,

and cross-staff voices, which are notably difficult tasks

that have often been overlooked in previous research. We

propose an end-to-end system based on graph neural net-

works that clusters notes that belong to the same chord

and connects them with edges if they are part of a voice.

Our results show clear and consistent improvements over

a previous approach on two datasets of different styles.

To aid the qualitative analysis of our results, we support

the export in symbolic music formats and provide a di-

rect visualization of our outputs graph over the musical

score. All code and pre-trained models are available at

https://github.com/CPJKU/piano_svsep.

1. INTRODUCTION

The musical score is an important tool for musicians due

to its ability to convey musical information in a compact

graphical form. Compared to other music representations

that may be easier to define and process for machines, for

example, MIDI files, the musical score is characterized by

how efficiently trained musicians can read it.

An important factor that affects the readability of a mu-

sical score for instruments that can produce more than one

note simultaneously, is the separation of notes into different

voices (see Figure 1). This division may follow what a lis-

tener perceives as independent auditory streams [1], which

can also be reflected in a clearer visual rendition of a musi-

cal score [2]. A similar point can be made for the division

* Equal contribution.

© F. Foscarin, E. Karystinaios, E. Nakamura and G. Widmer.

Licensed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: F. Foscarin, E. Karystinaios, E. Nakamura

and G. Widmer, “Cluster and Separate: a GNN Approach to Voice and

Staff Prediction for Score Engraving”, in Proc. of the 25th Int. Society for

Music Information Retrieval Conf., San Francisco, United States, 2024.

into multiple staves (generally 2) for instruments with a

large pitch range, such as piano, organ, harp, or marimba.

We will consider in this paper piano music.

The term voice is frequently used to describe a sequence

of musical notes that do not overlap, which we call a mono-

phonic voice. However, this definition may be insufficient

when considering polyphonic instruments. Voices could

contain chords, which are groups of synchronous notes (i.e.,

notes with the same onset and offset) and are perceived as a

single entity [3]. We name a voice that can contain chords

a homophonic voice. Note that partially overlapping notes

cannot be part of a homophonic voice.

Music encoded in MIDI (or similar) formats, even when

containing quantized notes, time signature, or bar informa-

tion, often does not contain voice and staff information.

The same can be said for the output of music generation [4],

transcription [5], or arranging [6] systems. Therefore, such

music cannot be effectively converted into a musical score,

to be efficiently read and played by human musicians. 1

The tasks of producing voice and staff information from

unstructured symbolic music input are called voice sepa-

ration (or voice segregation in some papers [3]) and staff

separation, respectively.

Most of the existing approaches to voice separation have

focused only on music with monophonic voices [7–12],

which is not sufficient for our goal of engraving 2 piano

music. The task of homophonic voice separation is much

harder to solve: the presence of chords within voices makes

the space of solutions grow much bigger; and the choice of

the “true voice separation” can be ambiguous, with multiple

valid alternatives among which experts may disagree.

The existing approaches to homophonic voice separa-

tion can be divided into two groups: the first [1, 3, 5, 13]

use dynamic programming algorithms based on a set of

heuristics, which makes for systems that are controllable

and interpretable, but also hard to develop and tune. Such

systems are often prone to fail on exceptions and corner

cases that are present in musical pieces. The second group

of approaches [14–17] applies deep learning models to pre-

dict a voice label for each note. Such an approach creates

1 Voice and staff separation are only two of the multiple elements, such
as pitch spelling, rhythmic grouping, and tuplet creations, which need to
be targeted by a score engraving system, but we will only focus on the
former two in this paper.

2 “score engraving” and “score typesetting” are used interchangingly.

503



Figure 1. Comparing different voice/staff assignments for

two bars from C. Debussy’s Estampes - Pagodes. (top)

original; voices can be inferred from the beam grouping and

(horizontal lines connecting notes), rests, and stem sharing,

and are colored for clarity. (bottom) hard-to-read rendition

with voice and staff assigned according to heuristics we

propose as a baseline.

two fundamental issues: i) the necessity of setting a maxi-

mum number of voice labels, and ii) a (highly) unbalanced

ratio of occurrence of some voice labels. Moreover, all

these approaches assume that a voice cannot move between

the two staves, which is not true for complex piano pieces.

