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ABSTRACT

Inner Metric Analysis (IMA) is a method for sym-
bolic music analysis that identifies strong and weak
metrical positions according to coinciding periodicities
within note onsets. These periodicities are visualized
with bar graphs known as metric weight and spec-
tral weight profiles. Analyzing these profiles for the
presence of syncopation has thus far required man-
ual inspection. In this paper, we propose a simple
measure using chi-squared distance for quantifying the
level of syncopation found in IMA weight profiles by
considering each as a distribution to be compared
against (1) a uniform distribution ‘nominal’ weight
profile, and (2) a non-uniform distribution based on
beat strength. We apply this measure to the task
of predicting perceptual ratings of syncopation us-
ing the Song (2014) dataset of 111 single-bar rhyth-
mic patterns and compare its performance to seven
existing models of syncopation/complexity. Our re-
sults indicate that the proposed measure based on (1)
achieves a moderately high Spearman rank correla-
tion (rs = 0.80) to all ratings and is the only single
measure that reportedly works across all categories.
For so-called polyrhythms in 4/4, the measure based
on (2) surpasses all other models and further outper-
forms five models for monorhythms in 6/8 and three
models for monorhythms in 4/4.

1. INTRODUCTION

Much research has gone into understanding the per-
ception of temporal patterns [1–3] and many more re-
cent studies within this scope have focused on the per-
ceived levels of syncopation and complexity in these
patterns [4–11]. Subsequently, a number of different
computational methods have been proposed for mod-
eling these, including models that are based on a met-
ric hierarchy using tree-based structures [7,12–14] and
those that are not [15–19]. Many of these models have
been tested on various perceptual tasks, such as syn-
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copation prediction, and their respective performances
have been compared [6,9,20–23]. However, none of the
comparisons carried out to date have considered Inner
Metric Analysis [24].

Inner Metric Analysis (IMA) is a method of sym-
bolic music analysis for identifying strong and weak
metrical positions in a piece based on coinciding peri-
odicities found in its note onsets [24]. Over the years,
IMA has been applied to the tasks of automatic me-
ter detection [25] and dance music classification [26],
but it has largely been used in more traditional mu-
sic analysis contexts [24,27]. An important feature of
IMA is its ability to provide a representation of the
inner metric structure of a piece rather than a repre-
sentation tied to its outer metric structure–––the me-
ter as indicated by the time signature in a score. This
feature allows IMA to identify, for example, instances
where the notated music conflicts with the implied or
perceived meter. For this reason, it has been used to
aid in the identification of syncopation [24], which has
typically been defined as a temporary displacement of
the regular metrical accent [28]. However, until now
the use of IMA to identify syncopation in a musical
passage has required manual analysis by a music the-
orist or other domain expert.

In this paper, we propose using chi-squared dis-
tance as a first step towards computing a quantifiable
measure of syncopation from weight profiles produced
by IMA. We apply this method to the task of pre-
dicting perceptual ratings of syncopation in the Song
(2014) [22] dataset containing 111 one-bar rhythmic
patterns in two different meters and rhythm types
(i.e., monorhythms in 4/4, monorhyhms in 6/8, and
so-called polyrhythms in 4/4). In section 2, we ex-
plain how IMA produces a metrical analysis of a mu-
sical passage and detail the rhythmic patterns in the
Song (2014) dataset. In section 3, we introduce our
proposed measure based on chi-squared distance for
comparing the weight profiles produced by IMA to
a uniform distribution or ‘nominal’ weight profile as
well as to a non-uniform distribution based on beat
strength [29]. We evaluate this measure in section 4
by testing it on the aforementioned dataset and com-
pare its performance to the reported performances of
seven existing models of syncopation/complexity. We
summarize our findings in section 5 and suggest pos-
sible directions for future work.
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Figure 1. Opening bars of the “Twinkle, Twinkle
Little Star” melody and single local meter (A) with
its pulses (black circles) generated by Inner Metric
Analysis (IMA). Note that stars denote onsets (On).

