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ABSTRACT

Automatic singing skill evaluation (ASSE) systems are

predominantly designed for solo singing, and the scenario

of singing with accompaniment is largely unaddressed.

In this paper, we propose an end-to-end ASSE system

that effectively processes both solo singing and singing

with accompaniment using data augmentation, where a

comparative study is conducted on four different data

augmentation approaches. Additionally, we incorporate

bi-directional cross-attention (BiCA) for feature fusion

which, compared to simple concatenation, can better ex-

ploit the inter-relationships between different features. Re-

sults on the 10KSinging dataset show that data augmen-

tation and BiCA boost performance individually. When

combined, they contribute to further improvements, with

a Pearson correlation coefficient of 0.769 for solo singing

and 0.709 for singing with accompaniment. This repre-

sents relative improvements of 36.8% and 26.2% com-

pared to the baseline model score of 0.562, respectively.

1. INTRODUCTION

In recent years, the widespread use of digital media has

changed the way users interact with music, giving rise

to new applications like streaming services and online

karaoke platforms [1, 2]. As numerous singing content is

published daily by these applications, it becomes very ex-

pensive and practically unscalable to retrieve high-quality

content manually. One such scenario is the discovery of

vocal talent in the vast online platforms, where automatic

singing skill evaluation (ASSE) systems can be used to ex-

amine and rate all the singing content, so that the top-tier

can be distributed for more views, subscribers, and ulti-

mately more profits.
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Despite the potential commercial values, ASSE is a dif-

ficult task that encompasses both subjective preferences

and multi-dimensional objective features (e.g., intonation

accuracy, rhythm accuracy, range, and dynamics) that pro-

fessional judges also consider when evaluating vocal per-

formances [3]. Over the years, different ASSE systems

have been proposed. Depending on whether a reference

melody is taken as the ground truth, these ASSE sys-

tems can be classified as reference-dependent [4–9] or

reference-independent approaches [10–18]. Recent re-

search on ASSE has been mainly focused on reference-

independent deep learning-based approaches, where CNN-

based architectures are often used to extract useful patterns

from input spectrograms [11,14,15,17,18]. Other features

including pitch histograms [11,14,15,17] and singer timbre

embeddings [17, 18] are also used, and these features are

usually fused via concatenation. Although this is a simple

way of feature fusion, the more advanced techniques that

could uncover deeper relationships between these features

are still unexplored in ASSE.

Another limitation of the current ASSE research stems

from the lack of open-source datasets and high-quality an-

notations. For example, among the three recent datasets:

neither the Smule DAMP dataset [14] nor the YJ-16K

dataset [18] is open-sourced, and although Lyra-SA [19] is

available after filling out an application form 1 , the authors

claimed that singing skill annotations are still immature

and therefore not sufficiently curated for research purposes

yet. Other ASSE datasets including self-made recordings

[9,20] or collections from singing platforms [7,12] are also

non-public. The lack of publicly available datasets is one

of the major impediments that significantly hinder the ad-

vancement of ASSE research.

Finally, most ASSE systems require solo singing as in-

put, leaving the scenario of singing with accompaniment

largely unexplored [7–9, 11, 12, 14, 15]. On the other

hand, [17] proposed an ASSE system that can process

singing with accompaniment, but it is achieved by employ-

ing a singing voice separation tool [21] as a pre-processing

step to remove the accompaniment, which not only re-

sults in a more complicated and computationally expen-

sive system, also the model input is still essentially solo

1 Available at: https://lyracobar.y.qq.com/singvoicedataset.html
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singing. In this paper, we propose a new ASSE system

capable of processing both solo singing and singing with

accompaniment in an end-to-end manner, thereby elimi-

nating the need for a singing voice separation tool. This is

achieved through data augmentation during training, where

we present the same singing clip in three distinct versions:

solo singing, singing with its original accompaniment, and

singing remixed with a different accompaniment. For the

remixed version, we explore and compare four different

approaches, which will be detailed in Section 2.2.2. Fur-

thermore, we explore feature fusion techniques beyond

simple concatenation, since such methods can better in-

tegrate and amalgamate diverse data sources with greater

efficacy [22, 23]. In particular, we adopt a Bi-directional

Cross-Attention (BiCA) mechanism during feature fusion,

given its effectiveness in capturing the reciprocal knowl-

edge exchange between the source and target features in

both directions [24]. The contributions of this paper are:

• We propose an ASSE system that processes both

solo singing and singing with accompaniment. The

system functions in an efficient end-to-end manner,

thereby eliminating the need for a singing voice sep-

aration tool required by the baseline model [17].

• We adopt a BiCA mechanism during feature fu-

sion, which better exploits the inter-relationships be-

tween different features and facilitates their recipro-

cal knowledge exchange, compared to simple fea-

ture concatenation (see Section 2.2.1).

• We explore data augmentation for ASSE and com-

pare four different approaches: the existing Shuffle-

And-Remix [25], the proposed Same-Song Remix,

the proposed Key-Match Remix, and All Remix that

combines the data augmented from the above three

methods (see Section 2.2.2).

• Results show that BiCA and data augmentation

boost performance individually (see Section 3.4).

The combination of both results in further improve-

ments, with a Pearson correlation coefficient of

0.769 for solo singing and 0.709 for singing with ac-

companiment on the 10KSinging dataset. This rep-

resents relative improvements of 36.8% and 26.2%

compared to the baseline score of 0.562 [17], respec-

tively.

2. METHODOLOGY

2.1 The Baseline Model

In the ASSE literature, singing skills can be presented as

a ranking [11], a category [8, 9, 12, 18] (e.g., awesome,

mediocre, or inferior), or a numerical score [14, 15, 17, 20]

(e.g., 60 out of 100). We consider numerical scores for

singing skills since they can be mapped into discrete cate-

gories or sorted as a ranking, which can be used in differ-

ent scenarios. Within this range, the existing literature on

ASSE is quite limited, and we consider [17] the baseline

model for our study, due to its superior performances to

the recent ASSE system [14].

The pipeline of the baseline model is shown in Fig. 1(a):

it begins by extracting solo singing from the input using

an existing singing voice separation tool [21], then the

Constant-Q Transform (CQT) is computed and processed

by a Convolutional Recurrent Neural Network (CRNN)

with an attention mechanism. Following this, the 200-

dimensional output from the CRNN and attention is fused

with the 120-dimensional pitch histogram 2 and the 512-

dimensional X-vector 3 using concatenation. Finally, the

combined features are subsequently fed into a streamlined

pair of dense layers to output the predicted singing rating. 4

Compared to [14], three improvements were made in

[17]: (1) the attention mechanism was added to the CRNN

structure to further explore the useful, long-term relation-

ships in the feature space; (2) X-vector [26] was added as

additional features to depict the singing voice timbre, rep-

resenting the control, resonance, and power that can be es-

sential in singing skill evaluations; (3) the network struc-

ture was also finetuned to accommodate the first two im-

provements, where an extra dense layer was added to op-

timize the performance. Furthermore, they presented the

10KSinging dataset, which includes the singing skill rat-

ings for 9,756 songs from 93 Chinese male singers and

97 Chinese female singers, and it was further divided into

training, validation, and testing sets with 8,000, 756, and

1,000 songs, respectively. Each song from 10KSinging

has two versions: the original singing with accompaniment

version and the solo singing version, where the accompani-

ment of the latter was removed using a singing voice sep-

aration tool [21]. They used both versions to train their

proposed ASSE model and found the solo singing version

achieved better performances. Therefore, they considered

singing voice separation an integral part of the pipeline,

extracting solo singing as the input to their ASSE model

shown in Fig. 1(a). As a result, a 62.4% relative improve-

ment was achieved on Pearson correlation coefficient com-

pared to [14] (0.562 VS. 0.346) on the 10KSinging dataset,

serving as a solid baseline in this paper.