In this work, we propose a novel system for homophonic

voice separation that can efficiently and effectively assign

notes to voices and staves for polyphonic music engraving.

Efficiency is ensured by a graph neural network (GNN) en-

coder, which can create input embeddings with a relatively

small number of parameters. Effectiveness is targeted by ap-

proaching voice prediction not as a note labeling, but as an

edge prediction problem [12], which solves the maximum

voice number and the label imbalance problems presented

above. Our system predicts staff and voice separately and

does not make any assumption on the number of voices;

therefore it can deal with cross-staff voices and complex cor-

ner cases. We avoid the problem of ground truth ambiguity

since we focus specifically on voice separation for musi-

cal score engraving, therefore we can extract the (unique)

ground truth directly from digitized musical scores.

We evaluate our system on two piano datasets of dif-

ferent difficulty levels, one containing popular, the other

classical music. A comparison with a baseline and the ap-

proach of Shibata et al. [5] shows a consistent improvement

in performance on both datasets. Finally, we develop a visu-

alization tool to display the input and output of our system

directly on the musical score, and discuss some predictions

and comments on homophonic voice separation.

2. RELATED WORK

The most influential work for this paper is the monophonic

voice separation system by Karystinaios et al. [12]. Simi-

larly, we consider voice separation a edge prediction task

and use a similar score-to-graph routine and the same GNN

encoder. Differently from that work, we consider homo-

phonic voices and staves and, therefore, we extend the

model formulation, the deep learning architecture, and the

postprocessing routine to deal with this information.

Shibata et al. [5] developed a voice and staff separation

technique applied after music transcription to quantized

MIDI files. It works in two stages: first, an HMM separates

the notes of the two hands (which will then be used as staff),

and then a dynamic programming algorithm that maximizes

the adherence to a set of heuristics is applied to separate

voices in the two hands independently. We compare against

this method since it is the most recent approach focusing

specifically on homophonic voice separation.

There are some approaches based on neural net-

works [14–17], but they never perform this task in isolation,

but rather in combination with other tasks such as sym-

bolic music transcription, full scorification, and automatic

arrangement. This means that they can only train on a much

smaller dataset and a comparison would not be fair.

All the approaches mentioned before, except [12], per-

form voice separation as a label prediction task, which is

problematic, as discussed in the introduction, due to the

label imbalance and choice of the maximum number of

voices. The former is particularly problematic for the neu-

ral network approaches.

3. METHODOLOGY

Our system inputs data in the form of a set of quantized

notes (e.g., coming from a quantized MIDI or a digitized

musical score), each characterized by pitch, onset, and

offset. This information is modeled as a graph, which we

call input graph, and then passed through a GNN model

to predict an output graph containing information about

voices, staves, and chord groupings. We remind the reader

that in our ‘homophonic voice’ scenario, chords are groups

of synchronous notes that belong to the same voice.

3.1 Input Graph

From the set of quantized notes representing a musical

piece we create a directed heterogeneous graph [18] Gin =
(V,Ein,Rin) where each node v ∈ V corresponds to one

and only one note, and the edges e ∈ Ein of type r ∈ Rin

model temporal relations between notes [12]. Rin includes

4 types of relations: onset, during, follow, and silence,

corresponding, respectively, to two notes starting at the

same time, a note starting while the other is sounding, a

note starting when the other ends, and a note starting after a

time when no note is sounding. We also create the inverse

edges for during, follows, and silence relations. Each node

corresponds to a vector of features: one of the 12 note pitch

classes 3 (C, C#, D, etc.), the octave in [1, . . . , 7], the note

duration, encoded as a float value d ∈ [0, 1] computed as

the ratio of the note and bar durations, passed through a tanh

function to limit its value and boost resolution for shorter

3 We don’t consider tonal pitch classes [19] since they are not specified
in MIDI files which we assume to be our input.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

504



notes, as proposed in [12]. We don’t consider grace notes

in our system, and we remove them from the input notes.

