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ABSTRACT

The field of Optical Music Recognition (OMR) focuses on

models capable of reading music scores from document

images. Despite its growing popularity, OMR is still con-

fined to settings where the target scores are similar in both

musical context and visual presentation to the data used

for training the model. The common scenario, therefore,

involves manually annotating data for each specific case,

a process that is not only labor-intensive but also raises

concerns regarding practicality. We present a methodol-

ogy based on training a neural model with synthetic im-

ages, thus reducing the difficulty of obtaining labeled data.

As sheet music renderings depict regular visual character-

istics compared to scores from real collections, we propose

an unsupervised neural adaptation approach consisting of

loss functions that promote alignment between the features

learned by the model and those of the target collection

while preventing the model from converging to undesir-

able solutions. This unsupervised adaptation bypasses the

need for extensive retraining, requiring only the unlabeled

target images. Our experiments, focused on music written

in Mensural notation, demonstrate that the methodology is

successful and that synthetic-to-real adaptation is indeed a

promising way to create practical OMR systems with little

human effort.

1. INTRODUCTION

Encoding and transcribing sheet music by hand is a com-

plex and error-prone task that often requires individuals

with specialized knowledge of the music notation at hand.

An alternative to this manual digitization is the utilization

of advanced artificial intelligence technologies, which en-

able the automated interpretation of musical documents.

This technology is known as Optical Music Recognition

(OMR) [1].
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OMR has been a subject of research for several

years [2], experiencing slow progress initially [3]. How-

ever, the recent adoption of advanced machine learning

techniques, notably Deep Learning, has catalyzed signifi-

cant improvements in the field [4]. Current OMR systems,

albeit not fully perfected, present a more efficient and ac-

curate alternative to manual transcription efforts [5].

In the context of machine learning, existing literature

reports models that achieve satisfactory levels of accuracy

when processing collections that share graphic character-

istics with the training corpus [6–9]. This situation poses

challenges for applying OMR technology to new collec-

tions, as it is not always feasible, practical, or resource-

efficient to dedicate efforts towards annotating a segment

of the target collection for training purposes.

This work explores the potential of creating OMR mod-

els to address diverse music collections by leveraging syn-

thetic data for training. Given the vast availability of sym-

bolic music data and score engraving tools, generating

synthetic data for training presents itself as a viable and

promising approach. However, the significant graphical

disparities between renderings and real music collections

suggest that a straightforward application of such synthetic

data might not suffice. To address this issue, we con-

sider the strategy proposed by Alfaro-Contreras & Calvo-

Zaragoza [10], aimed at adapting pre-trained transcription

models—in our case, initially trained on synthetic data to

accommodate real-world music collections. Some previ-

ous works on OMR also implement domain adaptation but

in other related tasks such as layout analysis [11] or music-

object detection [12].

Our experimentation focuses on early monophonic mu-

sic written in Mensural notation, as there exists a signifi-

cant number of collections in this notation, each with spe-

cific characteristics. This abundance enables us to conduct

a thorough examination, aiming to derive conclusions that

are broadly applicable and representative. We will use the

same synthetic data (and model) to independently adapt to

five different Mensural collections. Our experiments indi-

cate that our approach enables consistent synthetic-to-real

adaptation, leading to notable improvements in many set-

tings compared to the baseline. While there is still poten-

tial for better adaptation, our method represents a signif-

icant step towards developing practical OMR models that

do not rely on corpus-specific labeled data.
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2. BACKGROUND

The traditional OMR pipeline comprises four stages [13]:

(i) image pre-processing, which includes tasks such as bi-

narization, distortion correction, or staff separation; (ii)

music symbol detection, which involves steps such as staff-

line removal, connected-component search, and classifica-

tion; (iii) notation assembly, which relates the individual

identified components to reconstruct the musical notation;

and (iv) encoding, which exports the recognized notation

to a specific language for storage and further computa-

tional processing.

With the rise of Deep Learning, the so-called end-to-end

formulation has emerged as an alternative to OMR. This

approach, which has been dominating the state of the art in

other applications such as text or speech recognition [14,

15], is currently considered the reference model in OMR.

The related literature includes many successful solutions

of this type [16–18], often with some prior pre-processing

such as staff segmentation [19, 20].

However, as introduced above, there is still no computa-

tional approach for creating a universal OMR system; i.e.,

one that is capable of dealing with any kind of collection.