2.2 The proposed Model

Our proposed ASSE model is shown in Fig. 1(b), which

highlights the three improvements compared to the base-

line model Fig. 1(a) in different colours. The yellow part

indicates that the proposed model can process both solo

singing and singing with accompaniment, while the base-

line model requires singing voice separation to extract solo

singing from the input; the blue part represents the use of

bi-directional cross-attention between the pitch histogram

2 Originally proposed in [14], pitch histogram is a global representa-
tion of pitch distribution for music, where all octave-equivalent pitches
are folded, resulting a range of 12 pitch classes. The distance between
two adjacent pitch classes is represented with 10 bins.

3 According to [26], X-vector distinguishes different kinds of voice
timbre. It has been applied to areas including speaker/emotion recogni-
tion [27], and singer identification [28].

4 The reader can refer to [14] for more specifics regarding the CRNN
structure and the pitch histogram generation, and [17] for details on the
attention mechanism integrated into the CRNN and X-vector extraction.
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(a) The baseline model from [17].

(b) The proposed model, with three key distinctions compared to (a) highlighted in different colours.

Figure 1. Illustration of the baseline model (a) and the proposed model (b). The diagram on the right of the dashed line

indicates the architecture of the two ASSE systems, where (a) requires singing voice separation as pre-processing [21] to

extract solo singing while (b) can process both solo singing and singing with accompaniment (yellow) in a more efficient,

end-to-end manner. The proposed model features Bi-directional Cross-Attention (BiCA, blue) and data augmentation

(green) using the three distinct training sets of 10KSinging, namely: subindex 1 as singing with accompaniment, subindex 2

as solo singing, and subindex 3 as singing and accompaniment remix discussed in Section 2.2.2. The number in parentheses

represents the number of dimensions, while Aph and Axv denote the attention output for the pitch histogram and X-vector,

respectively. Both Aph and Axv enter a sum operation with their respective input feature via residual connections.

and X-vector features (see Section 2.2.1); the green part

represents data augmentation, where three distinct sets of

10KSinging: singing with accompaniment, solo singing,

and singing and accompaniment remix are used during the

training process (see Section 2.2.2).

2.2.1 Bi-directional Cross-Attention

As discussed above, the baseline model [17] includes a

self-attention mechanism in CRNN to capture the long-

term relationships from the input CQT spectral represen-

tation. This is based on the scaled dot-product attention

layer proposed by Vaswani et al [29]:

Attn(Q,K, V ) = softmax

(

Q×KT

√
D

)

× V

= softmax(S)× V,

where Q, K, V , S, and D denote the query, key, value,

similarity matrix, and dimension of the attention layer, re-

spectively.

In addition to the self-attention mechanism adopted by

the baseline model, we further improve our approach by

applying cross-attention to the remaining two features:

pitch histogram and X-vector, since there can be correla-

tions between singers’ pitch accuracy and timbre quality

that are beneficial for ASSE. In the cross-attention mecha-

nism, the query Qt is derived from the target t, with the key

Ks and the value Vs derived from the source s. The atten-

tion output Attnt(Qt,Ks, Vs) is then added to the target

t via a residual connection, leaving the source s unmodi-

fied. This means if we aim to apply cross-attention to both

pitch histogram and X-vector features, we need to do it

twice: one using pitch histogram as target (t), X-vector as

source (s) and vice versa for the other one. To reduce the

excessive computational demands in this case, we adopted

Bi-directional Cross-Attention (BiCA) [24] that contains a

reciprocal attention mechanism, where a shared query-key

(QK) matrix [30] is applied to update both the target t and

the source s in parallel. Concretely, the similarity matrices

of St and Ss in BiCA can be calculated as:

St =
(QK)t × (QK)Ts√

D
= ST

s ,

where (QK)t and (QK)s are the shared query-key matri-

ces projected from t and s, respectively. As a result, the at-

tention features of t and s can be respectively obtained by

multiplying the corresponding similarity matrix with the

value matrix projected from both t and s:

Attnt = softmax(St)×Vs; Attns = softmax(Ss)×Vt

Finally, we perform a residual connection in both t

and s to add the corresponding attention features Attnt

and Attns. Overall, we enhance the learning of inter-

relationships between pitch histogram and X-vector by
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implementing the cross-attention mechanism, specifically

BiCA 5 to our approach illustrated in Fig. 1(b). This way,

our proposed model is capable of maintaining the effec-

tiveness of cross-attention while being computationally ef-

ficient [24].