2. RELATED WORK

2.1 Inner Metric Analysis (IMA)

IMA computes, from the note onsets of a piece, an
exhaustive listing of local meters—each of which must
be a sub-sequence of onsets or pulses that are (1) at
least 3 in number, (2) separated by a fixed inter-onset
interval, called the period, (3) not able to be extended
further (forwards or backwards in time) within the
sequence of all onsets of the piece, and (4) not con-
tained within the pulses belonging to any other local
meter. Figure 1 shows the opening two bars of “Twin-
kle, Twinkle Little Star” with its single local meter.
Note that the single local meter (A) contains at least
3—in this case, 7, evenly-spaced pulses (black circles),
each aligned with a corresponding onset in the music
above. The numbers at the bottom indicate the posi-
tions within an underlying “grid” called time points,
equivalent to tatums, upon which the onsets are fitted.
Because all adjacent onsets have an equal, constant
spacing, represented in the score as quarter-note du-
rations, no time point exists between them. In such
passages, there will be only a single local meter as
any other possible set of pulses would necessarily be
contained within this local meter. For more complex
rhythms, this will not be the case.

Following the enumeration of all local meters in a
piece, IMA computes a metric weight for each onset
based on the number of pulses in local meters that
coincide with this onset and the lengths of those local
meters to which these pulses belong. Formally, let On
be the set of all onset time points in a piece and m

be a local meter that contains an onset, o, and where
km denotes the length of m minus 1. M(l) denotes
the set of all local meters of length at least l, where in
straight-forward implementations of IMA, l is 2 (equal
to the minimum number of pulses, 3, minus 1). The
metric weight of o is defined as the sum of the values,
km, of the local meters, m, that contain o. The metric
weight of an onset o ∈ On is thus given by

Wl,p(o) =
∑

{m∈M(l):o∈m}

(km)p, (1)

where p is a weighting parameter typically set to p = 2
that is used to control the relative influence of the
length of local meters on the metric weight [24]. For
example, the metric weight assigned to each of the
7 onsets of the melody shown in Figure 1, using the

Figure 2. Opening bars of a syncopated variation of
the “Twinkle, Twinkle Little Star” melody with all ten
(A–J) local meters and their extensions (red triangles)
generated by Inner Metric Analysis (IMA).

typical weighting parameter of p = 2, would be (7 −
1)2 = 36, as each onset has only a single pulse (i.e.,
no coinciding pulses) belonging to one local meter of
length 7− 1 = 6.

In addition to the metric weight, IMA also com-
putes a spectral weight that considers the extension
of each local meter to certain time points on the grid
that align with either onsets or silence (i.e., rests) in a
piece. Formally, an extension, ext(m), of a local me-
ter, m, is defined as the set of time points, {s+id, ∀i},
where s denotes the time point of the first onset in m,
d is the period, and i is an integer time point in the un-
derlying grid. Figure 2 shows a syncopated variation
of the melody shown in Figure 1 with all ten of its lo-
cal meters (A–J) and extensions (red triangles). Note
that, in contrast to Figure 1, there are multiple local
meters (ten) where no one local meter is contained
within the pulses belonging to any other local meter.
Take, for example, local meter (E), which shares two
of its pulses (time points 1 and 7) with local meter
(D), but contains a third (time point 4) that is not
shared with (D). The purpose of extensions in IMA
is to allow for pulses to contribute to parts of pas-
sages where they are not even present. The case for
projecting pulses further in time in this way through
extensions, for example, is made stronger when one
considers the possibility for some latent or persisting
pulse in the listener’s perception. The spectral weight
is computed in a similar manner to the metric weight
(shown in Equation 1), except that it assigns a weight
to each time point (rather than only to each onset)
based on the pulses and now extensions which coin-
cide with this time point. For a time point, t, the
spectral weight is given by