Instead, in this work, we take a more practical strategy that

leverages synthetic data and domain adaptation. Synthetic

data, generated through score engraving tools, provides a

seemingly infinite resource for training machine learning

models without the necessity for laborious manual annota-

tion.

Nevertheless, the utilization of synthetic data presents a

critical challenge: while synthetic scores are generated un-

der precise, controlled conditions, real-world music scores

exhibit a wide variety of visual characteristics. This vari-

ance results in a significant domain gap, where models

trained exclusively on synthetic data struggle to generalize.

Domain Adaptation (DA) becomes essential to reduce per-

formance degradation by fine-tuning a pre-trained model

with unlabeled data from the target domain [21]. While

DA has been applied to some stages of the legacy OMR

workflow [12,22], its application to end-to-end approaches

remains unexplored. Our contribution is the introduction

of an unsupervised synthetic-to-real DA method that em-

ploys a specific set of loss functions to adapt pre-trained

models using only target staff images.

3. METHODOLOGY

The methodology followed in this work is illustrated in

Figure 1. First, a general OMR model is trained in a super-

vised way using synthetic data. Then, before processing

a real collection, for which images but no annotations are

available, we apply an unsupervised adaptation approach

that modifies the pre-trained model. Then, the adapted

model is used to perform OMR on the targeted collection.

The following sections describe the operation of the

OMR model and the unsupervised adaptation approach.

OMR 

model

Training1

Test3

Prediction4

Unsupervised

adaptation
2

Unlabeled target data

Synthetic source data

Figure 1: Overview of the unsupervised synthetic-to-real

Optical Music Recognition methodology followed in this

work.

3.1 Optical Music Recognition model

Our OMR model works at the staff level, assuming that a

certain layout analysis has already detected the different

staves of the score, as in recent literature [6,7,9,23]. Then,

the goal of the model is to retrieve the sequence of music-

notation symbols that appear in a given staff.

The state of the art for the aforementioned formula-

tion is to train a Convolutional Recurrent Neural Network

(CRNN), using the so-called Connectionist Temporal Clas-

sification (CTC) [9, 23]. The convolutional part learns dis-

criminative features from images, while the recurrent block

models these features in terms of music-symbol sequences.

CTC allows training without explicit information about the

location of the symbols in the image [24], which enables

an end-to-end learning framework from just pairs of staff

images and corresponding transcripts.

Given a staff image x, the output of the CRNN is a

stochastic sequence πx = (πx1
, . . . , πxK

), πxi
∈ [0, 1]Σ,

where K is the number of frames (columns) processed

by the recurrent block and Σ represents the vocabulary of

music-notation symbols. 1 πσ
xi

represents the probability

of observing music-notation symbol σ in the i-th frame of

the input (
∑

σ∈Σ
πσ
xi

= 1). The whole sequence πx is of-

ten referred to as the posteriorgram of x.

For performing OMR, the posteriorgram is converted

into an actual sequence of music-notation symbols by fol-

lowing a greedy policy based on retrieving the most proba-

ble symbol per frame and applying some direct operations

to remove repeated symbols and “blank” tokens.

3.2 Unsupervised adaptation

The model explained in the previous section has demon-

strated its goodness in scenarios where the training data

belongs to the same collection to be processed. However,

this is not interesting in most practical cases, especially

when the model is trained with synthetic data, as it barely

generalizes to real collections. In this section, we explain

the considered approach to adapt a pre-trained model to a

(real) target collection using only its images.

Specifically, given a mini-batch b = (x1,x2, . . . ,xN )
of target staff images, we fine-tune the pre-trained model

with the following loss:

1 The number of frames is usually less than the number of columns
of the original image because the convolutional block typically includes
pooling operations.
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L = α · La(b) + β · Lr(b) (1)

The loss involves two terms, weighted by parameters α

and β (to be tuned empirically), respectively: i) one that

modifies the model’s weights to perform adaptation to a

real collection (La), and ii) a regularization term that pre-

vents meaningless convergence for OMR (Lr). These are

formally introduced in the following sections.

For this adaptation stage, we are not allowed to use the

synthetic training corpus, despite being available in our

particular case. This is because we are interested in the

case for which the original training set is not accessible.

