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ABSTRACT

We propose a novel symbolic music representation and

Generative Adversarial Network (GAN) framework spe-

cially designed for symbolic multitrack music generation.

The main theme of symbolic music generation primarily

encompasses the preprocessing of music data and the im-

plementation of a deep learning framework. Current tech-

niques dedicated to symbolic music generation generally

encounter two significant challenges: training data’s lack

of information about chords and scales and the require-

ment of specially designed model architecture adapted to

the unique format of symbolic music representation. In

this paper, we solve the above problems by introducing

new symbolic music representation with MusicLang chord

analysis model. We propose our MMT-BERT architecture

adapting to the representation. To build a robust multitrack

music generator, we fine-tune a pre-trained MusicBERT

model to serve as the discriminator, and incorporate rel-

ativistic standard loss. This approach, supported by the

in-depth understanding of symbolic music encoded within

MusicBERT, fortifies the consonance and humanity of mu-

sic generated by our method. Experimental results demon-

strate the effectiveness of our approach which strictly fol-

lows the state-of-the-art methods.

1. INTRODUCTION

Music plays an indispensable role in our daily lives, and

there is a significant demand for creating new musical con-

tents. Automatic music generation is one of the most in-

triguing tasks in bringing new music experiences to con-

sumers [1]. The earliest studies in the 1950s focused on

a combination of music theory and Markov-chains-based

probabilistic models, and realized randomly creating mu-

sic parts and combining them into a synthesis [2]. Con-

temporary studies have achieved higher quality and faster

music generation by utilizing advanced neural networks
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such as Generative Adversarial Networks (GANs), Trans-

former, and diffusion models [3–5]. Despite significant

advancements, previous methods continue to suffer from

challenges such as insufficient data extraction and unsta-

ble training trajectories. Consequently, there is room for

new approaches for more effective music representations

and more robust deep learning architectures.

In particular, chords are crucial for conveying emo-

tional and humanistic expressions in music, yet few meth-

ods take chords into account in symbolic music represen-

tation. Consequently, previous methods are deprived of

indispensable information about chords and scales. This

lack results in the generation of music that exhibits a di-

minished degree of humanity. Therefore, previous meth-

ods for music generation face limitations in their ability

to produce human-like and high quality expressions [6].

A feasible solution to overcome this difficulty is the in-

tegration of a chord analysis model [7]. Chord analysis

model aids in the extraction of chord data from raw audio,

fostering a novel representation method that encompasses

chord information [8–11]. With the aid of state-of-the-art

chord analysis models, we can generate more harmonious

and structured music with more regular chord progressions

by automatically extracting and encoding chords from raw

audio files. Therefore, it is expected that adopting chord

analysis models in creating new symbolic representations

of music will enable the generation of music that is closer

to human composition.

Another problem arises from the ever-changing format

of symbolic music representation, which makes design-

ing the model’s architecture that fits symbolic music gen-

eration to be another challenge. GANs are widely ap-

plied in the symbolic music generation field because the

addition of a discriminator obviously strengthens the fi-

delity of the overall generative model [12–17]. The per-

formance of GANs is deeply influenced by the architec-

ture of the generator and discriminator. Previous stud-

ies have demonstrated the effectiveness of transformer-

based generators [6, 7, 18–23]. Whereas, the architecture

of the discriminator has been extensively discussed in re-

cent years. Some methods [12, 14, 16, 17] involve con-

structing a discriminator based on CNN or Transformer,

while others [15] utilize pre-trained models adapted to

their tasks. Compared to hand-crafted discriminators, us-

ing pre-trained models often achieves a fairly good result
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because pre-trained models are already trained on large and

diverse datasets. Therefore, the application of pre-trained

models will allow the GAN to leverage their learning and

knowledge, ensuring the training efficiency and stability.

