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ABSTRACT

Recent advances in generative models that iteratively syn-

thesize audio clips sparked great success in text-to-audio

synthesis (TTA), but at the cost of slow synthesis speed

and heavy computation. Although there have been at-

tempts to accelerate the iterative procedure, high-quality

TTA systems remain inefficient due to the hundreds of it-

erations required in the inference phase and large amount

of model parameters. To address these challenges, we pro-

pose SpecMaskGIT, a light-weight, efficient yet effective

TTA model based on the masked generative modeling of

spectrograms. First, SpecMaskGIT synthesizes a realis-

tic 10 s audio clip in less than 16 iterations, an order of

magnitude less than previous iterative TTA methods. As

a discrete model, SpecMaskGIT outperforms larger VQ-

Diffusion and auto-regressive models in a TTA benchmark,

while being real-time with only 4 CPU cores or even 30×

faster with a GPU. Next, built upon a latent space of Mel-

spectrograms, SpecMaskGIT has a wider range of appli-

cations (e.g., zero-shot bandwidth extension) than similar

methods built on latent wave domains. Moreover, we in-

terpret SpecMaskGIT as a generative extension to previous

discriminative audio masked Transformers, and shed light

on its audio representation learning potential. We hope

that our work will inspire the exploration of masked audio

modeling toward further diverse scenarios.

1. INTRODUCTION

Text-to-audio synthesis (TTA) allows users to synthesize

realistic audio and sound event signals by natural language

prompts. TTA can assist the sound design and editing in

the music, movie, and game industries, accelerating cre-

ators’ workflow [1]. Therefore, TTA has earned increasing

attention in the research community.

Recent advances in deep generative models, espe-

cially iterative methods such as diffusion [2–5] and auto-
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Figure 1. Audio synthesis performance and number of syn-

thesis iterations of different methods. The size of circle rep-

resents the model size. SpecMaskGIT achieves good qual-

ity with only 16 iterations and a small model size.
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Figure 2. Real-time factor of SpecMaskGIT on different

Xeon CPU cores with standard Python implementation.

regressive models [6–8], have brought significant success

to the sound quality and controllability in TTA tasks, but

at the cost of slow synthesis speed. Since the synthesis

speed of iterative methods is dominated by the number of

iterations required at inference, techniques have been in-

troduced to reduce iterations, e.g., higher compression rate

of raw audio signals [6] or more efficient diffusion sam-

plers [4, 9]. Nevertheless, these iterative methods remain

slow in synthesis speed and demanding for computing re-

sources, as they typically require hundreds of iterations to

synthesize a short audio clip. Moreover, the runtime of a

single iteration increases due to the huge model size.

To further improve inference efficiency, Garcia et al. in-

troduced the MaskGIT [10] synthesis strategy from com-

puter vision to the audio domain and proposed VampNet

[11]. Although VampNet can inpaint a 10-second clip with

24 iterations, 6 seconds are needed on GPU [11], which is

still heavy for non-GPU environments. Moreover, Vamp-

Net is not compatible with text prompts or TTA tasks. Con-

current to our work, MAGNeT extended VampNet to text-

conditional audio synthesis [12]. However, the method is

less efficient as it requires 180 iterations, which is heav-

420



ier than some diffusion models that only require 100 it-

erations [4, 9, 13, 14]. Since both VampNet and MAG-

NeT work in a wave-domain latent space, it is difficult to

conduct frequency-domain inpainting tasks such as band-

width extension (BWE) in a zero-shot manner. Besides the

aforementioned limitations, the audio representation learn-

ing potential of a masked generative Transformer has not

been investigated yet.