3.2 Output Graph

The output graph Gout = (V,Eout,Rout) has the same set

V of nodes as the input graph, but a staff number in {0, 1}
is assigned to every node. There are two edge types in Eout:

chord and voice, i.e. Rout = {"chord", "voice"}.

Voice edges [8, 12] are an alternative in the literature

to the more straightforward approach of predicting a voice

number for every note; the usage of voice edges has the

advantage of enabling a system to work with a non-specified

number of voices, and avoiding the label imbalance problem

for high voice numbers. Voice edges are directed edges that

connect consecutive notes (without considering rests) in

the same voice. Formally, let u1, u2 ∈ V be two notes in

the same voice then (u1, "voice", u2) ∈ Eout if and only

if offset(u1) ≤ onset(u2) and ∄ u3 ∈ V within the same

voice such that offset(u1) ≤ onset(u3) < onset(u2).

The previous definition also holds in our setting with

homophonic voices. Let us extend the definition of chord

(a set of synchronous notes) to include the limit case of a

single note. Two chords are consecutive if any two notes,

respectively, from the first and second chords are consecu-

tive. In the case of two consecutive chords with m and n
notes in the same voice, there will be m ∗ n voice edges.

Chord edges are undirected and connect all notes that

belong to the same chord without self-loops, so for a n-note

chord, there are n(n− 1) edges. They serve to unambigu-

ously identify which notes together form a single chord.

The same output graph can be created from an already

properly engraved score. To obtain the graph we only need

to draw the true voice edges between consecutive notes

in the same voice within a bar and for chord edges we

draw the chord ground truth between synchronous notes

with the same voice number assignment. This graph can

subsequently serve as the ground truth during training.

3.3 Problem Simplification

In this section, we apply some obvious musical constraints

to reduce computation and memory usage in our pipeline,

without impacting the results. Let us first focus on chord

edge prediction. Given the simple constraint that all notes

of a chord must start and end simultaneously, we can restrict

the chord edge prediction process to only consider pairs of

sychronous notes (same onset and offset values) as candi-

dates. We do this by creating a set of chord edge candidates

Λc which are calculated automatically and associated with

our input graph. Only notes connected by such candidate

edges will be considered in the chord prediction part of the

model (see next section).

The same reasoning can be applied to the voice edges,

by creating a set of voice edge candidates Λv such

that ∀u1, u2 ∈ V, (u1, "voice", u2) ∈ Λv only when

offset(u1) > onset(u2). Another step can be taken to-

wards reducing the number of candidates in the set Λv by

incorporating some musical engraving considerations.

The separation of notes in multiple voices does not have

to be consistent in the whole score, but only within each

bar, to produce the intended visual representation. There

are no graphical elements that show if two notes in different

bars are or are not in the same voice 4 . Music engraving

software does not force users to use consistent voices across

bars. This can be often observed in digitized musical scores

where music motives that belong to the same voice, are as-

signed different voices in different bars. Such observations

have motivated projects such as the Symbolic Multitrack

Contrapuntal Music Archive [20] that explicitly encode a

“global” voice number.

Since cross-bar consistency is not necessary for our goal

of engraving (and is often wrongly annotated in our data)

we limit the voice edge candidates Λv to contain only pairs

of notes that occur within the same bar. This design choice

is also reflected in our evaluation, i.e. we do not evaluate

how the voices propagate across bars, but only within each

bar. Note that this process is different from processing each

bar independently since our network (detailed in the next

section) considers music content across bars.

3.4 Model

We design an end-to-end model (see Figure 2) that receives

an input graph as described in Section 3.1 and produces an

output graph as in Section 3.2. The model is organized as

an encoder–decoder architecture.

The encoder receives an input graph created from a quan-

tized MIDI score and passes it through three stacked Graph

Convolutional Network (GCN) blocks to produce a node

embedding for each note. We use the heterogeneous version

of the Sage convolutional block [18] with a hidden size of

256; the update function for each node u is described by:

h
(l+1)
N (u) =

∑

(

{hl
v, ∀v ∈ N (u)}

)

h
(l+1)
u = σ

(

W · concat(hl
u,h

l+1
N (u))

) (1)

where N (u) are the neighbors of node u, σ is a non-linear

activation function, W is a learnable weight matrix.