However, there are few choices of pre-trained mod-

els designed for symbolic music representation that can

be used as the discriminator considering the input format

and length limitation. We solve this problem by apply-

ing BERT-based scores, which are well correlated with

human ranking and can jointly measure quality and diver-

sity [24,25]. Since BERT is trained using a self-supervised

loss on bidirectional contexts of all attention layers, it can

effectively extract representations [26–28]. Muhamed et

al. employ a pre-trained Span-BERT model and achieve

considerable results on harmonic choices and overall mu-

sic quality, showing that pre-trained BERT-based models

outperform CNN-based discriminator [15]. Hence, em-

ploying a pre-trained model as a discriminator can amplify

the overall performance of the GAN model.

In this paper, we propose a novel symbolic music gen-

eration method using the chord-aware symbolic music rep-

resentation and MusicBERT-based discriminator. In terms

of symbolic musical expression, we introduce the novel

symbolic music representation with chord information de-

rived from MusicLang 1 , one of the state-of-the-art chord

analysis models. By employing symbolic music represen-

tation with chord information, our model can achieve the

generation of more human-like music that considers chord

progressions. For the model architecture, we employ the

Multitrack Music Transformer (MMT) [6] as the gener-

ator and fine-tune the MusicBERT [29], a symbolic mu-

sic understanding model pre-trained in large-scale dataset,

as the discriminator. Leveraging the superior comprehen-

sion capabilities of MusicBERT, we can improve GAN’s

performance, thereby facilitating the creation of higher-

quality music. Furthermore, we introduce relativistic stan-

dard loss to further optimize the stability and consistency

of the training process [30]. The use of Relativistic Stan-

dard GAN (RS-GAN) has realized great results in the field

of image generation. It enables models to account for the

fact that half of the data in a mini-batch is fake, leading to

more accurate estimations of data realism [14, 31]. Build-

ing upon the innovations mentioned above, our model is

capable of retrieving substantial information about chords

and scales, acquiring knowledge in music theory, and au-

tonomously generating multitrack music of superior qual-

ity and enriched with human-like characteristics.

The contributions of this paper are summarized as fol-

lows.

• We propose a modified MMT style symbolic mu-

sic representation including chord and scale infor-

mation.

• We develop MMT-BERT, an optimized GAN archi-

tecture utilizing MMT and MusicBERT, with rela-

tivistic standard loss to enhance the stability of the

training process and achieve better results.

1 https://musiclang.github.io/tokenizer/

Representation Multitrack
Instrument

control

Compound

tokens

Chord

awareness

REMI [7] ✓

MMM [21] ✓

CP [18] ✓ ✓

FIGARO [23] ✓ ✓

MMT [6] ✓ ✓ ✓

MMT-BERT (ours) ✓ ✓ ✓ ✓

Table 1. Comparisons of related representations.

2. RELATED WORKS

2.1 Symbolic Music Representation

To enable computers to properly understand music, re-

search on symbolic music representation has been con-

ducted for many years [32]. Musical Instrument Digital In-

terface (MIDI) is the most commonly used format for sym-

bolic music representation, containing performance data

and control information for musical notes. In the music

processing community, many researchers symbolize music

with MIDI-like events [33].

Huang et al. have proposed REvamped MIDI-derived

events (REMI), which adds note duration and bar events,

enabling models to generate music with subtle rhythmic

repetition [7]. However, the REMI representation often en-

counters a challenge that the sequence is too long. Build-

ing upon the REMI framework, Hsiao et al. have pro-

posed Compound Word Transformer (CP) [18]. CP mod-

ifies REMI’s approach by transforming one-dimensional

sequence tokens into compound words sequence using spe-

cific rules. Although this modification significantly short-

ens the average token sequence length and simplifies the

model’s ability to capture musical nuances, CP is hard

to generate multitrack music [6]. Dong et al. have pro-

posed their multitrack music representation, which rep-

resents music with a sequence of sextuple tokens, along

with a Transformer-XL-based generation method Multi-

track Music Transformer (MMT). This approach utilizes

a decoder-only Transformer architecture, adept at process-

ing multi-dimensional inputs and outputs. MMT leverages

the advantages of the Transformer to enable the generation

of longer multitrack music compositions than previous mu-

sic generation methods. However, MMT’s representation

scheme lacks chord event inclusion, an essential element

in musical compositions. In contrast, our symbolic mu-

sic representation technique builds on the foundation laid

by MMT by integrating chord information, enabling our

model to produce more harmonically rich compositions.