As a summary, an audio synthesis method that is com-

patible with text prompts, highly efficient in synthesis

speed, and flexible for various downstream tasks is yet to

be explored. To this end, we propose SpecMaskGIT, an ef-

ficient and flexible TTA model based on the masked gen-

erative modeling of audio spectrograms. Our contributions

lie in the following aspects:

• Efficient and effective TTA. SpecMaskGIT synthesizes

a realistic 10-second audio clip in less than 16 iterations,

which is one order of magnitude smaller than previous it-

erative methods (Fig. 1. As a discrete generative model,

SpecMaskGIT outperforms larger VQ-Diffusion (Diff-

Sound [2]) and auto-regressive (AudioGen-base [6])

models in a TTA benchmark, while being real-time with

4 CPU cores (Fig. 2) or even 30× faster on a GPU.

• Flexibility in downstream tasks. SpecMaskGIT is in-

terpreted and implemented as a generative extension

to previous discriminative audio masked Transformers

[15–18]. The masked spectrogram modeling principle

and architecture design similar to Audio Masked Auto-

encoder (MAE) [16–18] is believed to have contributed

to the representation learning potential of SpecMaskGIT.

Unlike prior art about finetuning MAE-like architectures

for BWE [18,19], SpecMaskGIT enables BWE in a zero-

shot manner.

We hope this efficient, effective and flexible framework

paves the way to the exploration of masked audio mod-

eling toward further diverse scenarios [20]. 1

2. RELATED WORKS

Synthesizing audio signals in raw waveform is challeng-

ing and computationally demanding [21]. Therefore, the

mainstream approach to audio synthesis is to first generate

audio in a compressed latent space, and then restore wave-

forms from latent representations. Auto-regressive mod-

els such as Jukebox [22], AudioGen [6] and MusicGen

[23] use vector-quantized (VQ) variational auto-encoders

(VAE) [24] to tokenize raw waveforms into a discrete la-

tent space. While AudioGen and MusicGen use a higher

compression rate than Jukebox, 500 iterations are required

to synthesize a 10-second clip, slowing generation down.

Advances in audio representation learning such as Au-

dio MAE ( [16–18]) indicate that Mel-spectrogram is an ef-

fective compression of raw audio signals, as it emphasizes

acoustic features of sound events while maintaining suf-

ficient details to reconstruct raw waveforms. Inspired by

the above success of representation learning, several meth-

ods used discrete [2] or continuous [3,4,9,13,14] diffusion

1 Demo: https://zzaudio.github.io/SpecMaskGIT
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Figure 3. SpecVQGAN encodes/decodes non-overlapping

16-by-16 time-mel patches into/from discrete tokens.

models upon the latent Mel-spectrogram space created by

a VAE or SpecVQGAN [25]. These diffusion models re-

quire up to 200 iterations for high-fidelity synthesis, which

is still challenging for low-resource platforms and inter-

active use cases. While distilling a diffusion model can

effectively reduce the required iterations [26–28], we limit

our discussion to non-distilled methods for a fair compari-

son. For Mel-based synthesis methods, waveforms are re-

constructed from Mel-spectrogram with a neural vocoder,

such as HiFiGAN [29] or BigVSAN [30].

In pursuit of higher synthesis efficiency, VampNet [11]

and the concurrent MAGNeT [12] adopted the parallel

iterative synthesis strategy from MaskGIT [10]. Origi-

nally proposed for class-conditional image synthesis tasks,

MaskGIT uses a Transformer with bi-directional atten-

tion - instead of the uni-directional counterpart of auto-

regressive methods - to reduce the required number of it-

erations. Although VampNet and MAGNeT reduced the

number of iterations compared to their auto-regressive

counterparts, VampNet does not support text prompts,

while MAGNeT takes 180 iterations, which is even heav-

ier than some diffusion models that only require 100 it-

erations [4, 9, 13, 14]. Moreover, it is difficult for methods

built upon wave-domain latent spaces to address frequency

domain tasks such as BWE, limiting their applications.

3. SPECMASKGIT

The efficiency, effectiveness and flexibility of Spec-

MaskGIT is due to a combination of efforts, including

among other, the high compression rate in the tokenizer,

the small model size, and the fast synthesis algorithm.

3.1 Spectrogram Tokenizer and Vocoder

A modified SpecVQGAN [25] is trained to tokenize non-

overlapping 16-by-16 time-mel patches into discrete to-

kens, and recover the tokens back to Mel-spectrogram

as in Fig. 3. Reconstructed Mel-spectrograms are then

transformed to waveforms by a pre-trained vocoder. On

top of the 3.2× compression offered by the wave-to-mel

transform in our configuration, SpecVQGAN further of-

fers 256× compression of the spectrogram, resulting in a

total of over 800× compression of the raw waveform, ef-

fectively reducing the number of tokens to synthesize.