3.2.1 Adaptation term

The first mechanism aims to reduce the discrepancy be-

tween the pre-trained model and the target collection by

aligning extracted features. Specifically, we approximate

the distribution of the pre-trained model as a Gaussian

distribution NS(µS , σ
2

S
), using the Batch Normalization

(BN) statistics stored in the corresponding layers. 2 During

training, BN normalizes layer outputs within each mini-

batch, ensuring zero-mean and unit-variance. Exponen-

tially weighted averages of these mean and variance vec-

tors, represented as µS and σ2

S
, respectively, are stored dur-

ing training so that they can be used in the prediction phase

to perform standardization.

To reduce distribution discrepancies between the pre-

trained and the target collection, we fine-tune the layers

preceding BN by forcing their extracted features to have

mean and variance vectors similar to those of the source

data. Specifically, when given batch b, we compute the

mean µb and variance σ2

b
. The target batch feature distribu-

tion is subsequently approximated as Nb(µb, σ
2

b
). We then

employ the feature-averaged Kullback-Leibler (KL) diver-

gence to align the target batch feature distribution with the

pre-trained feature distribution:

La(b) = DKL (Nb||NS) (2)

This is described in the context of a single BN layer, but

it can be applied to many of them by calculating the loss

for each and then adding them up.

3.2.2 Regularization

The previous mechanism can lead to an informational col-

lapse, where the model consistently extracts the same fea-

tures, regardless of the input image, to match the expected

distribution. This would lead to eventually predicting the

same music-notation symbol in all frames, which is useless

for OMR.

Furthermore, we want to encourage predictions that ex-

hibit music-symbol diversity. This can be induced by max-

imizing entropy within each frame’s predictions across the

batch with the following loss: 3

2 Assuming BN layers for this purpose is a soft constraint since most
of the considered CRNN architectures for OMR include these.

3 Note that the equation is negating the entropy so that the loss is per-
forming maximization during gradient descent.

−
K
∑

k=1

∑

σ∈Σ

H(πσ

bk
) =

K
∑

k=1

∑

π∈Σ′

S

|b|
∑

i=1

(

πσ

xik

log πσ

xik

)

(3)

Specifically, this term penalizes that the same frame in

different samples of the batch provides an identical proba-

bility distribution over the vocabulary Σ.

Unfortunately, minimizing Eq. 3 might lead to proba-

bilities for a specific frame to be uniformly distributed. In

other words, this encourages the model to predict that all

music-notation symbols are equiprobable in each frame.

However, these distributions should ideally resemble a

one-hot distribution, linking each image frame to a single

symbol from Σ. To mitigate this, we must further regu-

larize the model to encourage the predictions to behave as

one-hot vectors by minimizing the entropy of each frame’s

output:

|b|
∑

i=1

K
∑

k=1

H(πxik
) = −

|b|
∑

i=1

K
∑

k=1

∑

σ∈Σ

(

πσ

xik

log πσ

xik

)

(4)

Therefore, the regularization term of our unsupervised

adaptation process becomes:

Lr(b) =

|b|
∑

i=1

K
∑

k=1

H(πxik
)−

K
∑

k=1

∑

σ∈Σ

H(πσ

bk
) (5)

where predictions are encouraged to behave like the output

of an OMR process, while preventing all predictions from

providing the same symbol.

4. DATA

This section covers data handling and preparation, encom-

passing synthetic data generation to pre-train the model,

the considered real datasets for the adaptation experiments,

and the encoding of the output vocabulary of the OMR.

4.1 Synthetic data generation

We have considered a modified version of the Printed Im-

ages of Mensural Staves (PRIMENS) dataset [9]. The PRI-

MENS dataset is a synthetic corpus designed to emulate

low-quality scans of printed mensural sources. It was ob-

tained by transforming compositions by composers such

as Agricola, Frye, and Ockeghem, which are accessible

through the Josquin Research Project (JRP) 4 . The origi-

nal JRP files consist of transcriptions in Common West-

ern Modern notation encoded using **kern format. To

obtain a Mensural notation dataset, Martínez-Sevilla et al.

converted the original files to **mens format [25]. Given

the polyphonic nature of these compositions, they isolated

individual monophonic excerpts by segmenting them into

randomly chosen measures spanning from 3 to 18. The

4 https://josquin.stanford.edu/. Last accessed April 12th, 2024.
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authors also modified the original clefs accordingly to in-

crease variability and thus expand the dataset size.