2.2 Generative Adversarial Network-based Music

Generation

Previous studies have employed various GANs to realize

symbolic music generation [12, 13, 17]. In early states,

Dong et al. have proposed MuseGAN, a CNN-based

GAN architecture, managing to generate multitrack music

pieces [16]. However, CNN-based GANs often suffer from

problems such as limited local perception, fixed-size in-

puts, etc. Muhamed et al. solved this problem by introduc-

ing their Transformer-GANs model, using a Transformer-
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Event type tj Quintuple token x
tj
i

start-of-song (0, 0, 0, 0, 0)

instrument (0, 0, 0, 0, instrument)

start-of-score (0, 0, 0, 0, 0)

note (beat, position, pitch, duration, instrument)

chord (beat, degree, root, mode, extension)

end-of-song (0, 0, 0, 0, 0)

Table 2. The elements of the quintuple token x
tj
i for each

event type tj .

XL-based generator and pre-trained Span-BERT as the dis-

criminator [15]. Transformer-XL introduces the notion of

recurrence into the deep self-attention network, enabling

the reuse of hidden states from previous segments as mem-

ory for the current segment, allowing for the modeling

of long-range dependencies. For the discriminator, Span-

BERT is utilized to extract sequence embeddings followed

by a pooling and linear layer. The bidirectional transformer

has a comparable capacity to the transformer-based gen-

erator and uses the self-attention mechanism to capture

meaningful aspects of the input music sequence. Their re-

search validates the efficacy of employing a Transformer-

XL-based generator in conjunction with a BERT-based dis-

criminator [34]. Building on this concept, we developed

the MMT-BERT model by utilizing MMT as the generator

and Music-BERT as the discriminator.

3. METHODOLOGY

3.1 Proposed Symbolic Music Representation

In our approach, we introduce a novel symbolic music rep-

resentation that incorporates chords. Table 1 shows differ-

ences between the conventional approaches and the pro-

posed symbolic music representation. While most conven-

tional representations omit details about chords, we focus

on chord information-aware representation to facilitate the

process of generating music that more closely resembles

humans. First, we extract music data including chords and

notes from MIDI files based on MuspyToolkit [35] and

MusicLang. During the extraction process, we recognize a

chord once per bar, i.e., every four beats. We exclude songs

with a time signature other than 4/4, limit the number of

chords in a bar to one, and ignore chord changes within a

bar since MusicLang only detects chord changes once per

bar. Each time MusicLang detects a chord change, it ex-

tracts the scale degree, tonality root, tonality mode, chord

octave and extension note of the chord. After extracting

chord and note information, we encode a piece of music

into a sequence of quintuple tokens X = (x0, ...,xN−1),
where xi and N denote the i-th quintuple token and the to-

tal number of quintuple tokens, respectively. Here, t repre-

sents the following event type: {start-of-song, instrument,

start-of-score, note, chord, end-of-song}. The meanings of

each event type are shown as follows:

• Start-of-song: The beginning of the music piece

• Instrument: An instrument used in the music piece

chord
5

( 0, 0, 0, 0, 0)

( 0, 0, 0, 0, 6)

( 0, 0, 0, 0, 40)

( 0, 0, 0, 0, 42)

( 0, 0, 0, 0, 0)

( 1, 1, 7, 2, 9)

( 1, 1, 46, 6, 6)

( 5, 1, 7, 2, 6)