We utilize the standard Mel transform widely used in

vocoders [29–32] for optimal Mel computation, as hyper-

parameters of Mel transform have an impact on tokeniz-

ers’ performance [9]. To stabilize the training, we keep the

spectrogram normalization in the original SpecVQGAN,

which clips Mel bins lower than -80 dB or louder than

20 dB, and then maps the spectrogram into the [-1.0, 1.0]

range. Our modified SpecVQGAN is shown competitive

in reconstruction quality in Sec. 5.1.
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Figure 4. Self-supervised training of SpecMaskGIT. The

Transformer is trained to reconstruct SpecVQGAN token

sequences - randomly masked with varying ratios - uncon-

ditionally via a learned mask token ("M"); or conditioned

on a semantic token from the CLAP encoder ("C").

3.2 Masked Generative Modeling of Spectrograms

We train a masked generative Transformer upon the dis-

crete latent space of the pretrained SpecVQGAN as in Fig.

4. First, the pretrained CLAP encoder [33] maps the in-

put audio to a semantic embedding aligned with its corre-

sponding text descriptions. Meanwhile, the input audio is

tokenized by SpecVQGAN. Finally, similar to representa-

tion learning such as Audio MAE [16–18], a bi-directional

Transformer is trained to reconstruct Mel-spectrogram to-

ken sequences from a randomly masked input.

There are two major differences from Audio MAE.

First, the masking ratio is not a fixed value but sampled

on-the-fly from a truncated Gaussian distribution that is

centered at 55% [34] and ranges from 0% to 100% [10].

As a result, although in each training step SpecMaskGIT

behaves similarly to Audio MAE, it learns the training

data distribution from various masking ratios, hence gain-

ing the ability to iteratively refine audio tokens by grad-

ually decreasing the masking ratio across multiple itera-

tions, which is explained in Sec. 3.4. Second, while Audio

MAE works on raw Mel-spectrogram, optimizing the mask

reconstruction by mean square error; SpecMaskGIT works

in a discrete latent space, which means the reconstruction

of a masked position evolves to retrieval of the correct code

from the SpecVQGAN codebook, i.e., a multi-class single-

label classification procedure. Therefore, the loss function

becomes the cross entropy (CE) loss with label smoothing

equal to 0.1. Following Audio MAE, visible positions in

the input are not considered in the loss calculation:

Loss = CE(prediction[mask], label[mask]). (1)

3.3 Text Conditioning via Sequential Modeling

Similarly to [4], we train SpecMaskGIT without audio-text

pairs by using a pretrained CLAP model [33], for which

audio and text embeddings are aligned in a shared latent

space. Leveraging such alignment, after training with the

audio branch of CLAP (see Fig. 4), we can directly con-

dition our pretrained model with the text branch as shown

in Fig. 5. We use a publicly available CLAP checkpoint

(“630k-audioset-best.pt” [33]) for better reproducibility.

Although the above design is inspired by AudioLDM

[4], SpecMaskGIT is different in the way CLAP embed-

dings are injected. Besides the FiLM mechanism ( [35])

used in AudioLDM, prior works inject text conditions via

cross-attention [2, 3, 9, 13, 14], even for methods based

on sequential modeling such as AudioGen [6] and MAG-

NeT [12], which inevitably involves efforts to modify basic

DNN modules. We believe that reusing modules, such as

the Vision Transformer (ViT) [36], across different tasks

is beneficial for efficient development, so we choose to

achieve text-conditional audio synthesis by pure sequen-

tial modeling, i.e., prepending the CLAP embedding to

the input sequence to the Transformer. Note that the

CLAP embedding is mapped to the same dimension as

the Transformer by a linear layer in advance. As a re-

sult, SpecMaskGIT can be implemented with the same

ViT used in Audio MAE [16–18], thus we view Spec-

MaskGIT as a generative extension to previous discrimina-

tive masked spectrogram modeling methods. We hypothe-

size the masked modeling and ViT implementation similar

to Audio MAE has contributed to the representation learn-

ing potential of SpecMaskGIT, as is shown in Sec. 5.2.

