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ABSTRACT

Cue points indicate possible temporal boundaries in a tran-

sition between two pieces of music in DJ mixing and con-

stitute a crucial element in autonomous DJ systems as well

as for live mixing. In this work, we present a novel method

for automatic cue point estimation, interpreted as a com-

puter vision object detection task. Our proposed system is

based on a pre-trained object detection transformer which

we fine-tune on our novel cue point dataset. Our pro-

vided dataset contains 21k manually annotated cue points

from human experts as well as metronome information

for nearly 5k individual tracks, making this dataset 35x

larger than the previously available cue point dataset. Un-

like previous methods, our approach does not require low-

level musical information analysis, while demonstrating

increased precision in retrieving cue point positions. More-

over, our proposed method demonstrates high adherence to

phrasing, a type of high-level music structure commonly

emphasized in electronic dance music. The code, model

checkpoints, and dataset are made publicly available. 1

1. INTRODUCTION

The skills required by a “Disc Jockey” (DJ) are diverse.

To record and play live DJ mixes, DJs need to prepare

and know their tracks well. An integral part of the track

preparation phase is the placement of cue points. Coined

by scratch DJs who placed stickers on vinyl records to in-

dicate important sections, the functionality of cue points

remains unchanged in the digital setting. A cue point may

serve as an annotation for musical highlights, suitable mix-

ing boundaries, or the general track structure which con-

sists of musical phrases. Furthermore, digital cue points

allow DJs to quickly loop a track segment or skip back-

and forward during a live performance, altering the track

structure on the spot. Unfortunately, placing cue points

and track preparation is often a cumbersome and time- con-

suming process. Similarly to other music information re-

trieval (MIR) tasks, such as onset detection or beat track-

ing, cue point placement is not straightforward, despite

1 https://github.com/ETH-DISCO/cue-detr
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the prominent structural regularity in electronic dance mu-

sic (EDM) [1]. For instance, the presence of a prelude

shifts the track structure, creating irregularity, and simi-

larly, tracks with arbitrary number of additional bars or

tempo variations create a significant challenge which needs

to be addressed. We therefore ask the question whether cue

point estimation can be automated with a learned approach,

imitating human cue point placements by training a model

on a manually annotated dataset.

This work addresses the placement of cue points, one

of the first tasks during the preparation phase of a DJ

mix. With this goal in mind we present CUE-DETR, a

fine-tuned DETR image object detection model trained for

cue point estimation on EDM tracks. We show CUE-

DETR outperforms previous approaches without requiring

detailed and meticulously curated rule sets, which leverage

underlying low-level audio information.

Our contributions can be summarized as follows:

• We propose CUE-DETR, an object detection model

capable of predicting cue points in EDM tracks.

Compared to previous methods, our model achieves

higher precision and shows significantly closer

alignment with manually placed cue points.

• We make our EDM-CUE dataset publicly available,

which is 35x larger than the previously available cue

point dataset [2]. EDM-CUE contains the metadata

for 4,710 EDM tracks, which includes tempo, beat,

downbeat, and 21k manually placed cue point anno-

tations provided by human experts.

• To increase evaluation objectivity, we introduce ad-

ditional phrase aligned points to evaluate prediction

accuracy. Moreover, we open-source the code and

model checkpoints to further the research of DJ-

related MIR tasks.

2. RELATED WORK

Recent years have seen emerging interests in building au-

tomated DJ systems where most approaches try to recreate

a fully automated DJ pipeline [3–9]. Such systems aim

to create seamless transitions between two tracks, each fo-

cusing on a different subset of challenges in the DJ’s task

pipeline. Cue points are predominantly addressed in the

context of finding suitable mix positions in automatic mix-

ing systems [3,6,7,10]. Music structure analysis forms the

basis for most cue detection algorithms, as DJ mixes tend

to adhere to the underlying high-level track structures [11].
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High-novelty regions found through self-similarity [12],

for instance, allow the determination of suitable mix sec-

tions based on the high-level music structure [6, 13, 14].

Furthering the structural knowledge of a track, crowd-

sourced scrubbing data from streaming services uncovers

additional structural context, as listeners tend to skip for-

ward to the most prominent section of a track [10]. Apply-

ing learning-based concepts for the direct search of musi-

cal highlights [7] reveals useful information about the mu-

sical structure in a similar manner.