SWl,p(t) =
∑

{m∈M(l):t∈ext(m)}

(km)p. (2)

Whereas the metric weight of, for example, the first
onset (at time point 0) shown in Figure 2, would con-
sider only local meter (H) due to it having the only
coinciding pulse, the spectral weight would consider
the additional contributions of local meters (A, B, C,
G), due to their coinciding extensions.
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Figure 3. The metric and spectral weight profiles
of the opening two bars of the syncopated “Twinkle,
Twinkle Little Star” melody from Figure 2 with metric
weights shown in (a) and spectral weights shown in
(b), as computed by Inner Metric Analysis (IMA).

Whether an analysis of a piece by IMA uses met-
ric weights or spectral weights, it is typical for the
weights to be plotted in the form of a bar graph called
a profile. With a trained eye, musical features of a
piece such as a possible meter (whether notated or
not) and syncopation often emerge through visual in-
spection of the profile. Figure 3 shows the metric
weight profile and spectral weight profile for the open-
ing two bars of the syncopated “Twinkle, Twinkle Lit-
tle Star” melody shown in Figure 2. Given that the
actual meter of the syncopated melody in Figure 2 is
known, we can see in its corresponding weight profiles,
shown in Figure 3, that all lower weights at time points
0, 2, 4, 6, 8, 10, 12, 14 appear at on-beat locations while
all higher weights at time points 1, 3, 5, 7, 9, 11, 13, 15
appear at offbeat locations, suggesting a strong possi-
bility for the presence of syncopation.

2.2 The Song (2014) Syncopation Dataset

Datasets containing rhythmic (or temporal) patterns
for studying human perception remain relatively few
in number and small in size [1–4,7, 30,31]. A number
of these early datasets were originally constructed as a
means for evaluating perceptual complexity and have
since been co-opted for the study of syncopation [5,

6]. Even fewer datasets exist for the explicit study of
syncopation [7, 22, 32, 33], however, the Song (2014)
[22] dataset is arguably one of the largest.

The Song (2014) [22] dataset contains 111 single-
bar rhythmic patterns (and their mean listener per-
ceptual ratings from 0 to 4) in two possible meters,
4/4 and 6/8, and of two different rhythm types, mono
and poly. 1 There are 27 monorhythm patterns in 4/4
(15 on quarter-note grid; 12 on eighth-note grid), 36
monorhythm patterns in 6/8 (eighth-note grid), and
48 so-called polyrhythm patterns in 4/4 (quarter-note
triplet grid)—each of which were preceded for listeners
by an audible two-bar metronome in their respective
meter. Patterns in each category range from having a
single onset (e.g., ⟨0, 0, 0, 1⟩ monorhythm in 4/4 with
an onset on the fourth beat) up to a number of onsets
equal to the number of time points in the underly-
ing grid (e.g., ⟨1, 1, 1, 1, 1, 1⟩ monorhythm in 6/8 of all
eighth notes).

3. PROPOSED MEASURE OF
SYNCOPATION USING IMA

The central premise motivating our proposed measure
is the consideration of weight profiles produced by
IMA as distributions through which comparisons with
other distributions using chi-squared distance [34] can
provide insight into the underlying rhythmic struc-
ture that is relevant to predicting syncopation. We
consider two possible distributions that we will com-
pare against the weight profiles produced by IMA for
a given rhythmic pattern: (1) a uniform distribution
based on what we call a ‘nominal’ weight profile that
operates conservatively and in the spirit of IMA with-
out knowledge of the underlying meter, and (2) a non-
uniform distribution based on beat strength [29] that
operates with explicit knowledge of the underlying me-
ter and is nearly analogous to a nominal weight pro-
file but for metrical (hierarchy) structure. A nominal
weight profile is the uniform distribution of weights
that results from an IMA analysis of any sequence
consisting entirely of equally-spaced onsets irrespec-
tive of the hierarchical metrical level at which these
are expressed. For example, a pattern in 4/4 consist-
ing of all quarter notes, half-notes, or eighth notes will
each result in a nominal weight profile. Our motiva-
tion for considering nominal weight profiles is based
on a simplifying assumption that a less syncopated
rhythmic pattern or passage of music will have more
equal weighting across its weight profile than a more
syncopated pattern or passage. This was observed,
for example, in Figures 1 and 2, with the less synco-
pated melody containing a single local meter result-
ing in a metric weight profile containing at each on-
set a constant weight and its syncopated version con-
taining multiple local meters resulting in weight pro-