( 5, 7, 48, 5, 42)

( 0, 0, 0, 0, 0)

Start of song

Instrument

Instrument

Instrument

Start of score

Chord

cello

violin

harpsichord

Note

Chord

Note

End of song

:

:

:

:

:

:

:

:

:

:

:

:

MeaningQuintuple tokens

beat=1,position=1, pitch=A2,duration=6, instrument=harpsichord

extension=9thbeat=1,degree=1,root=G,mode=minor,

extension=6thbeat=5,degree=1,root=G,mode=minor,

beat=5, position=7, pitch=G2,duration=5, instrument=cello

xstart-of-song
0

xinstrument
1

xinstrument
2

xinstrument
3

xstart-of-score

4

x

xnote
6

xchord
12

. . . 

xnote
13. . . 

xend-of-song
N-1

bar 1

bar 2

:

:

:

:

:

Figure 1. An example of the proposed representa-

tion. Compared to the conventional representation, the

proposed representation incorporates an additional chord

event (highlighted by red blocks) per bar, thereby aiding

the model in understanding the relationship between the

notes and chords.

• Start-of-score: The beginning of a sequence of mu-

sical events, including notes and chords

• Note: A note characterized by beat, position, pitch,

duration, and instrument

• Chord: A chord characterized by beat, scale degree,

root note, mode, and extension note

• End-of-song: The end of the music piece

The meaning of each element in the quintuple token xt
i

varies depending on the event type t . The correspondence

between the event type t and the meanings of the quintu-

ple token xt
i is shown in Table 2. Additionally, it is noted

that we apply different embeddings for the different fea-

tures sharing the same axis. A schematic diagram of the

proposed representation is illustrated in Figure 1. In this

way, we can obtain a symbolic music representation that

incorporates chords that is suitable for input into the afore-

mentioned MMT-BERT architecture.

3.2 MMT-BERT Architecture

The fundamental structure of our MMT-BERT architec-

ture is based on a GAN architecture, employing MMT as

the generator and MusicBERT as the discriminator. The

overview diagram of MMT-BERT is illustrated in Figure 2.

The primary concept of GAN is minimizing the loss to en-

hance the generator’s ability to deceive the discriminator

by producing fake music indistinguishable from real mu-

sic, while simultaneously maximizing the discriminator’s

accuracy in distinguishing between real and fake music.

Details of the generator and discriminator will be discussed

later.

3.2.1 Generator

As the generator, we employ MMT [6], a Transformer-XL-

based model that consists solely of decoders. In MMT, ele-

ments in the quintuple token xi are individually embedded

first, and then concatenated, followed by the addition of
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Figure 2. The diagram of the MMT-BERT. The generator is built upon Transformer-XL architecture, and the discriminator

is built upon MusicBERT. A MIDI file from the dataset is firstly encoded into a sequence of quintuple tokens before fed

into the model. Embeddings of the 6 elements are concatenated by a linear layer and converted into a single vector. Then

they are fed into the encoder and decoder layers with the addition of position embeddings.

positional embeddings. Subsequently, this combined input

is passed through transformer decoder blocks, which are

composed of a masked multi-head self-attention layer and

a feedforward layer. The output from the decoder blocks

is then processed by a dense layer and a softmax layer,

resulting in the generation of new music samples. MMT

proves advantageous due to its capability to handle multi-

dimensional input and output spaces, aligning perfectly

with the requirements of symbolic music representation.

Significantly, MMT can retain hidden states from previous

segments, thereby eliminating the need for recalculating

from scratch with each new segment. These retained states

function as a memory aid for the current segment, estab-

lishing a recurrent connection between segments.

The application of MMT as the generator allows for

instrument-controllable multitrack music generation with

extended duration and higher training speed. Such a key

feature facilitates the modeling of extensive long-range de-

pendencies.