Generally, the accuracy of algorithmically chosen cue

points varies depending on the granularity and complete-

ness of the rule set implemented in conjunction with the

structural analysis [13]. Adding further rules into the set,

for instance, introduces a trade-off between the number

of correctly estimated cue point positions and the correct-

ness of each estimated cue point [14]. The main focal

point of the open-source DJ system Automix [14] is a rule-

based cue point estimation algorithm, including a valida-

tion dataset containing 145 tracks [2]. Automix imple-

ments four empirically chosen rules describing possible lo-

cations of “switch points,” a subset of cue points, on top

of structural analysis. Furthermore, the implementation of

Automix depends on underlying MIR tasks, such as beat

tracking.

DJ mix reverse-engineering [15, 16] is a related task to

cue point estimation, as it addresses the lack of available

and ready-to-use datasets [17]. Such “unmixing” meth-

ods extract latent mixing information from recorded DJ

mixes, whose retrieval typically relies on manual annota-

tions, such as mix-in and mix-out points or volume gain

curves. The use of pure DJ mix reverse-engineering for

cue point estimation is limited as no novel cue points can

be retrieved from existing DJ mixes.

In the context of lower-level MIR tasks, convolutional

neural networks (CNNs) have been studied, for example,

in onset detection [18] or beat tracking [19]. Furthermore,

CNNs have proven helpful in musical structural analysis

and boundary estimation [20]. Using an attention mech-

anism in conjunction with a CNN can help alleviating the

challenges posed by the sequential nature of music. Never-

theless, adding an attention mechanism does not solve the

main concern posed by the large amounts of data required

for training. Another possible solution is to instead use

a large pre-trained model and to then fine-tune the model

on task-specific datasets. The Audio Spectrogram Trans-

former [21], for instance, demonstrates the possibility to

transfer a pre-trained ViT model [22] from the image do-

main to the audio domain. Transformer architectures are

often designed to apply the attention mechanism together

with a pre-trained CNN backbone, leveraging the feature

space previously learned by the CNN [23, 24].

3. METHODOLOGY

3.1 Dataset

We created EDM-CUE, a dataset containing music meta-

data from four private collections of professional DJs.

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208

cue position [bars]
0

100

101

102

103

co
un

t

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

inter-cue distance [bars]
0

100

101

102

103

104

co
un

t

Figure 1. Top: Distribution of cue point positions in EDM-

CUE. Bottom: Distribution of distances between two sub-

sequent cue points in EDM-CUE. The inter-cue distances

indicate that 16 bars is the most represented phrasing

length in our dataset.

Each of the four DJs uses the library management tool

rekordbox 2 from which we collect the track name, artist

name, tempo, beat grid, and cue points for each contained

track. Cue points are given by their absolute position in

seconds. The beat grid represents a visual metronome,

which can be calculated from its stored values: the tempo

and grid offset return the beat positions. Applying the

time signature in combination with the initial beat num-

ber reveals the downbeat. Since we aggregate tracks from

four individual collections, all duplicate tracks need to be

merged. We summarize the tempo and grid offset to their

respective mean values for all duplicate track entries. In or-

der to merge duplicate cue points, we group all cue points

based on their distance to neighboring points. Cue points

within a distance of a quarter beat of one another form

a group. The merged cue point value corresponds to the

group center position. All dataset tracks are based on a 4/4

time signature and show constant tempo over time, out-

lier tracks were excluded during collection. We then pair

the information of each track with the track ID found on

Deezer 3 to provide an additional reference.

Our dataset contains 4,710 EDM tracks consisting of

around 380 hours of music. The tempo-range lies between

95 and 190 bpm, and track duration ranges from 1 minute

37 seconds to 10 minutes with an average of 4 minutes and

50 seconds. In total, the dataset contains 21,461 cue point

annotations with an average count of 4.6 cue points per

track. All tracks used to train the model are compressed to

128 kbps MP3 at 44.1 kHz.

3.2 Phrasing

Although cue points frequently align with high-level struc-

tural boundaries and tend to strongly coincide with phrase

boundaries [11], the placement of cue points is a subjective

task with no clear definition; therefore, annotations col-

lected from DJs may not contain all plausible cue points.