2.2.2 Data Augmentation for ASSE

As discussed in Section 1, the lack of data can hinder

the research and development of ASSE models, and we

aim to mitigate this problem by adopting data augmen-

tation. For this purpose, we use the 10KSinging dataset

from [17], which contains 9,756 songs in two versions:

singing with accompaniment and solo singing. It is fur-

ther divided into training, validation, and testing sets with

8,000, 756, and 1,000 songs, respectively. We combine

the two versions (singing with accompaniment and solo

singing) of the training sets and develop a third one called

“singing and accompaniment remix”, with an additional

8,000 songs generated by remixing the solo singing with

a different accompaniment to create more data. For this

purpose, we compare three different remixing approaches:

• Shuffle-And-Remix [25]: this existing approach

remixes each solo singing with a randomly selected

accompaniment from another song. Note that with

this approach, the singing and accompaniment may

not be in the same musical key, and combining the

two will introduce differences in musical key irrel-

evant to ASSE and may interfere with the training

process. Therefore, we propose two new remixing

techniques that ensure the same key between singing

and accompaniment as follows.

• Same-Song Remix: instead of using a different

song, we can shift the accompaniment track of the

same song by a random duration between 5 to 15

seconds ahead or behind the singing track and remix

both. This creates a unique alignment where the vo-

cals and music are out of their original synchroniza-

tion but still ensures both are in the same musical

key.

• Key-Match Remix: we use the Madmom key detec-

tion algorithm [31] to iterate all the accompaniments

and eliminate the ones that are in a different key than

the solo singing. Among the remaining candidates,

we randomly pick one accompaniment, and remix it

with the solo singing.

As a result, we have an augmented training set of 24,000

songs in total, where singing with accompaniment, solo

singing, and singing and accompaniment remix all con-

tribute 8,000 songs, indicated respectively as subindex 1,

2, 3 in Fig. 1(b). Furthermore, we can extend the set of

subindex 3 by combining the augmented data from all three

remixing approaches above (8000× 3 songs) and propose

a fourth approach: All Remix, with 40,000 songs in total.

5 We use an open-source implementation of BiCA available at:
https://github.com/lucidrains/bidirectional-cross-attention.

3. EXPERIMENTS

As indicated in [17], each song of the 10KSinging dataset

is associated with an overall, normalized rating between 0

and 1, and the goal of our ASSE model is to predict a re-

gressed value close to the ground truth rating. Although

the work presented in this paper is not open-source for

proprietary restrictions, most of the essential components

are open-source as follows: the code base and the funda-

mental structure of CRNN, including the pitch histogram

calculation can be found at Github 6 ; the annotations for

10KSinging, the attention machism appended after CRNN,

and the X-vector calculation can be found at [17], and we

will respectively explain our experimental settings and rel-

evant implementation details in Section 3.1 and Section 3.2

for the ease of reproducing our work.

3.1 Experimental Settings

We first investigate the effect of data augmentation in

five settings: no data augmentation, Shuffle-And-Remix

(SAR), Same-Song Remix (SSR), Key-Match Remix

(KMR), and All Remix (ALL) proposed in Section 2.2.2.