1 The complete Song (2014) [22] dataset and perceptual rat-
ings can be found in the following repository: https://code.
soundsoftware.ac.uk/projects/syncopation-dataset.
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files (shown in Figure 3) containing a variable weight
that fluctuates over time. Our motivation in (2) for
considering non-uniform distributions based on beat
strength comes from the fact that clearly not all rhyth-
mic patterns consist of all equally-spaced onsets, and,
much like previous models of syncopation, such as
Weighted Note-to-Beat Distance (WNBD) [17] or the
Longuet-Higgins and Lee (LHL) model [12], providing
additional information beyond what is explicitly avail-
able in the onsets (e.g., beat locations or rests), can
provide relevant (or indeed necessary) information for
modelling or predicting syncopation.

The proposed measure adopts two different con-
structions for handling normalization across patterns
and distributions, both of which we will use in our
evaluation. The first of these constructions considers
a given metric or spectral weight profile produced by
IMA as a normalized distribution, P ′, scaled to unit
length and a second, un-normalized uniform distribu-
tion, Q, representing a nominal weight profile hav-
ing some constant value, Qi for all i. The measure-
normalized (weighted) chi-squared distance, χD1, be-
tween two distributions P ′ and Q of length n (time
points) is given by

IMAM,S
χ
D1 =

1

n

n−1
∑

i=0

(

(P ′
i −Qi)

2

(P ′
i +Qi)

)a

, (3)

where a is a weighting parameter (discussed in sec-
tion 4) and 1

n
serves to normalize the distance by

measure length. By calculating the distance of an
observed weight profile from a nominal weight pro-
file, we obtain a measure of the overall aperiodicity
or irregularity of the rhythmic content (relative to the
constant, Qi, in the uniform distribution), where the
higher the overall value, the greater the amount of
perceived syncopation there is predicted to be. In
principle, while the constant Qi could be any rational
value, for the purposes of this paper, we will utilize
a constant value between [0, 1] corresponding to the
maximum upper and minimum lower ranges of the P ′

distribution. In addition to the a weighting parame-
ter, an optimal constant value for Qi will be learned
in section 4.

Whereas the Q uniform distribution in Equation 3
was left un-normalized to allow for various constant
values to be learned, which would otherwise disappear
with normalization, other distributions, such as our
non-uniform distribution based on beat strength, will
require normalization for fair comparisons with P ′.
Thus, an alternative weighted construction, χ

D2, of
Equation 3 appears below for the same normalized
distribution, P ′, and another normalized distribution,
S′, also of length n and scaled to unit length:

IMAM,S
χ
D2 =

n−1
∑

i=0

(

(P ′
i − S′

i)
2

(P ′
i + S′

i)

)a

, (4)

where a is the same weighting parameter as in

the earlier construction. Note that because both
distributions have been scaled to unit length, nor-
malizing by measure length, n, as was done in
Equation 3, is no longer necessary. In our use of
Equation 4, we consider four different distribu-
tions for S′, corresponding to the beat strengths
produced by music21 [29] (using the beatStrength
method) for each of the four different types of
meter/rhythm types found in the Song (2014) [22]
dataset. The following four (un-normalized) beat
strength distributions are those used with this
construction: (1) 4/4 meter with quarter-note grid
⟨1.0, 0.25, 0.5, 0.25⟩, (2) 4/4 meter with eighth-note
grid ⟨1.0, 0.125, 0.25, 0.125, 0.5, 0.125, 0.25, 0.125⟩,
(3) 6/8 meter with eighth-note grid
⟨1.0, 0.25, 0.25, 0.5, 0.25, 0.25⟩, and (4)
4/4 meter with quarter-note triplet grid
⟨1.0, 0.0625, 0.0625, 0.25, 0.0625, 0.0625, 0.5, 0.0625,
0.0625, 0.25, 0.0625, 0.0625⟩.