While the common practice in [10, 16–18] is to use a

learnable but input-independent token to indicate which

parts in the sequence are masked (“M” in Fig. 4), the mask

reconstruction task is challenging as the input-independent

mask offers no hint for a better reconstruction. To further

guide the mask reconstruction procedure, we propose to di-

rectly use the input-dependent CLAP embedding as a con-

ditional mask (“C” in Fig. 4), which offers semantic hints

like “a dog barking sound” to the model, and is found ben-

eficial to TTA performance in Sec. 5.1.

3.4 Iterative Synthesis with Classifier-free Guidance

We follow the parallel iterative synthesis strategy pro-

posed in MaskGIT [10] in general, but additionally employ

classifier-free guidance (CFG) [37] to improve the synthe-

sis quality. This iterative algorithm allows SpecMaskGIT

to synthesize multiple high-quality tokens at each iteration,

reducing the number of iterations to a value one order of

magnitude smaller than previous TTA methods.

To enable CFG, we replace the CLAP embedding with

the learned mask token on a random 10% of training steps.

At inference phase, both the conditional (ℓc) and uncondi-

tional (ℓu) logits for each masked token are computed. The

final logits ℓg are made by a linear combination of the two

logits based on t, the guidance scale:

ℓg = ℓu + t(ℓc − ℓu). (2)

Intuitively, CFG balances between diversity and audio-text

alignment. Inspired by [38], we introduce a linear sched-

uler to the guidance scale t, which linearly increases t from

0.0 to an assigned value through the synthesis iterations.

This allows the result of early iterations to be more diverse

(unconditional) with low guidance, but increases the influ-

ence of the conditioning for late iterations, and is proved

beneficial to synthesis quality in Sec. 5.1.

The parallel iterative synthesis of SpecMaskGIT shown

in Fig. 5 is explained as follows:

1. Estimating. For each masked position, the Transformer

estimates the probability of each code in the SpecVQGAN

codebook to be the correct one, i.e., the categorical distri-

bution in the SpecVQGAN latent space.

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

422



Parallel Iterative Synthesis

TRANSFORMER
A dog barks and a bell rings

Audio

Text

CLAP
VQGAN
DEC

Top-k Sampling

M

Learned
Mask

C
Conditioning

Mask

M/C

M/C M/C M/C M/C M/C M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C M/C

M/C M/C

M/C M/C

= Frozen

Figure 5. The iterative text-to-audio synthesis in SpecMaskGIT.

Parallel Iterative Synthesis

VQGAN
ENC

Time Masking
or Inpainting

Freq. Masking or
Super-resolution

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C

M/C M/C M/C M/C M/C M/C
TRANSFORMER

Figure 6. Zero-shot time inpainting and bandwidth extension for general audio data via SpecMaskGIT.

2. Unmasking. Given the categorical distribution over the

codebook for each masked position, a code is randomly

sampled. This step is different from the deterministic un-

masking in Audio MAE.

3. Scheduling. Although SpecMaskGIT can unmask all

positions at once, the quality of the synthesized audio is

low. To iteratively refine the synthesis, we need to re-mask

the result to a masking ratio that is lower than the current

iteration. We follow the common practice in [10–12,34] to

use a cosine scheduler to decide the masking ratio at each

iteration. The cosine scheduler re-masks a larger portion

of the synthesized tokens for early iterations, which is in-

tuitive as the quality in earlier iterations is lower.

4. Top-k sampling. Given the masking ratio for the next

iteration, we know k tokens are going to be re-masked.

The log-likelihood of unmasked tokens is used to decide

the k worst tokens. Since it is observed that a deterministic

top-k retrieval leads to the synthesis of monotonous images

in [39], we follow [11, 34] and add Gumbel noise to the

log-likelihood, making the top-k sampling stochastic:

confidence = log(p) + tgumbel · ngumbel, (3)

where p is the probability of each unmasked token calcu-

lated from the CFG logits in Eq. 2, ngumbel is the Gum-

bel noise, and tgumbel is the noise temperature. Follow-

ing [34], we linearly anneal tgumbel by a coefficient defined

as iter/num_iter, with “iter” index of the current iteration

and “num_iter” the total number of scheduled iterations.