3.2.2 Discriminator

As the discriminator, we adopted MusicBERT [29], a

large-scale Transformer model developed for symbolic

music understanding. MusicBERT consists of a Trans-

former encoder and utilizes a masked language modeling

approach where certain tokens in the input music sequence

are masked and then predicted by the model output. The

original proposed encoding method, called OctupleMIDI

process transforms a symbolic music piece into a sequence

of octuple tokens, each containing eight basic elements re-

lated to a musical note. In order to make MusicBERT act

as a discriminator adapted to the proposed representation

mentioned in Sec. 3.1, we refine the input and output for-

mat of MusicBERT. Quintuple tokens are converted into a

single vector through the concatenation of embeddings and

a linear layer. The resulting vector is combined with posi-

tion embeddings and provided as input to the Transformer

encoder. To predict each of the five tokens within the quin-

tuple, separate softmax layers are added to map the hidden

states of the Transformer encoder to the vocabulary sizes

of the different element types. MusicBERT’s proficiency

in comprehending symbolic music as the discriminator in-

tegrates with MMT’s generation process, thereby aiding in

the stability of the training process and faster convergence.

3.2.3 Relativistic Standard Loss

Inspired by RS-GAN [31], one of the state-of-the-art meth-

ods in GANs, we adopt the relativistic standard loss as our

objective function. Applying relativistic standard loss pre-

vents the network from becoming overconfident, leading to

slower and more careful decisions, allowing the generator

more room to adjust its weights and improve the training

process [30]. The probability that the given fake data is

more realistic than a randomly sampled real data is defined

as follows:

D(x̃) = sigmoid(C(f)− C(r)), (1)

where C(·) denotes a non-transformed layer, and x̃ denotes

real/fake data pairs x̃ = (r, f). Hence, the loss function

of the generator G and the discriminator D are defined as

follows:

LG =E(r,f)∼p(r,f)
[log(sigmoid(C(r)− C(f))]

−
∑

i

rilog fi,
c (2)

LD =E(r,f)∼p(r,f)
[log(sigmoid(C(f)− C(r))], (3)

where ri and fi denote ground truth logits and generated

music logits, respectively. It is noted that we add cross en-

tropy to the loss function of generator in order to accelerate
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the convergence process of the loss function. By training

both the generator and discriminator with the relativistic

standard loss to emulate human-like musical compositions,

our MMT-BERT model can generate high quality music

pieces that incorporate sophisticated chord information.

4. EXPERIMENT

4.1 Experiment Setup

In the experiment, we utilize the Symbolic Orchestral

Database (SOD) [36], which comprises 5,864 music pieces

encoded as MIDI files along with associated metadata.

The dataset is partitioned into training, testing, and val-

idation sets, receiving 80%, 10%, and 10% of the data,

respectively. We set a temporal resolution of 12 time

steps per quarter note for detailed timing accuracy. The

Transformer-XL generator is composed of six decoder lay-

ers with 512 dimensions and eight self-attention heads,

and the MusicBERT discriminator consists of one encoder

layer with two self-attention heads. The maximum length

for symbolic music sequences is set at 1024, with a maxi-

mum of 256 beats. To optimize the models, we employ the

Adagrad optimizer to mitigate issues of gradient explosion

and vanishing [37]. Additionally, to enhance the robust-

ness of the data, we augment it by randomly transposing

all pitches by s ∼ U(−5, 6)(s ∈ Z) semitones and assign

a starting beat. Here, U denotes a uniform distribution.

As comparative methods, we employ three state-of-the-

art music generation models: MMM [21], FIGARO [23],

and MMT [6]. We validate the performance of our MMT-

BERT model by conducting quantitative evaluations using

existing metrics and subjective experiments to assess the

human-like qualities of the generated music pieces.

4.2 Quantitative Evaluation

Following [6], we evaluate the generated music pieces us-

ing four metrics: pitch class entropy similarity (PCES),

scale consistency similarity (SCS), groove consistency

similarity (GCS), and average length (AL). We consider

higher values of PCES, SCS, and GCS as indicators of su-

perior quality, while a higher AL denotes a greater capa-

bility to produce long-duration music pieces.