In each data augmentation setting, we can either use the

baseline architecture (Fig. 1(a)) or adopt BiCA (Fig. 1(b)),

resulting in a total of 10 experiments. In each experiment,

we present the performance on the 1000-song test set from

the two versions of 10KSinging: singing with accompani-

ment (“w/ acc”) and solo singing (“w/o acc”). As shown

in Table 1, the first two experiments involve no data aug-

mentation and each has two distinct ASSE models that are

trained using the two versions of 10KSinging (“w/ acc”

and “w/o acc”), same as [17].

For the remaining eight experiments involving data

augmentation, each uses an augmented training set of

10KSinging, which contains songs from the following

three sets: singing with accompaniment, solo singing,

and singing and accompaniment remix introduced in Sec-

tion 2.2.2. Unlike the first two experiments, each of the

eight experiments has only one ASSE model, which is

evaluated in both “w/ acc” and “w/o acc” test sets. Alto-

gether, 12 models are trained in total to explore the effects

of data augmentation and BiCA.

3.2 Implementation Details

We adopt the same parameters for generating CQT and

pitch histograms as described in [17], namely 96-bin CQT

and 120-bin pitch histogram. For training, we use Mean

Squared Error (MSE) as the loss function, where the epoch

with the lowest MSE on the validation set is chosen as the

best-performing model, both in the “w/ acc” and “w/o acc”

settings. We use the Adam optimizer and a learning rate of

0.0001. The number of epochs is set to 250 with a batch

size of 4. All other parameters remained consistent with

those outlined in [17], except for a few adjustments, which

are detailed below.

6 Implementation can be found at:
https://github.com/AME430/Towards-Training-Explainable-Singing-
Quality-Assessment-Network-with-Augmented-Data.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

496



Data Aug BiCA
MSE(↓) MAE(↓) Bad P%(↓) Pearson(↑)

w/o acc w/ acc w/o acc w/ acc w/o acc w/ acc w/o acc w/ acc

No (8,000) No [17] 0.0042 0.0046 0.0495 0.0524 10.1% 11.8% 0.562 0.497

No (8,000) Yes 0.0038 0.0043 0.0459 0.0499 8.7% 10.5% 0.623 0.539

SAR (24,000) No 0.0041 0.0044 0.0495 0.0519 9.3% 9.4% 0.561 0.522

SAR (24,000) Yes 0.0031 0.0033 0.0386 0.0415 6.5% 7.3% 0.697 0.670

SSR (24,000) No 0.0041 0.0044 0.0497 0.0515 9.6% 10.2% 0.555 0.514

SSR (24,000) Yes 0.0029 0.0033 0.0385 0.0416 5.8% 7.0% 0.714 0.673

KMR (24,000) No 0.0041 0.0044 0.0496 0.0521 8.9% 9.8% 0.562 0.517

KMR (24,000) Yes 0.0028 0.0031 0.0375 0.0413 6.2% 6.9% 0.730 0.687

ALL (40,000) No 0.0039 0.0040 0.0471 0.0478 9.4% 10.1% 0.593 0.576

ALL (40,000) Yes 0.0025 0.0030 0.0351 0.0387 4.7% 6.1% 0.769 0.709

Table 1. The ASSE results of Mean Squared Error (MSE), Mean Absolute Error (MAE), Bad Case Proportion (Bad P

%), and Pearson correlation coefficient (Pearson) on the singing with accompaniment test set (w/ acc, 1,000 songs) and

the solo singing test set (w/o acc, 1,000 songs) from the 10KSinging dataset [17]. SAR, SSR, KMR, and ALL refer to the

four different data augmentation methods introduced in Section 2.2.2: Shuffle-and-Remix, Same-Song Remix, Key-Match

Remix, and All Remix, respectively, where the number in parenthesis indicates the number of songs used as training data.

For experimental purposes, no data augmentation, SAR, SSR, KMR, and ALL is respectively applied to the model archi-

tecture without and with Bi-Directional Cross-Attention (BiCA, illustrated in Fig. 1(b)) to demonstrate the individual and

reciprocal effects of data augmentation and BiCA. The downward and upward arrows on the evaluation metrics respectively

represent the desirable lower or higher values for better performances. The best results are highlighted in bold, which con-

centrate on the ASSE model employing both All Remix data augmentation and BiCA (ALL-Yes), is therefore our proposed

method in this paper.