The decoder consists of three parts that all use the same

node embedding as input: i) a staff predictor; ii) a voice

edge predictor; and iii) a chord clustering (i.e., a chord

edge predictor). The staff predictor is a 2-layer Multi-Layer

Perceptron (MLP) classifier that produces probabilities for

each graph node (i.e., each note) to belong to the first or

second staff. The voice edge predictor receives the embed-

dings of pairs of notes connected by edge candidates and

produces a probability for each pair to be in the same voice.

It works by concatenating the pairs of note embeddings and

applying a 2-layer MLP. The final decoder part, chord clus-

tering, receives the embeddings of pairs of notes connected

by chord edge candidates (i.e., pairs of synchronous notes)

and produces the probability for a pair to be merged into a

chord. This is achieved by computing the cosine similarity

between the elements of the pair. This process forces the

4 This may change for cross-bar beamings, but they are very rarely used
in standard music notation (there are no occurrences in our datasets) and
therefore we do not consider them in this work.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

505



Figure 2. Our Architecture. For simplification, we display the output graph as having “hard” voice predictions, while these

are probabilities over voice candidates.

node embeddings created by the decoder to be similar to

each other for notes of the same chord, which helps the

voice predictor produce consistent voice edge probabilities

for notes of the same chord. We apply a threshold to pass

from probabilities to decisions on which notes to cluster.

The complete model contains ∼ 3M parameters and

we train it end-to-end with the (unweighted) sum of three

Binary Cross Entropy loss functions, one for each task.

3.5 Postprocessing

A straightforward approach to deciding whether to connect

two notes with a voice edge would be to threshold the

predicted voice edge probabilities. However, even when

using edge and chord candidates, we could still produce

three kinds of invalid output: (1) multiple voices merging

into one voice, (2) one voice splitting into multiple voices,

and (3) notes in the same chord that are not in the same

voice. To eliminate these issues, we add a postprocessing

phase that accompanies our model and guarantees a valid

output according to music engraving rules.

The first step, which we call chord pooling, merges

all nodes that belong to the same chord to a single new

"virtual node". This is done by looking for the connected

components considering only chord edges in the output

graph, then pooling in a single node all original nodes in

each connected component, creating a new node which has

as incoming and outgoing voice edges all edges entering and

exiting the original nodes, respectively. If multiple edges

collapse in one edge (e.g. in the case of two consecutive

chords in the same voice), the new edge has a probability

that is the average of the corresponding edge probabilities.

After the first step, we are left with monophonic streams,

which could still exhibit problems (1) and (2). We can solve

this with the technique proposed in [12] for monophonic

voices, i.e. by framing the voice assignment problem as a

linear assignment problem [21] over the adjacency matrix

obtained by the updated edge candidates Λ′
v. We follow

the linear assignment step by unpooling or unmerging the

nodes that were previously pooled, in this way, obtaining the

original nodes again. During unpooling, the incoming edges

and outgoing edges of the "virtual nodes" are reassigned to

each original node, thus resolving problem (3).

Figure 3. Output graph postprocessing. We do not display

the predicted staff labels.

The complete postprocessing method is depicted in Fig-

ure 3. It is worth noting that the staff labels are not consid-

ered during the postprocessing phase, and we copy them

unchanged to the postprocessed output graph.

3.6 Evaluation

We evaluate the predicted voice assignments with the metric

proposed by Hiramatsu et al. [15], which formalizes the

metric of McLeod and Steedman [22]. This is a version of

the F1-score for voice separation [8] which is adapted to

work on homophonic voices, by reducing the importance

of notes if they are part of a chord. This is important since

chords create many voice edges (e.g., two 4-note chords in

the same voice are connected by 16 edges), which could

potentially overshadow the importance of edges in mono-

phonic voices (or voices with fewer/smaller chords).