4. EVALUATION

We have evaluated our IMA-based measure on the
Song (2014) [22] dataset of 111 one-bar rhythmic pat-
terns and their perceptual ratings of syncopation for
three reasons: (1) there is a relatively large number of
stimuli in comparison to other available datasets, (2)
the stimuli were constructed specifically for the pur-
pose of studying syncopation and not, for example,
complexity or groove, and (3) there has been signifi-
cant work already done on evaluating other computa-
tional models of syncopation with this dataset. The
reader is referred to [22] for an in-depth discussion of
the performances of existing models using this dataset.

4.1 Procedure

We have adopted an optimization approach using
leave-one-out cross-validation in which we performed
a grid search over the pair of parameters, Qi, and a

from Equation 3 for 1002 value-pairs within the range
[0, 1] in increments of 0.01. For each distinct weighting
parameter pair, we carried out the procedure below for
all rhythmic patterns in the training set:

1. Repeat the time-span note sequence of the
given Song (2014) [22] one-bar rhythmic pat-
tern twelve times. As IMA requires at least
three pulses to form a local meter, it is gener-
ally less effective with short rhythmic patterns
having few onsets. For this reason, it has been
suggested in [26] to repeat short patterns in this
way when using IMA.

2. Convert this extended time-span note sequence
from (1) to an ordered set of note onset indices
suitable for analysis by IMA e.g., ⟨0, 1, 0, 1⟩ to
⟨1, 3⟩ (using 0-based indexing).

3. Compute IMA metric and spectral weight pro-
files for this extended twelve-bar rhythmic pat-
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tern from (2) using an IMA weighting parameter
p = 2 and minimum local meter length, l = 2.

4. ‘Fold’ the metric and spectral weight profiles in
(3) into single bars and sum those weights at
each time point having equivalent within-bar lo-
cations. Then scale each weight profile to unit
length such that they each sum to 1.

5. Compute a measure of syncopation from each
normalized single-bar metric and spectral weight
profile from (4) using Equation 3 and the given
weighting parameter pair, Qi and a.

Following the procedure above for all training
rhythmic patterns and a given weighting parameter
pair, the respective sets of syncopation scores com-
puted for each of the metric and spectral weight pro-
files are min-max normalized. The Spearman rank
correlation coefficient, rs, is then computed for each of
these sets of syncopation scores and the min-max nor-
malized mean perceptual ratings, in the same way that
was done for each of the computational models evalu-
ated in [22, pp. 92–94] so that fair comparisons could
be made. The procedure for using Equation 4 and the
non-uniform distributions based on beat strength is
identical to the steps outlined above, except the grid
search was performed across all 100 values between
[0, 1] for a only, and the set of beat strengths chosen
for any given pattern was that matching in number of
time points, n. The weight parameter (Equation 4)
or weight parameter pair (Equation 3) that produced
the highest mean rank correlation achieved across all
k-folds was retained and the final results below are
reported using the best parameters across the entire
dataset. All syncopation-dependent procedures were
implemented in Julia (v. 1.10.0) and all statistical cal-
culations were made with R (v. 4.3.2).