In preparation for calculating PCES, the pitch class en-

tropy (PCE) is defined as follows:

PCE = −
11∑

i=0

hi log2(hi), (4)

where hi denotes the number of occurrences of each note

name in the 12-dimensional pitch class histogram. As the

PCE values increase, the tonality of the generated music

pieces exhibits greater instability. However, it is important

to recognize that more stable tonality does not necessarily

imply higher quality. Subsequently, we calculate PCES be-

tween generated music samples and human compositions

as follows:

PCES = 1−
|PCEgen − PCEtr|

PCEtr
, (5)

where PCEgen and PCEtr denotes the PCE value of gener-

ated music samples and human compositions, respectively.

Moreover, noticing that PCE is intrinsically linked to the

volume of data, we truncate the generated musical pieces

to the preceding k seconds and calculate their PCES.

The scale consistency (SC) is derived by calculating

the proportion of tones that conform to a conventional

scale and presenting the value for the most closely aligned

scale [38]. SC serves as an indicator of the model’s pro-

ficiency in generating musical segments that demonstrate

cognizance of chords and scales within the current bar. The

SCS between generated music samples and human compo-

sitions is defined as follows:

SCS = 1−
|SCgen − SCtr|

SCtr
, (6)

where SCgen and SCtr denote the SC values of generated

music samples and human compositions, respectively.

To calculate GCS, we first define a groove pattern g as

a 64-dimensional binary vector. The groove consistency

(GC) between two grooving patterns (ga,gb) is defined as

follows:

GC = 1−
1

Q

Q−1∑

i=0

XOR(gai , g
b
i ), (7)

where XOR(·, ·) denotes the exclusive OR operation, and

gi denotes a position in a bar at which there is at least a note

onset. Q is the dimensionality of ga and gb. GC is a mea-

sure of music’s rhythmicity. The value of GC stands for the

steadiness in rhythm of the generated music pieces. The

GCS between generated music samples and human com-

positions is defined as follows:

GCS = 1−
|GCgen −GCtr|

GCtr
, (8)

where GCgen and GCtr denote the GC values of generated

music samples and human compositions, respectively.

AL denotes the mean duration of the generated music

pieces, which collectively illustrates the model’s ability to

generate musical sequences with significant length.

The results of the quantitative evaluation are shown

in Table 3. To facilitate a fair comparison by standardizing

the lengths of music pieces, PCES is assessed over a 15-

second span due to the limitations of MMM and FIGARO

in producing extended compositions. Experimental re-

sults show that MMT-BERT achieves higher performance

in PCES, SCS, and GCS compared to the other methods,

demonstrating its effectiveness in generating high quality

music pieces. This achievement is attributed to its chord

awareness and the symbolic music understanding facili-

tated by MusicBERT. MMT-BERT’s AL is marginally less

than that of MMT, and this results from integrating chord

events that are not converted to audio during the decoding

phase. However, MMT-BERT’s AL significantly surpasses

that of MMM and FIGARO, confirming its capability to

generate longer compositions. Additionally, the AL of all

the music pieces in the SOD we used, which also serve as
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PCES (%) SCS (%) GCS (%) AL (sec)

MMM [21] 92.93±1.22 98.64±0.92 98.28±0.29 38.69

FIGARO [23] 94.33±0.31 98.70±0.22 98.84±0.67 28.69

MMT [6] 95.19±0.45 98.94±0.77 98.44±0.55 100.42

MMT-BERT w/o Chord event 95.57±1.32 98.81±0.23 99.56±0.32 100.25

MMT-BERT w/o MusicBERT 96.22±0.44 99.14±0.29 98.61±0.44 97.43

MMT-BERT (ours) 99.73±0.21 99.64±0.31 99.66±0.25 99.87

Table 3. Quantitative evaluation results. The boldface denotes the highest value, and the underlined denotes the second

highest value, respectively.