5. Repeating. Repeat all steps until the cosine scheduler

reduces the masking ratio to 0.

For TTA, SpecMaskGIT starts the above iterative proce-

dure from a fully masked sequence as in Fig. 5. Neverthe-

less, the iterative algorithm is also valid when the masking

ratio of an input sequence is lower than 100%, which au-

tomatically enables zero-shot inpainting in both time and

frequency domain as is shown in Fig. 6. It is worth notic-

ing that since VampNet [11] and MAGNeT [12] employ

a wave-domain tokenizer, frequency inpainting or band-

width extension (BWE) are difficult.

4. EXPERIMENTS

We pretrained the SpecVQGAN [25] and two vocoders

(HiFiGAN [29] & BigVSAN [32]) on AudioSet (AS) un-

balanced and balanced subset [40] for 1.5M steps. The AS

we collected contains around 1.8 million 10-second audio

segments of diverse sound sources and recording environ-

ments. AS has been widely used in general audio repre-

sentation learning [16–18]. We followed the “VGGSound”

configuration in the original SpecVQGAN repository [25]

without using LPAPS loss as suggested in the repository

itself. Our SpecVQGAN has around 75M parameters, and

a codebook of 1024 codes, each of which is represented by

a 256-dim embedding. As mentioned in Sec. 3.1, the stan-

dard Mel-spectrogram transform from vocoders [29, 30] is

utilized, which transforms a 10-second audio clip at sam-

pling rate 22.05kHz into 848 frames with 80 Mel bins. The

Mel-spectrogram is further tokenized into 265 tokens.

SpecMaskGIT employs the ViT implementation widely

used in previous audio masked Transformers [15, 16, 18,

41]. To be consistent with the image MaskGIT [10], 24

Transformer blocks are used, in which the attention dimen-

sion is 768 with 8 heads and the feedforward dimension is

3072, resulting in around 170M parameters. We trained

SpecMaskGIT on AS for 500k steps with a batch size of

112. When training the model on AudioCaps (AC) [42],

we train for 250k steps with a batch size of 48, as AC

only contains 50k 10-second audio clips. To stably train

SpecMaskGIT, we follow the common practice in [16–18]

to employ a linear warmup and then a cosine annealing

of the learning rate (LR). We warmup 16k steps for AS

and 5k steps for AC. The base LR is set to 1e-3, and the

LR equates to the base LR times the batch size divided by

256 [17, 34]. The iterative synthesis algorithm is based on

the open-source implementation of [34].

To evaluate the TTA synthesis quality of Spec-

MaskGIT, we benchmark on the AudioCaps (AC) test set

with the text prompts released by [4] for fair comparison.

To investigate the flexibility of SpecMaskGIT in down-

stream tasks, we use the checkpoint trained on AS for 500k

steps in the following tasks: Zero-shot time inpainting.

We manually mask out the 25th to 35th Mel-spec frames

(around 1.9s) of AC test set, and employ SpecMaskGIT

to inpaint the lost regions in a zero-shot manner, i.e., no

task-specific finetuning. Zero-shot audio bandwidth ex-

tension. The top 16 Mel-spec bins (i.e., components be-

yond 4.3kHz) of AC test set are masked, which creates
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Table 1. Comparing SpecMaskGIT with other discrete

TTA methods on AudioCaps test set.

Method Params Text Num_iter FAD

Diffsound [2] 400M Yes 100 7.8

MAGNeT-small [12] 300M Yes 180 3.2

AudioGen-base [6] 285M Yes 500 3.1

AudioGen-large [6] 1.5B Yes 500 1.8

SpecMaskGIT (ours)

170M No 16

2.7

- w HiFiGAN 2.8

- w/o conditional mask 3.2

- w/o CFG 3.1

- w/o CFG linear scheduler 3.1

a 2.5× BWE task. For all tasks above, we compute the

Fréchet Audio Distance (FAD) using [43] since FAD is

widely adopted to evaluate TTA [4, 9, 13, 14], time in-

painting [4] and BWE [44] tasks. To investigate the rep-

resentation learning potential of SpecMaskGIT, we further

linear probe the model for the multi-label (genre, instru-

ment and mood) music tagging task in MagnaTagATune

(MTAT) [45] - a dataset widely used to evaluate music tag-

ging models [46–49] - with ROC-AUC and mAP as met-

rics [46]. We use a single linear layer with batch normal-

ization and 0.1 dropout as the probe.