Formally, the homophonic voice F1-score F1 is calcu-

lated as:

P =

∑

i<j aij âij/ŵi
∑

i<j âij/ŵi

, R =

∑

i<j aij âij/wi
∑

i<j aij/wi

F1 =
2PR

P +R

(2)

where i < j, in the sum, considers all pair of notes

i, j such that offset(i) < onset(j); aij , âij are equal to 1

or 0 if a voice edge exists or not in the ground truth and

predictions, respectively; and wi and ŵi are the number of

notes that are chorded together with the note i in the ground

truth and predictions, respectively. Unlike [15], we consider

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

506



only notes j in the same bar of i, for the reasons presented

in Section 3.3. We evaluate the staff prediction part of our

model with binary accuracy, and we assess chord prediction

with the F1 score computed on the chord edges.

3.7 From Network Prediction to Readable Output

The computation of voice and staff numbers is sufficient

for the system evaluation, but not for producing a usable

tool, which we are interested in in this paper. The missing

step, to be described in this section, is the integration of

the network predictions into a readable musical score. To

achieve this integration we need to undertake two essential

steps: beam together notes within the same voice, and infill

rests to "fill holes" within each voice.

For the first step, we proceed according to the rules of

engraving [2]. We beam two consecutive notes (or chords)

in the same voices if their duration is less than a quarter note

(excluding ties) unless they belong to different beats. Fol-

lowing the music notation convention we consider the com-

pound time signatures, i.e., 6
x

, 9
x

, 12
x

to have, respectively,

2,3, and 4 beats. When confronted with tied notes, the

algorithm prioritizes producing notations with the fewest

number of notes, an heuristic with promotes easier-to-read

notation [23].

The second step consists of introducing rests so that

each voice fills the entire bar and can be correctly displayed.

Some rests could be set as invisible to improve the graphical

output when their presence and duration are easy to assume

from other score elements, but we display all of them for

simplicity. As for the notes, we choose the rest types (with

eventual dots) to minimize the number of rests in the score.

The two steps described above cover common cases and

produce a complete score in MEI format [24]. However, the

score export is still a prototype, since developing one that

is robust against all corner cases is an extremely complex

task, and is outside the scope of this paper. Since score

output problems may obscure the output of our system,

we also develop a graph visualization tool. Both the input

and output graphs (including the candidate edges) can be

displayed on top of the musical score in an interactive web-

based interface based on Verovio [25]. Some examples of

the output graph visualization are in Figure 4.

4. EXPERIMENTS

We train our model with the ADAM optimizer with a learn-

ing rate of 0.001 and a weight decay of 5 ∗ 10−4 for 100

epochs. For a quantitative evaluation, we compare our re-

sults with those of a baseline algorithm and the method pro-

posed by Shibata et al. [5], on two rather diverse datasets.

Our baseline algorithm assigns all notes under C4 (mid-

dle C) to the second staff and the rest to the first. Then it

groups all synchronous notes (per staff) as chords. Finally,

it uses the time and pitch distances between the candidate

pairs of notes as weights to be minimized during the linear

assignment process (the same as we use in our postprocess-

ing) which creates the voice edges.

4.1 Datasets

We use two piano datasets of different styles and difficul-

ties to evaluate our system under diverse conditions. The

ability to handle complex corner cases should not reduce

the performance on easier (and more common) pieces.

The J-Pop dataset contains pop piano scores introduced

by [5]. Most of the scores consist of accompaniment chords

on the lower staff and some simple melodic lines on the

upper staff. The dataset contains 811 scores; we randomly

sampled 159 (roughly 20%) of these for testing and used

the rest for training and validation.

The DCML Romantic Corpus is more challenging. It

was created by [26] and contains piano pieces from the

17th to 20th centuries with some virtuosic quality. It in-

cludes characteristics such as cross-staff beaming, a high

number of voices, challenging voicing, etc. Similarly to the

pop dataset we randomly sample 77 out of the 393 scores

(approx. 20%) and use the rest for training and validation.