R H C S O

MMM [21] 3.83±0.92 3.78±0.87 3.78±0.73 3.67±0.84 3.83±0.79

FIGARO [23] 3.78±1.11 3.78±1.11 3.89±1.02 3.89±1.13 3.83±0.92

MMT [6] 3.22±0.70 3.17±0.98 3.44±1.03 3.33±1.09 3.22±0.78

MMT-BERT (ours) 3.55±0.94 3.55±0.92 3.33±0.98 3.39±0.90 3.44±0.80

Table 4. Subjective evaluation results. Each metric is rated on a five-point scale, with the average score being calculated.

the ground truth, is 99.88 seconds. Evaluation results show

that MMT-BERT can produce music of higher quality than

MMT, and of longer duration than MMM and FIGARO.

4.3 Impacts of Chord Event and Discriminator

MMT-BERT aims to generate more harmonious, more

human-like music pieces through the addition of chord

events and adversarial generative learning by employing

MusicBERT as its discriminator. To evaluate aspects re-

lated to richness and humanness, we have conducted sub-

jective experiment and ablation study.

In the subjective experiment, we asked 18 music am-

ateurs as the following five questions and requested that

they rated each on a five-point scale.

• Richness (R): Does the music piece have diversity

and interestingness?

• Humanness (H): Does the music piece sound like it

was composed by an expressive human musician?

• Correctness (C): Does the music piece contain per-

ceived mistakes in composition or performance?

• Structureness (S): Does the music piece exhibit

structural patterns such as repeating themes or the

development of musical ideas?

• Overall (O): What is the general score of the music

piece?

As mentioned in Sec. 4.2, FIGARO and MMM employ a

music representation that considers percussive sounds and

typically generates much shorter pieces. Therefore, the

nature of the music pieces generated by these models, FI-

GARO and MMM, differs significantly from that of MMT-

BERT and MMT due to their use of percussive sounds and

shorter compositions. To fairly evaluate the human-like

quality of the generated music pieces, we compared MMT-

BERT with MMT, a state-of-the-art approach whose gener-

ated compositions have lengths and musical styles that are

relatively similar to those of MMT-BERT. Additionally, to

ensure clarity in subjective evaluation, we included the re-

sults for MMM and FIGARO. The results of the subjec-

tive evaluation are shown in Table 4. Table 4 indicates that

MMT-BERT scores are particularly high in both richness

and humanness compared to MMT. This suggests that the

application of chord events and MusicBERT contribute to

the generation of music pieces that more closely resemble

human compositions. On the other hand, regarding cor-

rectness, our method did not specifically aim to enhance

this metric, which may cause the gap in this value. For the

same reason, our method exceeds MMT by a small margin

in structureness mainly because of uncertainty. Although

there is no clear advantage between MMT and MMT-

BERT in correctness and structureness, our method still

outperforms MMT in richness and humanness. The over-

all score also proves the superiority of MMT-BERT, which

indicates that chord events and MusicBERT enhance the

ability to create music similar to that produced by humans.

The results of the ablation study are shown in Table 3

along with the quantitative evaluation results. It is evident

that the addition of chord events improves PCES and SCS.

MusicBERT also contributes to the enhancement of PCES

and GCS.

5. CONCLUSION

In this paper, we have proposed the chord-aware symbolic

music generation approach, named MMT-BERT. By ex-

tracting chord information from raw audio files, we have

devised a chord-aware symbolic music representation. We

also developed a novel RS-GAN architecture based on

MMT and MusicBERT. Both experimental evaluations val-

idate the efficacy of our method in producing music pieces

of superior quality, enhanced human likeness, and consid-

erable length. In future works, we plan to explore methods

that refine musical structure and incorporate information

from various musical modalities.
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