5. RESULTS

5.1 Text-to-audio Synthesis

We report FAD scores of SpecMaskGIT in Tab. 1 to-

gether with other discrete models. Our model is first

trained on AS for 500k steps and then finetuned on AC

train set for 250k steps. The CFG scale is set to 3.0

empirically. SpecMaskGIT outperforms Diffsound (VQ-

Diffusion), MAGNeT-small (similar to SpecMaskGIT but

in latent wave domain), as well as AudioGen-base (auto-

regressive) in terms of FAD with one order of magnitude

fewer iterations. The FAD score is achieved training with-

out any audio-text pairs, which proves the effectiveness of

such self-supervised approach for discrete models. We also

find the proposed conditional mask described in Sec. 3.3 to

improve FAD score without additional parameters or com-

putations. Both CFG and its linear scheduler contribute to

improve the FAD.

Given the small number of iterations and model size,

SpecMaskGIT can synthesize realistic 10-second audio

clips in real-time with only 4 cores of a Xeon CPU (Fig. 2),

or 30× faster than real-time on an RTX-A6000 GPU,

making it attractive for interactive applications and low-

resource environments.

When compared to state-of-the-art (SOTA) continu-

ous diffusion models in Tab. 2, SpecMaskGIT could not

achieve a comparable FAD score, but we emphasize that

the proposed method offers good performance with high

efficiency, i.e., smaller model size and fewer iterations,

which can be clearly seen in Fig. 1. Overall, continuous

methods are advantageous in terms of FAD with respect to

discrete methods. We leave the further improvement of our

discrete generative model as future work.

Ablation study: Gumbel noise and iterations number.

We use HiFiGAN in all ablation studies. As mentioned

in Sec. 3.4, Gumbel noise is essential to the top-k sam-

Table 2. Benchmarking on AudioCaps test set. Dis.: dis-

crete methods. Con.: continuous methods.
Method Params Dis. Con. Num_iter FAD

Diffsound [2] 400M ! 100 7.8

Make-an-Audio [3] 330M ! 100 4.6

MAGNeT-small [12] 300M ! 180 3.2

AudioGen-base [6] 285M ! 500 3.1

AudioLDM-Medium-full-FT [4] 420M ! 100 2.6

AudioLDM-Large-full-FT [4] 740M ! 200 2.0

Make-an-Audio 2 [9] 940M ! 100 1.8

AudioGen-large [6] 1.5B ! 500 1.8

AudioLDM2-Small-AC [14] 350M ! 200 1.7

TANGO-AC [13] 870M ! 100 1.6

AudioLDM2-Large-AC [14] 710M ! 200 1.4

SpecMaskGIT (ours) 170M ! 16 2.7

pling during iterative synthesis. Fig. 7 shows that a tem-

perature of 1.5 is optimal. SpecMaskGIT achieves good

quality (FAD = 3.4) with only 8 iterations, and reaches its

best (FAD = 2.8) with 16. More iterations do not improve

performance, which is consistent with MaskGIT [10].
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Figure 7. Left: FAD vs. Gumbel temperature. Right: FAD

vs. Number of iterations.