We first examine the distribution of our training data for

2 https://rekordbox.com
3 https://www.deezer.com
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Figure 2. Calculation of phrase boundaries bi using cue

points ci. Phrase boundaries, highlighted in blue, serve as

additional points to evaluate prediction accuracy. Exam-

ple a) represents a track with regular phrasing whereas b)

shows a track with an irregular phrase between cue points

c0 and c1. The computed phrase boundaries bi include the

cue points.

cue point positions quantized to bars. Our training cue

points exhibit a periodicity with high occurrences of cue

points on multiples of 8 and 16 bars, as illustrated in Fig-

ure 1. When also taking the inter-cue spacing between

neighboring cue points into account, we observe that a ma-

jority of our training tracks adhere to phrase lengths of 16

bars, followed by 8 bars. Due to the strong regularity, we

will refer to sections with phrase lengths other than 8 or 16

bars as “irregular.” Furthermore, analyzing the cue points

in EDM-CUE we find DJs often place cue points at the

start of such irregular sections.

Since regular and clearly defined phrasing is common in

EDM [1], we generalize our collected ground-truth data by

estimating phrase boundaries B. Phrase boundaries serve

as an approximation of the track structure which we use

to further validate model accuracy. Using track duration

t, phrase length l, and an ordered, ground-truth cue point

set C, we find B. The non-empty set C must include cue

points ci which mark the start point of irregular phrase

boundaries. Traversing the section preceding the first cue

point c0 = b0 in increments of l yields the first entries of B.

When the iteration reaches a negative value, the remaining

track section from c0 is traversed in the opposite direction

until bi ≥ t. A new boundary bi is added to B if the itera-

tion step did not skip or reach any ci. Otherwise, the next

cue ci is added to B as bi. The two simplified examples in

Figure 2 show resulting boundaries.

3.3 Model

Our proposed cue estimation system is based on

DETR [23], a pre-trained object detection transformer. For

each track in the dataset, we generate Mel spectrograms

using 128 Mel bands at a sampling rate of 22,050 Hz.

Our window length measures 2,048 samples, and the hop

length is 512 samples.

The input of the model consists of 128×355 pixel spec-

trogram segments to fit the expected input image format

for DETR while also maximizing the duration of the de-

picted audio to approximately 11 seconds per image. In

the following, we refer to a complete track spectrogram as

S. The training spectrogram segments ST and inference

spectrogram segments SI denote the input images of the

model. The model returns positional encodings for the pre-

dicted bounding boxes alongside the accompanying confi-

dence scores and class labels represented by logits. The

data pipeline is illustrated in Figure 3.

3.4 Preprocessing

We differentiate between preprocessing for training and

inference, as the model is required to process complete

spectrograms during inference, whereas for training, the

model only requires image segments depicting cue points.

A training image segment ST is cut from S around a

cue point p found in S. Using a random integer offset

o ∈ [0, 355), image ST is defined as the segment with left

side p − o and right side p − o + 355. If image ST partly

lies outside of spectrogram S, the additional space in ST

is zero-padded. The inclusion of image offset o acts as a

simple data augmentation strategy. For the training anno-

tations, each cue point in an image ST is encapsulated by a

bounding box. The aforementioned box occupies the entire

height of ST and is centered around the cue point. In the

event that the box extends beyond the image, it is cropped

to align with the image borders. Due to this cropping strat-

egy, all training tracks are split into training and validation

sets and are indexed by their respective cue annotations.

To make predictions over the span of a full track, during

inference, the complete spectrogram needs to be shown to

the model. We employ a sliding window cropping strategy

on spectrogram S with an overlap of 0.75 in order to gen-

erate inference image segments SI . Similarly to training,

the left side of spectrogram S is zero-padded with an arbi-

trary offset o ∈ [89, 266] prior to cropping. Applying the

zero-padding approaches the uniform distribution of cue

point positions seen in the training data, thus increasing

the chance to detect cue points at the very start of a spec-

trogram. As the final step, the resulting image sequence is

normalized.