The images were generated using the digital engraver

Verovio [26], with random values applied to all available

options within permitted ranges. Subsequently, these im-

ages were also distorted to mimic genuine printed image

scans by employing a random sequence of graphical filters

through GraphicsMagick Image Processing System. Fur-

thermore, this simulation of real images was further en-

hanced by blending randomly damaged old paper textures

with distorted images. Figure 2a shows a staff example of

the PRIMENS dataset.

When analyzing the music-symbol distribution of the

original PRIMENS dataset, we found that it lacked bar

lines and custodes, two common elements in Mensural cor-

pora. To standardize the vocabulary, we randomly intro-

duced bar lines with a probability of 10% per monophonic

excerpt. Custodes were added at the end of each staff, po-

sitioned at the most repeated pitch of that region to ensure

meaningful vertical staff alignment.

4.2 Real datasets

We have considered five corpora of Mensural music, both

handwritten and typeset:

• CAPITAN corpus [27]: a set of 97 manuscript pages

dated from the 17th century of liturgical music. An

example of a particular staff from this corpus is de-

picted in Figure 2b.

• Il Lauro Secco (SEILS) corpus [28]: a collection

of 151 typeset pages corresponding to an anthology

of Italian madrigals of the 16th century. Figure 2c

shows a staff example of this set.

• GUATEMALA corpus [29]: a collection of 385 hand-

written pages from a polyphonic choir book, part of

a larger collection held at the “Archivo Histórico Ar-

quidiocesano de Guatemala”. An example of a par-

ticular staff from this corpus is depicted in Figure 2d.

• MOTTECTA corpus [9]: a set of 297 printed pages

from a collection of the “Biblioteca Digital His-

pánica” dated from the 17th century. Figure 2e

shows a staff example of this set.

• MAGNIFICAT corpus [5]: a set of 127 typeset pages

corresponding to a Spanish choir book of the 16th

century. See Figure 2f for a sample of this corpus.

4.3 Output encoding

OMR primarily deals with image signals, leading OMR

systems to prioritize learning graphic concepts over mu-

sical ones. This explains why, when training end-to-end

OMR models, an internal representation referred to as “ag-

nostic” is used instead of a semantic representation where

music symbols are encoded based on their musical signif-

icance [28, 30]. This agnostic representation categorizes

elements within a collection of musical symbols according

(a) PRIMENS

(b) CAPITAN

(c) SEILS

(d) GUATEMALA

(e) MOTTECTA

(f) MAGNIFICAT

Figure 2: Staff samples of the synthetic data (a) used to

train the initial OMR model, which is then adapted to the

five Mensural corpora (b-f).

to their form, representing event duration, and their height

or vertical position on the staff, denoting pitch. In essence,

each symbol is denoted as the 2-tuple zi = ⟨fi, hi⟩ : fi ∈
ΣF , hi ∈ ΣH , where ΣF and ΣH represent the spaces

for the different form and height labels, respectively. This

approach effectively describes all symbols, including rests

that symbolize silence and can be positioned at various ver-

tical locations.

The concise structure of the agnostic representation not

only facilitates faster convergence of OMR models but

also enables non-experts to annotate music data, making

the subsequent conversion to a semantic representation au-

tomatable [31]. However, holistic OMR models do not

leverage this dual dimensionality. Instead, they treat each

combination of form and height as a single category—

|Σ| = |ΣF | × |ΣH |. Recent works [8, 23] have shown that

splitting the symbols in zi into their two components and

retrieving them sequentially—first, the form and then, the

height—leads better recognition rates. Note that the cardi-

nality of the set of symbols in this split-sequence encoding

is |Σ| = |ΣF |+|ΣH |, much lower than that of the standard

encoding, at the expense of doubling the length of the se-

quence to be predicted. Figure 3 shows a staff sample and

its encoding representations in standard and split-sequence

encoding.

In this work, we consider both the standard encoding

and the split-sequence encoding representations. When us-

ing the latter encoding, we adhere to the 2D-greedy de-

coding method proposed in [8]. This method adjusts the

standard CTC greedy decoding to ensure that the output

predictions conform to the form-height pattern of the split-
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barline:L1, clef.C:L4, note.quarter_up:S0,

note.wholeBlack:L2, note.half_up:S2

barline, L1, clef.C, L4, note.quarter_up, S0,

note.wholeBlack, L2, note.half_up, S2

Figure 3: Staff sample and its encoding representations

in standard (above) and split-sequence (below) encoding.