4.2 Results and Discussion

We compare the performance of the proposed mea-
sure to the reported performances of seven models of
syncopation/complexity previously evaluated in [22]
and [21, 23] on the same dataset. These models are
Longuet-Higgins and Lee (LHL) [12], Off-Beatness
(TOB) [16], Metric Complexity (TMC) [14], Weighted
Note-to-Beat Distance (WNBD) [17], Cognitive Com-
plexity (PRS) [13], Off-beat model (KTH) [15], and
Sioros et al. (SG) [7]. Table 1 shows the results of
our IMA-based measure of syncopation for both the
metric and spectral weight profiles using the two pro-
posed distributions across the dataset in comparison
to these other models.

In Table 1, the best weighting parameters found
for Equation 3 (χD1) were a = 1.0 for both metric
and spectral weight and Qi = 0.74 for metric weight
and Qi = 0.83 for spectral weight. The best weight-
ing parameters for Equation 4 (χD2) were a = 0.82

3 There may be disagreement as to whether polyrhythms in
the Song (2014) [22] dataset are what they claim and whether
some existing models are in fact incapable of analyzing these

Rhythm Type & Meter
Model/Measure Mono 44 Mono 68 Poly 44 Total

1. IMAM
χ
D1 0.53* 0.67* 0.46* 0.80*

2. IMAS
χ
D1 0.51* 0.67* 0.39* 0.79*

3. IMAM
χ
D2 0.86* 0.74* 0.73* 0.66*

4. IMAS
χ
D2 0.83* 0.74* 0.70* 0.61*

5. LHL 0.86* 0.68* -
6. TMC 0.92* 0.67* -
7. PRS 0.95* 0.76* -
8. SG 0.88* 0.73* -
9. TOB 0.36 0.17 NA
10. WNBD 0.52* 0.47* 0.41*
11. KTH 0.79* - −0.23

Table 1. Spearman correlation rank coefficients (rs)
of 9 different models/measures of syncopation for 111
mono- and poly-rhythmic patterns in two meters and
their perceptual ratings. For the proposed measures
based on IMA (1–4), IMAM and IMAS denote use of
metric and spectral weight, respectively. Note that
results for models 5–11 are the values reported in [22,
pp. 92–94]. An asterisk denotes where p < 0.01, a
hyphen indicates where a given measure is reported
as being incapable of providing a result 3 , and empty
cells mark no reported results.

for metric weight and a = 0.35 for spectral weight.
It is clear from these results that while Equation 3
worked best across the entirety of the dataset (e.g.,
IMAM

χ
D1: rs = 0.80∗; p < 0.01—an improvement

over no a weighting parameter and Qi set to an ar-
bitrary 0.5, rs = 0.73∗; p < 0.01), it resulted in rel-
atively poor performance within the individual cate-
gories. Perhaps not surprisingly, however, providing
additional information about the underlying meter,
in the form of beat strengths as done in Equation 4,
significantly improved the performance in these indi-
vidual categories but to the detriment of overall per-
formance (e.g., IMAM

χ
D2: rs = 0.66∗; p < 0.01—

same as without a). In all cases except monorhythms
in 6/8, metric weight performed better than spectral
weight. In particular, IMAM

χ
D2, outperformed all

three of the existing models (TOB, WNBD, KTH) re-
portedly capable of providing a result for the so-called
polyrhythms in 4/4 (rs = 0.73∗; p < 0.01); five of the
existing models (LHL, TMC, SG, TOB, WNBD) ca-
pable of providing a result for monorhythms in 6/8
(rs = 0.74∗; p < 0.01); and only three (TOB, WNBD,
KTH) of all seven models for monorhythms in 4/4
(rs = 0.86∗; p < 0.01; tying with LHL). It should
be noted that in [22, p. 139] a so-called weighted-
multiple combined (WMC) model using optimized
versions of the best combinations of these previous
models was able to achieve a rank correlation across
the entire dataset of rs = 0.89 ∗ (p < 0.01). While
the proposed IMA measure falls short in this regard

without reinterpreting their meter (e.g., 4/4 to 12/8). The
reader is referred to [22] for detail on these possible concerns.
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(a)

(b)

Figure 4. Normalized syncopation predictions pro-
duced by IMAM

χ
D1 (rs = 0.80∗; p < 0.01) in (a) and

IMAM
χ
D2 (rs = 0.66∗; p < 0.01) in (b) against the

normalized human ratings for the 111 rhythmic pat-
terns in the Song (2014) [22] dataset. Note that re-
gression lines are plotted with shaded areas indicating
a 95% confidence interval.