3.5 Postprocessing

We implement additional postprocessing for inference

only since additional processing of the basic DETR out-

put is not necessary during training. The model outputs

contain the logits and positional encodings mapping to the

predicted bounding box coordinates over images SI . Ap-

plying a softmax function to the logits yields the class la-

bels and confidence scores for each prediction, cue points

are retrieved from the respective positional encodings. The

positional box representation is converted to pixel coordi-

nates in corner format to find the center point on the x-

axis. The resulting point is mapped back to the absolute

coordinates of track spectrogram S using the left edge of

image segment SI . Once all conversion results for spec-

trogram S have been accumulated, the confidence scores

are sorted by their associated position, resulting in peaks

where the confidence is highest. We implement a peak se-

lection strategy using radius r; final cue point candidates

are selected in descending order based on their predicted

confidence score. Candidates within radius r of a previ-

ously selected candidate are ignored. We use a confidence
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Figure 3. Pipeline of the proposed CUE-DETR architecture. During training, an input Mel spectrogram S is segmented into

training images ST . Each ST consists of a spectrogram segment containing a cue point which is represented as a bounding

box. Inference images SI move across S using a sliding window. The predicted bounding boxes are converted to their

center x-coordinate. The highest scoring positions are selected greedily among all candidates with minimum confidence

t = 0.9. A selected position excludes all other candidates within a radius r. The bottom spectrogram shows the predicted

positions as peaks based on the confidence value.

score threshold of 0.9 as the lower bound for selected can-

didates. Figure 4 shows three example spectrograms with

sorted confidence scores. The highest peaks in the curve

representation of confidence scores coincide with ground-

truth cue points or phrase boundaries, however with no-

ticeable additional high scoring positions. The additional

high peaks are predominantly present at 4 bar intervals. As

discussed in Section 3.2, we found ground-truth cue points

align best with 16-bar phrases. We found that enforcing a

minimum spacing r of 16 or 8 bars between consecutively

predicted cue points improves the outcome of the final pre-

dictions with respect to precision.

4. EVALUATION

The final evaluation is conducted on 101 tracks which were

excluded from the training and validation split. This test

set contains 607 ground-truth cue point annotations.

4.1 Experiment Setup

We initialize CUE-DETR with pre-trained weights from

DETR. 4 The backbone is initialized with the ResNet-50

weights, and we set the backbone learning rate to 10−6.

For the transformer, we choose a learning rate of 10−5,

and set the weight decay to 10−4. The bounding box width

w is set to 21 pixels and the postprocessing radius r is fixed

at 16 and 8 bars, referenced as r16 and r8, respectively. We

train the model using AdamW [25] and schedule a learning

rate reduction by factor 10 when the validation loss does

not improve for 10 epochs. The final model is trained for

50 epochs on one NVIDIA TITAN Xp GPU with a batch

size of 192.

While we experimented with training CUE-DETR us-

ing randomly initialized transformer weights, we found

using pre-trained weights provided significantly better re-

sults. Even though the pre-trained transformer weights

were trained on COCO 2017 [23,26], a distinctly different

4 https://huggingface.co/facebook/

detr-resnet-50

data distribution compared to Mel spectrograms, we cor-

roborate previous findings of visual feature space transfer

learning [21, 27].

We compare our model with two other methods, namely

“Mixed In Key 10” (MIK), a commercial DJ software, 5

and Automix [14], an open-source research project. We

analyze all tracks directly without manual interference in

MIK, as the program simultaneously estimates the beat

grid to which it snaps generated cue points. From Au-

tomix, we used the cue point generation method directly.

4.2 Evaluation Metrics

We investigate the predicted cue points with respect to the

manually annotated cue points and phrase alignment sepa-

rately. In the following, we address the manually annotated

cue point ground-truth set by cues-only and use the phrase

length, measured in bars, to reference phrase alignment.

Similarly to Automix, we assess the predictions using a

tolerance window around the ground-truth cue points to es-

timate the hit rate of the predictions. We evaluate the mod-

els on two different tolerance windows T1 and T1/2 which

measure one beat and one half-beat, respectively. On aver-

age, one half-beat in our test data measures approximately

172 milliseconds, which is comparable to the standard 150

milliseconds tolerance in beat tracking [28]. The values for

precision, recall, the F1-score and Average Precision (AP)

scores are retrieved from the hit rate. Lastly, we measure

the cosine similarity between the sets of the predicted and

actual cue point positions.

4.3 Ablations

As cue points have no clearly defined object boundaries,

we further investigate the influence of the spectrogram

context around a cue point included in a bounding box.