Note that Ln and Sn respectively denote the line or space

of the staff on which the symbol may be placed, which

refers to its height property.

sequence encoding representation.

Note that when using the split-sequence encoding rep-

resentation, we transition from a cardinality of ΣF ×ΣH to

one of ΣF +ΣH . This implies fewer different symbols and

subsequently enables a greater overlap of vocabularies be-

tween the source and target collections. This feature makes

it particularly suitable for our synthetic-to-real scenario.

Table 1 provides a summary of the characteristics of

each label space for the considered corpora. As for data

partitioning, we adhere to the same training, validation,

and test splits as outlined in the referenced works.

Table 1: Overview of the corpora used in this work: num-

ber of staves, vocabulary size for each label space con-

sidered (form and height separately for the split-sequence

encoding, and a single token combining these two pieces

of information for the standard encoding), and engraving

style.

Staves
Vocabulary

Engraving style

Form Height Combined

PRIMENS 42 136 37 34 386 Synthetic

CAPITAN 828 62 16 372 Handwritten

SEILS 1 136 37 17 205 Typeset

GUATEMALA 3 263 52 17 315 Handwritten

MOTTECTA 1 847 38 15 228 Typeset

MAGNIFICAT 1 340 42 19 220 Typeset

5. EXPERIMENTAL SET UP

This section describes the evaluation protocol and the im-

plementation details.

5.1 Evaluation metric

We consider the Symbol Error Rate (SER) for assessing

the performance of the presented recognition scheme, as in

previous works [6–9]. This metric is computed as the av-

erage number of elementary editing operations (insertions,

deletions, or substitutions) required to match the sequence

predicted by the model with that in the ground truth, nor-

malized by the length of the latter. In mathematical terms,

this is expressed as:

SER (%) =

∑|S|
i=1

ED (ẑi, zi)
∑|S|

i=1
|zi|

(6)

where S ⊂ X ×Z is a set of test data, ED : Z ×Z → N0

denotes the string edit distance [32], and ẑi and zi re-

spectively represent the estimated and target sequences.

For comparative purposes, we convert all predicted and

ground-truth sequences to split-sequence before comput-

ing the metric.

5.2 Implementation details

The CRNN scheme is based on that used typically for

OMR [7, 9, 27]. Specifically, we used four convolutional

layers that applied 64 filters of size 5× 5, 64 filters of size

5× 5, 128 filters of size 3× 3, and 128 filters of size 3× 3,

respectively. We considered a Leaky ReLU activation with

a negative slope of α = 0.2 and max-pooling stages of size

and striding factors of 2× 1 (except the first convolutional

layer, which is 2 × 2). The produced feature maps were

fed into two Bidirectional Long Short-Time Memory lay-

ers with 256 hidden units each and a dropout value of 50%,

followed by a fully-connected network with |Σ′| units that

provide a probability for each possible music-notation to-

ken.

The evaluation pipeline consisted of two stages: (i)

training the source model, and (ii) adapting it to the tar-

get dataset using the AMD method. For (i), we used the

ADAM optimizer with a batch size of 16 elements and a

fixed learning rate of 10−3. We stopped the training using

an early stopping strategy with a patience of 20 epochs,

retaining the weights that minimize the SER metric in the

validation partition. In (ii) we maintained the batch size

of 16, the learning rate was selected through a random

search ranging from 10−3 to 3× 10−4, and a maximum of

50 training-adaptation epochs was considered as we fine-

tuned an already trained model.

Regarding data pre-processing, we replicated the ex-

act experimental conditions outlined in the aforementioned

reference works. Specifically, we resized each staff image

to a height of 64 pixels, preserving the aspect ratio (in-

dividual samples may vary in width), and converted them

to grayscale without any additional pre-processing steps.

Additionally, following the approach outlined in the afore-

mentioned works, we incorporated a data augmentation

step during the training of the source models.

6. RESULTS

This section presents the results obtained from applying

the experimental scheme to the different presented corpora.

Specifically, Table 2 depicts the performance of the PRI-

MENS model before and after adaptation for each real tar-

get Mensural corpus in terms of the SER metric. 5

The most important remark is that the considered

synthetic-to-real adaptation framework improves the per-

formance of the synthetic-only scenario across all datasets.