Ablation study: Audio reconstruction quality. We

evaluate the reconstruction FAD (rFAD) scores of two

vocoders and SpecVQGAN in Tab. 3 with previous meth-

ods reported in [9]. Even with a similar architecture,

rFAD of DiffSound and SpecMaskGIT can vary a lot due

to different Mel computation and vocoder. Our pipeline

achieves SOTA level rFAD scores for Mel-spectrogram

methods while maintaining the highest compression rate

(i.e., the lowest latent rate) which helped SpecMaskGIT

to outperform methods such as Diffsound and Make-an-

audio by a large margin, yet with higher efficiency. We fur-

ther analyze the rFAD of vocoders using ground truth input

Mel-spectrograms, and find a significant performance gap

between HiFiGAN and BigVSAN, which is not observed

when vocoders are combined with SpecVQGAN. This in-

dicates that SpecVQGAN is the bottleneck for reconstruc-

tion quality and asks for future improvements.

Ablation study: Bias in AudioCaps benchmark. The

dataset gap between AC and other larger, more diverse

datasets is investigated. It is observed in [4] that finetun-

ing (FT) a TTA model on AC improves the TTA perfor-

Table 3. rFAD of Mel-spectrogram VAEs and Vocoders on

AudioCaps test set. Bold: best overall rFAD.

Method Mel-spec VAE Vocoder Latent rate rFAD

Diffsound [2] SpecVQGAN MelGAN 27Hz 6.2

Make-an-audio [3] VAE-GAN HiFiGAN 78Hz 6.0

AudioLDM [4] VAE-GAN HiFiGAN 410Hz 1.2

Make-an-audio 2 [9] VAE-GAN BigVGAN 31Hz 1.0

SpecMaskGIT (ours)

-
HiFiGAN 27Hz

0.4

SpecVQGAN 1.1

-
BigVSAN 27Hz

0.1

SpecVQGAN 1.0
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Table 4. Music tagging performance on MTAT.

Method CLMR [47] MusiCNN [48] MERT-330M [46] MULE-contrastive [49] Jukebox [22, 50] SpecMaskGIT

mAP (%) 36.1 38.3 40.2 40.4 41.4 40.5

ROC-AUC (%) 89.4 90.6 91.3 91.4 91.5 91.5

Table 5. AC test set performance w/ or w/out AC finetune.

Method Params Num_iter
FAD

before FT after FT

AudioLDM-Small-full [4] 180M 200 4.9 2.3

AudioLDM-Large-full [4] 740M 200 4.2 2.0

SpecMaskGIT (ours) 170M 16 4.2 2.8

Table 6. Small-scale AudioCaps training results in better

scores than large-scale dataset.

Method Params Num_iter
FAD

Other datasets AudioCaps

AudioLDM-Small [4] 180M 200 4.9 2.4

AudioLDM-Large [4] 740M 200 4.2 2.1

AudioLDM2-Small [14] 350M 200 2.1 1.7

AudioLDM2-Large [14] 710M 200 1.9 1.4

SpecMaskGIT (ours) 170M 16 4.2 2.9

mance in terms of FAD, though the model is pretrained

on a larger dataset. We reproduced this phenomenon with

SpecMaskGIT as shown in Tab. 5. We also observed that

training on the small-scale AC alone brought better FAD

score than the model trained with larger datasets in Tab. 6,

which is consistent with [13, 14].

We hypothesize that there is a data distribution gap be-

tween AC and other datasets, such that when a model fully

fits other datasets, the distribution of its synthesis deviates

from AC, resulting in worse FAD. Therefore, we continued

to train SpecMaskGIT on AS until 800k steps, and depict

the “FAD vs. training step” curves on both the valid and

test set of AC to verify our hypothesis. It is clear in Fig. 8

that SpecMaskGIT learns to synthesize audio in the early

stage and keeps improving the FAD on AC. As the training

goes on, SpecMaskGIT just fits toward AS, which worsens

the FAD on AC.

100 200 300 400 500 600 700 800
2

3

4

5

6

7

8
Val
Test

Steps (k)

FA
D

Learn to
Generate

Learn to fit to AudioSet
and deviate from AudioCaps

Figure 8. FAD vs. AudioSet training steps.

Inspired by audio classification tasks in which early stop

is applied to prevent the model from overfitting to the train

set, we propose to apply early stop to the SpecMaskGIT

model trained solely on AS, and report the competitive

FAD score with other methods that are without AC fine-

tuning or AC-alone training in Tab. 7. We believe that

a more comprehensive and less biased benchmark would

contribute to future advances in TTA research.