We report the impact of the bounding box width w for the

quality of predictions in Table 1 using AP. We report AP

for cues-only as APC and report AP for phrase alignment

5 https://mixedinkey.com
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Figure 4. Predicted and ground-truth cue point positions shown over three Mel spectrograms of different random tracks

from the evaluation split of EDM-CUE. The confidence score for each position is illustrated as the white curve. Magenta

lines indicate correct model predictions, red lines indicate wrong model predictions. For reference, solid orange lines

represent ground-truth positions and dashed orange lines illustrate 16-bar phrase boundaries.

Table 1. Ablation of the bounding box width w used dur-

ing training of CUE-DETR. The Average Precision (AP)

scores are reported as APC for cues-only ground-truth,

AP16 and AP8 indicate phrase alignment. The best results

per scenario are bold and larger values are better.

T1 (one beat) T1/2 (half beat)

w APC AP16 AP8 APC AP16 AP8

r16

7 0.41 0.51 0.52 0.34 0.37 0.37

15 0.41 0.57 0.60 0.36 0.42 0.42

21 0.41 0.57 0.60 0.38 0.47 0.48

r8

7 0.32 0.42 0.45 0.23 0.26 0.27

15 0.32 0.49 0.53 0.25 0.33 0.34

21 0.32 0.50 0.54 0.28 0.38 0.41

as AP16 and AP8. We trained three models with identi-

cal initialization parameters except for w which we set to

w7 = 7, w15 = 15, and w21 = 21 pixels, respectively.

Looking at the results for T1, the box width shows no

impact on APC . The larger peak radius r16 increases APC

for all models. Furthermore, AP increases from APC to

AP16 for all models, most notably by 0.18 from 0.32 to

0.5 for w21 with r8. From AP16 to AP8 we report an addi-

tional increase in AP. Using a larger w improves AP for the

phrase alignment cases. The overall best AP score mea-

sures 0.6 for w15 and w21 with radius r16. This radius

produces identical results for w15 and w21. The results for

T1/2 exhibit similar patterns, with the exception of w21 re-

porting improved AP over w15 on all accounts. Overall,

the model with w7 performs the least favorable, followed

by w15, which in turn is outperformed by w21.

4.4 Results

The evaluation of the mean precision, recall, and the F1-

score is summarized in Table 2. For all methods, the preci-

sion increases from the cues-only to the 16-bars and 8-bars

ground-truth sets. Our r16-model achieves the highest pre-

cision in all cases. The precision increases most notably

for tolerance T1 from the cues-only to phrase alignment
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Figure 5. Distribution of ground-truth cue point positions

in blue and predicted cue point positions in orange quan-

tized to bars. The cosine similarity between the predicted

cue point positions and ground-truth is 0.425 (Automix),

0.371 (MIK), and 0.851 (CUE-DETR).

ground-truth sets. More precisely, our r8-model shows

an increase in precision by 0.31 from cues-only to 8-bar

phrasing. The change from 16 to 8-bars is not as preva-

lent. Automix shows an improvement in precision from

0.14 to 0.24 and 0.3 over the three ground-truth sets. MIK

shows little improvement over the different scenarios and

produces more stable precision values. Using the tighter

tolerance T1/2, all precision values fall in proportion to

each other. For recall, the difference of values between the

two tolerances is similar to what is observed for precision.

With the added phrasing boundaries, all methods show a

reduction in recall, opposite to precision. The most sig-

nificant drop in recall is observed from 16 to 8-bars. Our

r8-model reports the highest recall on all accounts. The

changes in the F1-score are less pronounced for all meth-

ods as the values remain nearly stable for cues-only and

16-bar phrase alignment. The best reported F1-score is as-

sociated with our r8-model over 16-bar phrasing at 0.46.

For further insight, we look at the distribution of the

predicted results in Figure 5. Automix favors cue posi-

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

409



Table 2. Comparison of precision, recall, and the F1-score of Automix, Mixed In Key (MIK), and our method. Higher

values correspond to better results. The upper rows show the evaluation using tolerance T1 and the lower rows using T1/2.