The J-Pop dataset is available in MusicXML format,

while the DCML Romantic Corpus is in Musescore file

format. We use Musescore to convert DCML files to

MusicXML and load them with the Python library Par-

titura [27] to extract the note list.

4.2 Results

Our model aims to be generic across a variety of music,

therefore we train a single model on the joined training

set of pop and classical scores, not two individual ones.

The rules that govern the handling of voices may be funda-

mentally different in the two datasets, but we assign to the

model the task of handling these differences. This approach

ensures better future scalability on bigger and more diverse

datasets. We compute the metrics separately on the test part

of our two datasets.

Table 1 reports results for three versions of our graph-

based model: the complete model from Section 3, a variant

without postprocessing, and a variant without chord pre-

diction and postprocessing (our postprocessing technique

cannot be run without the chord prediction task, since it

pools nodes that belong to the same predicted chord). The

method of Shibata requires the specification of the number

of voices per staff. For compactness, we report only the

results with one voice per staff (2 voices total); the results

degrade by increasing the number of voices.

Our results show that even our system without pool-

ing and without postprocessing obtains consistently better

results than both Shibata et al. [5] and our baseline. In-

terestingly, the chord prediction task improves the Voice

F1 results even when the post-processing is not used; this

confirms the benefits of multi-task training, and of enforc-

ing notes of the same chord to have similar representations

in the hidden space, with cosine similarity, to predict co-

herent voice edges. However, we observe a reduction in

staff accuracy, probably for the same reason, since the same

hidden representation is also used to predict chords, making

it harder (though not impossible) to split notes of the same

chord in different staves. When the full system is used,

there are further improvements in Voice F1.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

507



Dataset
J-pop Dataset DCML Romantic Corpus

Staff Acc Chord F1 Voice F1 Staff Acc Chord F1 Voice F1

Baseline 89.9 86.9 85.4 80.7 65.2 78.2
Shibata et al. [5] 92.8 - 92.2 88.5 - 84.9

GNN wo Chord wo Post 96.5 ± 0.1 - 95.2± 1.9 91.5 ± 0.1 - 87.2± 3.3
GNN wo Post 96.3± 0.1 94.9± 0.1 95.7± 0.4 91.0± 0.1 79.5 ± 0.4 88.9± 0.4
GNN 96.3± 0.1 94.9± 0.1 96.6± 0.1 91.0± 0.1 79.5 ± 0.4 89.9± 0.2

Table 1. Metrics for our the J-Pop and DCML test sets. “GNN” denotes our method, without postprocessing (“GNN wo

Post”), and without both postprocessing and chord prediction parts (“GNN wo Chord wo Post”). All GNN model runs are

repeated 5 times: ± refers to the standard deviation of results across runs.

We are also evaluate our system on the bar-level and

study performances for music excerpts of varying difficul-

ties. We compute the voice F1 score for each bar and

average them based on the number of voices in the ground

truth. We compare with Shibata et al. [5] with 1 & 2 voices

per staff (vps). Table 2 shows the results for the DCML Ro-

mantic Corpus. Both our model and [5] perform best with

2 voices, the most common number in our dataset. Interest-

ingly, Shibata et al. approach with 2 vps never outperforms

vps 1, not even when the target number of voices is 3 or 4,

a situation that vps 1 cannot handle. This can be explained

by the fact that Shibata et al. parameters were tuned on a

simpler dataset, and accepting more voices creates more

errors than benefits. Setting vps > 2 consistently degraded

the performances, probably also for similar reasons.

#Voices #Bars GNN [5] 1vps [5] 2vps

1 322 96.6 88.3 87.9

2 4576 94.1 89.3 88.1

3 2464 89.0 84.2 81.5

4 719 81.6 80.5 75.1

5 99 81.6 76.7 73.7

6 17 78.4 68.9 61.6

Table 2. Voice F1 score aggregated by bars with the same

number of voices in the ground truth, on the DCML Corpus.

Shibata et al. [5] is used with 1 and 2 voices per staff (vps).