The approach does not solve the adaptation challenge com-

pletely (the reference value is still far in most cases), but

it allows taking the model to more usable levels without

5 Code at: https://github.com/OMR-PRAIG-UA-ES/ISMIR-2024-
SYNTHETIC2REAL-OMR.
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Table 2: Results in terms of the SER (%) metric for each real Mensural corpus before and after the unsupervised adaptation

of the OMR model trained with the synthetic PRIMENS dataset. For completeness, we also include the in-collection

performance, where the real corpus is used for both training and testing. These performances are shaded in gray, serving as

an upper-bound reference. Final row reports the relative improvement (↓∆%) when adaptation is performed.

Target corpus

CAPITAN SEILS GUATEMALA MOTTECTA MAGNIFICAT

Standard Split-sequence Standard Split-sequence Standard Split-sequence Standard Split-sequence Standard Split-sequence

In-collection (reference) 6.7 6.2 1.8 1.7 1.6 1.6 3.3 2.9 1.5 1.5

Before adaptation 45.9 43.1 23.9 21.3 46.9 53.4 25.8 29.2 12.8 12.8

After adaptation 32.9 32.9 19.3 18.5 21.4 18.1 17.1 16.4 9.1 10.6

Relative improvement ↓ 28 % ↓ 23 % ↓ 19 % ↓ 14 % ↓ 54 % ↓ 66 % ↓ 34 % ↓ 44 % ↓ 29 % ↓ 17 %

the need to initially annotate data. This is quite useful, for

example, in the context of OMR plus post-correction.

The degree of relative improvement varies depending

on the specific dataset, ranging from 66% to 14%. In this

sense, it is difficult to draw a correlation between the dif-

ferent factors and the degree of improvement. However, it

is worth highlighting that the scenarios with a greater mar-

gin (for example, GUATEMALA and CAPITAN) lead to a

greater absolute improvement. This may indicate that there

is a glass ceiling to the performance that can be obtained by

training with a synthetic corpus, since in the cases where

the result is already relatively successful (e.g. MAGNIFI-

CAT) the improvement is rather limited.

Concerning the output encoding, the split-sequence

encoding generally yields better SER figures in the in-

collection scenario. However, the differences are marginal

in the other two scenarios. Therefore, this does not repre-

sent a relevant factor for adaptation.

To provide more insights into the adaptation process, we

explored the “relevant” parts of the image that the different

OMR models consider to predict the symbols. Gradient-

weighted Class Activation Mapping (Grad-CAM) [33] is

an interpretability method that uses the gradients of any

target prediction to produce a coarse localization map high-

lighting the important regions in the image for such predic-

tions. Figure 4 shows the activation map over the same test

image for the three different scenarios considered: (a) in-

collection, (b) before adaptation, and (c) after adaptation.

Specifically, we display here the case of processing the real

collection GUATEMALA. We can observe how the initially

misplaced pixel activations in scenario (b) are corrected to

the actual music symbols after adaptation in scenario (c),

showing a high degree of similarity to the activation map

of the in-collection model of scenario (a).

7. CONCLUSIONS

Existing end-to-end OMR approaches have exhibited re-

markable performance in transcribing collections that

share graphic characteristics with the training corpus.

However, when this condition is not met, allocating re-

sources to manually annotate training data to maintain

performance levels becomes impractical and resource-

intensive. Our work proposes a possible solution to this

challenge. Firstly, we train an initial OMR model with syn-

thetic scores. By doing so, we eliminate the need for hu-

(a) GUATEMALA → GUATEMALA, SER of 0%

(b) PRIMENS → GUATEMALA, SER of 77.6%

(c) PRIMENS → GUATEMALA (adapted), SER of 0.9%

Figure 4: Activation maps over the same GUATEMALA

test image using an OMR model trained with (a)

GUATEMALA scores, (b) PRIMENS scores, and (c) PRI-

MENS scores but adapted to GUATEMALA images.

man manual annotation of training data. Subsequently, we

tailor this model to the specific characteristics of the target

corpus through unsupervised adaptation, using only unla-

beled images from the target corpus. This adaptation pro-

cess employs a loss function to align the learned features of

the model with those of the target collection while ensur-

ing the model does not converge to undesirable solutions.

Our experiments across five distinct Mensural datasets val-

idate the effectiveness of our synthetic-to-real adaptation

as a viable approach to developing universal OMR systems

with little human effort. However, there remains room for

improvement. Future research avenues may explore lever-

aging self-labeled samples obtained through the adapted

model to further enhance its performance and robustness

or exploring few-shot scenarios.
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