We use the sigmoid activation function following the

final dense layer to constrain the output range between 0

to 1. Also, the Exponential Linear Unit (ELU) activation

function is introduced within the dense layer. These ad-

justments can facilitate the model’s ability to learn a more

accurate distribution of the output score.

3.3 Evaluation Metrics

Although correlation coefficients are often used as the eval-

uation metric in ASSE [5, 13–15, 17, 32], we aim to incor-

porate additional metrics to demonstrate the performances

of ASSE models more comprehensively. Overall, four

evaluation metrics are considered:

• Mean squared error (MSE) (↓): same as the loss

function introduced in Section 3.2.

• Mean absolute error (MAE) (↓): it shows how much

the predicted rating deviates from the ground truth

in the linear scale.

• Bad case proportion (↓): same as [17], the predicted

rating will be considered a bad case if its MAE is no

less than 0.1.

• Pearson correlation coefficient (↑): it demonstrates

the degree of correlation between the predicted rat-

ing and the ground truth, within the range of [−1, 1].

3.4 Results and Discussions

The results are shown in Table 1, where we use acronyms

to represent each experiment. For example, No-No indi-

cates the experiment without data augmentation nor BiCA,

and KMR-Yes indicates the experiment using both KMR

augmentation and BiCA, etc.

3.4.1 Results on BiCA

We first investigate the effects of BiCA by comparing

the models with and without BiCA under five different

data augmentation settings (No-No VS. No-Yes; SAR-

No VS. SAR-Yes; SSR-No VS. SSR-Yes; KMR-No VS.

KMR-Yes; ALL-No VS. ALL-Yes), finding that using

BiCA results in consistent performance improvements in

all cases. This demonstrates that the employment of BiCA

effectively helps the ASSE models capture useful inter-

relationships between pitch histogram and X-vector and

facilitate their reciprocal knowledge exchange, leading to

better results. This is reasonable since there can be cor-

relations between singers’ pitch accuracy and timbre qual-

ity that are beneficial for ASSE. For example, singers with

excellent singing skills tend to have great pitch accuracy

(indicated by pitch histogram) and timbre quality (indi-

cated by X-vector), and vice versa for mediocre or inferior

singers.

3.4.2 Results on Data Augmentation

We then compare the four data augmentation approaches:

SAR, SSR, KMR, and ALL to no data augmentation.

When using the baseline architecture (Fig. 1(a) without

BiCA), results show overall marginal improvements in al-

most all cases (SAR-No VS. No-No; SSR-No VS. No-

No; KMR-No VS. No-No; ALL-No VS. No-No). When
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BiCA is applied, the improvement is much more apparent

(SAR-Yes VS. No-Yes; SSR-Yes VS. No-Yes; KMR-Yes

VS. No-Yes; ALL-Yes VS. No-Yes). These results demon-

strate the effectiveness of data augmentation and its recip-

rocal advantage with BiCA. As discussed in Section 3.4.1,

it seems that data augmentation provides more samples

for BiCA to further exploit correlations between pitch his-

togram and X-vector, which can be beneficial for evaluat-

ing singing skills in ASSE.

Of particular interest, we notice that KMR achieves

superior results among all three data augmentation ap-

proaches (KMR-Yes VS. SSR-Yes VS. SAR-Yes). This

could be that KMR combines the advantages of SAR and

SSR, where the former mixes the singing with a different

accompaniment and the latter ensures the same key be-

tween singing and accompaniment, leading to better per-

formances. Despite their differences, we can combine the

augmented data from SAR, SSR, and KMR as All Remix

(see Section 2.2.2) for even more training data, resulting in

the best results overall (SAR-Yes VS. SSR-Yes VS. KMR-

Yes VS. ALL-Yes).