4.3 Qualitative Analysis

Let us take a closer look into the predictions of our deep-

learning approach (GNN) on the excerpt of Figure 4 pro-

duced by our visualization tool. Our approach captures cor-

rectly the cross-staff voice in the first two bars, while such a

situation causes performance degradation for all other voice

separation approaches that don’t support it. We observe

some disagreements with the original score in Measure 3:

our model predicts a single chord (instead of splitting across

the staff) containing all the synchronous syncopated quarter

notes, and also mispredicts the staff for the first D#4 note.

A more in-depth study of why this happens is not trivial, as

neural networks are not interpretable. This is a drawback

compared to heuristic-based separation techniques.

Synchronous notes with the same pitch are problematic.

Figure 4. Comparison of voice and staff assignment be-

tween the original score (Ground Truth) and our method

(GNN) on the first bars of C. Debussy’s Estampes-Pagodes.

Voice edges are drawn in red and chord edges in blue.

Our system can predict different voices for these notes,

while Shibata et al. always predict them as a chord in the

same voice, and this reduces the performances for pieces

that contain a lot of them, like Schumann Kinderszenen

Op.15. For fairness, we should note that we should expect

the output of a music transcription system to only contain

one of these notes, instead of multiple like in our current

input. An enhancement of our system would then be able

to receive a single note as input, assign multiple voices to

it (with multiple incoming and outgoing edges) and then

split it into multiple notes. Another current limitation of

our system is the missing support for grace notes, which in

the actual version are ignored and removed from the input.

5. CONCLUSION AND FUTURE WORK

This paper presented a novel graph-based method for ho-

mophonic voice separation and staff prediction in symbolic

piano music. Our experiments highlight our system’s ef-

fectiveness compared to previous approaches. Notably, we

obtained consistent improvements over two datasets of dif-

ferent styles with a single model.

Future work will focus on integrating grace notes and

the possibility of multiple voices converging on a single

note. We aim to create a framework that produces complete

engravings from quantized MIDI, including the prediction

of clef changes, beams, pitch spelling, and key signatures.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

508



6. ACKNOWLEDGEMENTS

This work is supported by the European Research Council

(ERC) under the EU’s Horizon 2020 research & innova-

tion programme, grant agreement No. 101019375 (Whither

Music?), and the Federal State of Upper Austria (LIT AI

Lab).

7. REFERENCES

[1] E. Cambouropoulos, “Voice and stream: Perceptual and

computational modeling of voice separation,” Music

Perception, vol. 26, no. 1, pp. 75–94, 2008.

[2] E. Gould, Behind bars: the definitive guide to music

notation. Faber Music Ltd, 2016.

[3] D. Makris, I. Karydis, and E. Cambouropoulos,

“VISA3: Refining the voice integration/segregation al-

gorithm,” in Proceedings of the Sound and Music Com-

puting Conference, 2016.

[4] Y.-S. Huang and Y.-H. Yang, “Pop music transformer:

Beat-based modeling and generation of expressive

pop piano compositions,” in Proceedings of the 28th

ACM International Conference on Multimedia, 2020, p.

1180–1188.

[5] K. Shibata, E. Nakamura, and K. Yoshii, “Non-local

musical statistics as guides for audio-to-score piano

transcription,” Information Sciences, vol. 566, pp. 262–

280, 2021.

[6] M. Terao, E. Nakamura, and K. Yoshii, “Neural band-to-

piano score arrangement with stepless difficulty control,”

in ICASSP 2023-2023 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2023, pp. 1–5.

[7] E. Chew and X. Wu, “Separating voices in polyphonic

music: A contig mapping approach,” in Proceedings

of the International Symposium on Computer Music

Modeling and Retrieval. Springer, 2004.

[8] B. Duane and B. Pardo, “Streaming from midi using

constraint satisfaction optimization and sequence align-

ment,” in Proceedings of the International Computer

Music Conference (ICMC), 2009.

[9] P. Gray and R. C. Bunescu, “A neural greedy model

for voice separation in symbolic music.” in Proceed-

ings of the International Society for Music Information

Retrieval Conference (ISMIR), 2016.