From left to right, the results are given for the manually placed cue point only, the computed 16-bar phrasing and the

computed 8-bar phrasing. We observe that CUE-DETR outperforms previous methods on precision, recall, and F1-score.

cues-only 16-bars 8-bars

Precision Recall F1 Precision Recall F1 Precision Recall F1

T1

Automix 0.14 0.12 0.13 0.24 0.11 0.15 0.30 0.07 0.11

MIK 10 0.20 0.25 0.22 0.21 0.13 0.16 0.25 0.08 0.12

CUE-DETR (r16) 0.38 0.35 0.36 0.62 0.27 0.38 0.69 0.16 0.26

CUE-DETR (r8) 0.32 0.49 0.39 0.53 0.41 0.46 0.63 0.26 0.36

T1/2

Automix 0.11 0.10 0.10 0.20 0.09 0.13 0.24 0.06 0.10

MIK 10 0.14 0.19 0.16 0.15 0.09 0.12 0.18 0.06 0.09

CUE-DETR (r16) 0.27 0.25 0.26 0.43 0.19 0.27 0.48 0.11 0.18

CUE-DETR (r8) 0.22 0.34 0.27 0.37 0.28 0.32 0.43 0.17 0.25

tions around the first three phrases with high alignment to

ground-truth. The second cluster is predicted at the start

of phrases 6 to 8 with an increased tendency for early pre-

dictions. MIK on the other hand exhibits more evenly dis-

tributed cue placements over the first 7 phrases. However,

an increased number of predictions lie in between phrases

where no ground-truth points lie. We observe that both Au-

tomix and MIK tend not to predict possible cue points in

the second half of tracks. CUE-DETR predicts cue points

with the highest adherence to ground-truth. Despite a few

additional predictions similar to MIK, positions with the

highest accumulation of cue points are covered by our pre-

dictions in a similar pattern. The cosine similarity of our

quantized predictions reports the highest score of 0.851. In

comparison, Automix scores 0.425 whereas MIK reaches

0.371.

4.5 Discussion

CUE-DETR shows strong adherence to ground-truth com-

pared to other methods. Our method suggests good phrase

alignment based on the distribution of our predicted cue

point positions, as well as the increase in precision from

cues-only to 16 bar phrases. A slight increase in precision

is expected for all methods, however, a significant increase

is only associated with strong phrase alignment due to the

decrease in false positive predictions. The higher number

of possible ground-truth positions decreases recall in re-

turn. If our method successfully detects irregular sections,

the phrasing algorithm from Section 3.2 can be applied in

postprocessing, which could further increase the precision

while keeping the recall score high.

Despite using a metronome-agnostic approach, for

which we fixed the distances r to the length of a phrase in

terms of the dataset median tempo, the chosen values for

r yield results with higher precision compared to the other

methods. We assume the relatively homogeneous nature

of our dataset minimized the impact of different tempos

in the test data. For more diverse styles of music, includ-

ing the tempo and beat grid information, similar to MIK,

might be beneficial. On the other hand, it might be possible

to train a model on beat and cue detection simultaneously.

The beat detection could then be used during postprocess-

ing to identify the tempo, making the need for additional

ground-truth beat grid or tempo information redundant.

One key limitation remains in the availability of training

data, despite building our own dataset. Since we only had

access to data with high similarity in style, we would like to

investigate the performance of our method over a broader

domain of electronic music in the future. Furthermore, our

dataset annotations were provided by DJs who specialize

in club DJing. Therefore, annotations from other types of

DJs, such as scratch DJs or mobile DJs, would likely result

in a largely different cue point distribution. We believe one

main difference would lie in more cue points distributed

around vocals or pickups instead of the first downbeat of

phrases.

5. CONCLUSION

In this work we introduced CUE-DETR, an object detec-

tion model fine-tuned on Mel spectrograms capable of es-

timating cue points in EDM tracks. Candidate cue points

produced by CUE-DETR demonstrate high adherence to

the underlying music structure and exhibit a higher resem-

blance to manually placed cue points compared to previous

approaches. Furthermore, we created EDM-CUE, a dataset

containing 21k manually annotated cue points from four

professional DJs. EDM-CUE also contains tempo, beat,

and downbeat annotations for almost 5k EDM tracks. Our

implementation includes a postprocessing step to filter the

model predictions for the best positions, including a con-

version of the results to timestamps. For the evaluation,

we presented a complementary phrasing-based evaluation

method, which is useful to assess cue point predictions in

a more objective manner.

Furthermore, we demonstrated that CUE-DETR is ca-

pable of detecting large structural boundaries in music, de-

spite only seeing small excerpts of the entire track. Our

findings further acknowledge the potential of transformer-

based architectures for the detection of time-based events

in music.
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