3.4.3 Results on Solo Singing and Singing with

Accompaniment

Additionally, we compare the performances presented in

solo singing (w/o acc) and singing with accompaniment

(w/ acc) scenarios. Results show that the ASSE models

consistently perform better in solo singing, which is under-

standable considering singing with accompaniment con-

tains irrelevant accompaniment information that can inter-

fere with the training of ASSE models. Although we can

follow [17] to add a singing voice separation step (see Fig.

1(a)) to remove accompaniment for better performances,

we choose to keep the end-to-end nature of our ASSE sys-

tem (see Fig. 1(b)) and consider the performance gap be-

tween solo singing and singing with accompaniment for

our proposed ASSE model (ALL-Yes) non-essential, since

both are performing better than the baseline No-No in the

solo singing (w/o acc) condition.

3.4.4 Overall Results

Finally, once we combine data augmentation with BiCA,

our proposed ALL-Yes model yields notably better results

than the baseline [17] (No-No) across all metrics: reach-

ing relative improvements of 40.5% on MSE (0.0025 VS.

0.0042, likewise for the following ones), 29.1% on MAE,

53.5% on Bad P %, and 36.8% on Pearson in solo singing

(w/o acc); 34.8% on MSE (0.0030 VS. 0.0046, likewise

for the following ones), 26.1% on MAE, 48.3% on Bad P

%, and 42.7% on Pearson in singing with accompaniment

(w/ acc) scenario.

As discussed in Section 3.1, there are two models un-

der No-No, one trained for w/o acc and the other trained

for w/ acc conditions. [17] then proposed the former in

the paper due to its superior performance. However, it can

only process solo singing data and requires a singing voice

separation tool to remove accompaniment from the input.

In comparison, our proposed ALL-Yes model can process

both solo training and singing with accompaniment inputs,

and this is what we refer to as an end-to-end ASSE model,

which does not require singing voice separation and also

yields notably better performances, with Pearson correla-

tion coefficients of 0.769 in w/o acc and 0.709 in w/ acc,

compared to the baseline model of 0.562.

4. CONCLUSIONS

In this paper, we introduce a new ASSE system using data

augmentation and compare four specific augmentation ap-

proaches: the existing Shuffle-And-Remix [25], the novel

Same-Song Remix, Key-Match Remix, and All Remix

we propose. Results show that our All Remix approach

achieves the best performances, and our system can pro-

cess both solo singing and singing with accompaniment

in an end-to-end manner, thereby eliminating the need for

a singing voice separation tool required by the baseline

model [17]. We also introduce a Bi-directional Cross-

Attention mechanism (BiCA) as a feature fusion method

to ASSE for the first time, which discovers useful inter-

relationships between pitch histogram and X-vector and

results in consistent performance improvements in our ex-

periments.

With the combination of BiCA and All Remix data

augmentation approach, we not only achieve notable im-

provements in ASSE performances compared to the base-

line [17], we also develop a versatile model capable of pro-

cessing both solo and instrumentally accompanied vocal

performances. To the best of our knowledge, such encom-

passing ASSE models have not been proposed in existing

literature before.

5. FUTURE WORK

Looking ahead, we will continue this research by incorpo-

rating future open-source ASSE datasets proposed in the

literature. Indeed, we could only make use of the 10KSing-

ing dataset due to the lack of open-source datasets in this

domain. Our future work also includes exploring alter-

native features that could potentially improve the perfor-

mances of our ASSE models. For instance, we will con-

sider large-scale music models that employ self-supervised

learning, since features extracted by those models such as

Jukebox [33] and MERT [34] have recently been proven

effective and even established new SOTA performances

in various music-related tasks. Therefore, these features

will be incorporated into our model to exert their potential.

Finally, since data augmentation combining solo singing

with different versions of accompaniment results in con-

sistent performance improvements, we will explore more

data augmentation methods for solo singing by, for exam-

ple, adding noise, adjusting gain, and applying high/low-

pass filters that have been employed in other MIR-related

tasks [35] for better performances.
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