[10] A. McLeod and M. Steedman, “Hmm-based voice sep-

aration of midi performance,” Journal of New Music

Research, vol. 45, no. 1, pp. 17–26, 2016.

[11] Y.-W. Hsiao and L. Su, “Learning note-to-note affinity

for voice segregation and melody line identification of

symbolic music data.” in Proceedings of the Interna-

tional Society for Music Information Retrieval Confer-

ence (ISMIR), 2021.

[12] E. Karystinaios, F. Foscarin, and G. Widmer, “Musical

voice separation as link prediction: Modeling a musical

perception task as a multi-trajectory tracking problem,”

in Internation Joint Conference on Artificial Intelligence

(IJCAI), 2023.

[13] J. Kilian and H. H. Hoos, “Voice separation-a local opti-

mization approach.” in Proceedings of the International

Society for Music Information Retrieval Conference (IS-

MIR). Citeseer, 2002.

[14] M. Suzuki, “Score transformer: Generating musical

score from note-level representation,” in Proceedings of

the 3rd ACM International Conference on Multimedia

in Asia, 2021, pp. 1–7.

[15] Y. Hiramatsu, E. Nakamura, and K. Yoshii, “Joint es-

timation of note values and voices for audio-to-score

piano transcription.” in Proceedings of the International

Society for Music Information Retrieval Conference (IS-

MIR), 2021, pp. 278–284.

[16] L. Liu, Q. Kong, G. Morfi, E. Benetos et al., “Perfor-

mance midi-to-score conversion by neural beat tracking,”

in Proceedings of the International Society for Music

Information Retrieval Conference (ISMIR), 2022.

[17] J. Zhao, G. Xia, and Y. Wang, “Q&a: Query-based

representation learning for multi-track symbolic music

re-arrangement,” in Internation Joint Conference on

Artificial Intelligence (IJCAI), 2023.

[18] W. L. Hamilton, R. Ying, and J. Leskovec, “Represen-

tation learning on graphs: Methods and applications,”

IEEE Data Engineering Bulletin, vol. 40, no. 3, pp.

52–74, 2017.

[19] F. Foscarin, N. Audebert, and R. Fournier S’niehotta,

“PKSpell: Data-driven pitch spelling and key signature

estimation,” in Proceedings of the International Society

for Music Information Retrieval Conference (ISMIR),

2021.

[20] A. Aljanaki, S. Kalonaris, G. Micchi, and E. Nichols,

“MCMA: A symbolic multitrack contrapuntal music

archive,” Empirical Musicology Review, vol. 16, no. 1,

pp. 99–105, 2021.

[21] R. E. Burkard and E. Cela, “Linear assignment prob-

lems and extensions,” in Handbook of combinatorial

optimization. Springer, 1999, pp. 75–149.

[22] A. McLeod and M. Steedman, “Evaluating automatic

polyphonic music transcription,” in Proceedings of the

International Society for Music Information Retrieval

Conference (ISMIR), 2018, pp. 42–49.

[23] F. Foscarin, F. Jacquemard, and P. Rigaux, “Modeling

and learning rhythm structure,” in Sound and Music

Computing Conference (SMC), 2019.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

509



[24] P. Roland, “The music encoding initiative (mei),” in

Proceedings of the First International Conference on

Musical Applications Using XML, vol. 1060. Citeseer,

2002, pp. 55–59.

[25] L. Pugin, R. Zitellini, and P. Roland, “Verovio: A library

for engraving mei music notation into svg,” in Proceed-

ings of the International Society for Music Information

Retrieval Conference (ISMIR), 2014.

[26] J. Hentschel, Y. Rammos, F. C. Moss, M. Neuwirth, and

M. Rohrmeier, “An annotated corpus of tonal piano mu-

sic from the long 19th century,” Empirical Musicology

Review, vol. 18, no. 1, pp. 84–95, 2023.

[27] C. E. Cancino-Chacón, S. D. Peter, E. Karystinaios,

F. Foscarin, M. Grachten, and G. Widmer, “Partitura:

A python package for symbolic music processing,” in

Proceedings of the Music Encoding Conference (MEC),

Halifax, Canada, 2022.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

510