(rs = 0.80∗; p < 0.01), it remains noteworthy that its
performance is close to approaching the performance
of a significantly more complex method consisting of
many different models. For completeness, Figure 4
shows regression plots of the predicted syncopation
scores across the entire dataset for both IMAM

χ
D1

and IMAM
χ
D2 against the human ratings.

The reason for the difference in performances for
both constructions across the dataset versus within
the individual categories is not immediately clear,
however, the use of rank correlation combined with
the distributed locations and smaller sizes of the re-
spective sets of rhythm and meter type examples
within the dataset is likely a contributing factor. De-
spite the better overall performance of Equation 3
over Equation 4, one problem with our first construc-
tion using this dataset concerns the density of pat-
tern onsets, which has been shown to interact with
their perceived displacement from a metrical hierar-

chy in regards to syncopation [33]. Many of the pat-
terns are highly sparse, and Equation 3 is unable to
differentiate, for example, between two distinct pat-
terns each having a single onset, such as ⟨1, 0, 0, 0⟩ and
⟨0, 1, 0, 0⟩, or the same number of equally-spaced on-
sets shifted in time, such as ⟨1, 0, 1, 0⟩ and ⟨0, 1, 0, 1⟩.
This would help to explain its relatively low perfor-
mance in the individual categories. Equation 4, on the
other hand, does not encounter these same difficulties,
and its improved performance in the individual cate-
gories suggests an informative structural correspon-
dence between the metrical strengths as identified by
IMA weight profiles and the beat strengths they were
compared against. In an actual piece of music, how-
ever, one might expect to find relatively less sparse
and more complex examples, so more ecologically valid
comparisons may provide deeper insights into whether
syncopated patterns have generally less equal weight-
ing in their profiles as unsyncopated patterns, as is
assumed by Equation 3. Finally, while the choice of
chi-squared distance is motivated by the desire to ob-
tain the best possible results across the entirety of
the dataset using the simplest method, multiple other
distance measures were tested (e.g., Euclidean and
Minkowski) with the relatively more complex Jensen-
Shannon divergence [35] performing marginally bet-
ter across the dataset (rs = 0.81∗; p < 0.01) but
marginally worse within the individual categories.

5. CONCLUSION

In this paper, we proposed a first step towards us-
ing Inner Metric Analysis (IMA) to provide a quan-
tifiable measure of syncopation based on chi-squared
distance and comparisons to two different types of dis-
tributions. We evaluated our method using a dataset
of rhythmic patterns constructed specifically for the
task of studying syncopation and compared its perfor-
mance to the performances of seven existing computa-
tional models. Our results indicate that the proposed
measure based on comparisons with a uniform distri-
bution achieves a moderately high Spearman rank cor-
relation (rs = 0.80) to all perceptual ratings and is the
only single measure that reportedly works across all
meters and rhythm types (mono, poly, 4/4 and 6/8).
For so-called polyrhythms in 4/4, the measure based
on comparisons with a distribution of beat strengths
surpasses all other models and further outperforms
five models for monorhythms in 6/8 and three models
for monorhythms in 4/4. Finally, considering the en-
tirety of a rhythmic sequence as done here rather than
summing isolated instances of syncopation as in, for
example, the LHL [12] model, appears to have higher
validity [36]. In future work, it would be useful to
consider other datasets, particularly ones which con-
tain more ecologically valid examples, as well as with
other distributions, possibly coming from statistical
corpora studies or perceptual profiles, that could be
automatically selected for in comparisons.
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