5.2 Downstream Inpainting, BWE and Tagging Tasks

Results of the time inpainting and audio BWE tasks are

shown in Tab. 8. We utilize the pipeline in Fig. 6 un-

conditionally, with Gumbel temperature 1.5 and 16 iter-

ations. SpecMaskGIT significantly improves the input sig-

nals in terms of FAD, validating its zero-shot ability in

Table 7. Benchmarking on AudioCaps test set without AC

finetuning or AC-alone training.
Method Params Dis. Con. Num_iter FAD

Diffsound [2] 400M ! 100 7.8

AudioLDM-Small-full [4] 180M ! 200 4.9

Make-an-Audio [3] 330M ! 100 4.6

AudioLDM-Large-full [4] 740M ! 200 4.2

MAGNeT-small [12] 300M ! 180 3.2

AudioGen-base [6] 285M ! 500 3.1

AudioLDM2-Small-full [14] 350M ! 200 2.1

AudioLDM2-Large-full [14] 710M ! 200 1.9

Make-an-Audio 2 [9] 940M ! 100 1.8

AudioGen-large [6] 1.5B ! 500 1.8

SpecMaskGIT-AS-EarlyStop (ours) 170M ! 16 2.9

Table 8. Zero-shot time inpainting and BWE FAD scores.

BWE Time inpaint

Unprocessed 2.7 1.6

SpecMaskGIT (ours) 1.5 1.2

- w/ LFR 0.4 -

Ground truth 0.0 0.0

such tasks. BWE performance can be further improved

by applying low-frequency replacement (LFR) [51, 52].

Unlike prior arts that finetune MAE-like architectures for

BWE [18, 19], SpecMaskGIT achieves it zero-shot. In

Tab. 4, the potential of SpecMaskGIT in representation

learning is confirmed by the music tagging performance

on the MTAT dataset. As a TTA model, SpecMaskGIT out-

performs classification-specialized models such as CLMR,

MusiCNN, MULE, and MERT (the MAE-like model in

wave domain). SpecMaskGIT achieves an ROC-AUC

comparable to Jukebox, which contains 5B parameters.

We hypothesize the tagging capability comes from the

masked spectrogram modeling and ViT implementation

similar to Audio MAE, as explained in Sec. 3. We leave

the in-depth investigation of SpecMaskGIT in downstream

tasks as future work.

6. CONCLUSION

Generative models that iteratively synthesize audio clips

sparked great success to text-to-audio synthesis (TTA).

However, due to the hundreds of iterations required for in-

ference and the large amount of model parameters, high-

quality TTA systems remain inefficient. To address the

challenges, we propose SpecMaskGIT, a light-weight, effi-

cient yet effective TTA model based on masked generative

modeling of spectrograms. SpecMaskGIT synthesizes re-

alistic audio clips in less than 16 iterations, an order of

magnitude less than previous iterative TTA methods. It

also outperforms larger discrete models in a TTA bench-

mark, while being real-time with 4 CPU cores and 30×

faster with a GPU. Compared to similar methods, Spec-

MaskGIT is more flexible for downstream tasks such as

zero-shot bandwidth extension. Moreover, we interpret

SpecMaskGIT as a generative extension to Audio MAE

and shed light on its audio representation learning poten-

tial. We hope our work inspires the exploration of masked

audio modeling toward further diverse scenarios.
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7. ETHICAL STATEMENT

SpecMaskGIT is supposed to assist creators in the sound

design and editing workflow. Our method presents a huge

advancement in the efficiency of TTA technology, which

makes TTA accessible to a broader range of users, includ-

ing creators who do not have GPUs. Despite of the tech-

nical advances, there is concern for the potential reflec-

tion of training data biases. The model may not be able to

maintain a consistent sound quality or audio-text alignment

when prompted by text descriptions or audio clips that are

rarely presented in the training data. We also pointed out

that the benchmark widely used to evalute TTA models

in the research community is biased, and hope our find-

ings here can contribute to a less biased benchmark in the

future. The challenge in dataset bias emphasizes the im-

portance for in-depth consideration and collaboration with

stakeholders across various communities.
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