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ABSTRACT

The environmental footprint of Generative AI and other
Deep Learning (DL) technologies is increasing. To under-
stand the scale of the problem and to identify solutions for
avoiding excessive energy use in DL research at commu-
nities such as ISMIR, more knowledge is needed of the
current energy cost of the undertaken research. In this
paper, we provide a scoping inquiry of how the ISMIR
research concerning automatic music generation (AMG)
and computing-heavy music analysis currently discloses
information related to environmental impact. We present
a study based on two corpora that document 1) ISMIR
papers published in the years 2017–2023 that introduce
an AMG model, and 2) ISMIR papers from the years
2022–2023 that propose music analysis models and in-
clude heavy computations with GPUs. Our study demon-
strates a lack of transparency in model training documenta-
tion. It provides the first estimates of energy consumption
related to model training at ISMIR, as a baseline for mak-
ing more systematic estimates about the energy footprint of
the ISMIR conference in relation to other machine learning
events. Furthermore, we map the geographical distribution
of generative model contributions and discuss the corpo-
rate role in the funding and model choices in this body of
work.

1. INTRODUCTION

Interest in AMG and DL-based analytical models is in-
creasing dramatically at conferences such as ISMIR [1].
Case studies in domains other than music [2–4] have es-
tablished that the environmental impact of AI technolo-
gies can be massive, particularly when it comes to en-
ergy consumption. International Energy Agency predicts
that the accumulated electricity consumption of data cen-
ters, AI, and the cryptocurrency sector will double, reach-
ing the level of whole electricity consumption of Japan by
2026 [5]. In the US, a recent proposal for legislation (Ar-
tificial Intelligence Environmental Impacts Act) suggests
that AI companies would be urged to start reporting the
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environmental impacts of their work [6]. With the increas-
ing investment in AI and the general trend of high compute
requirements for training state-of-the-art machine learning
systems [7], we expect to see the accumulated energy foot-
print of the generative music industry and the surrounding
research also growing. There is no reason why research
around ISMIR would be isolated from these effects. For
the community to gain an understanding of the scale of the
problem and to identify solutions to avoid excessive en-
ergy use in AMG development, more knowledge is needed
of the current energy cost of the research conducted. It is,
hence, highly relevant and timely to investigate to what ex-
tent research at ISMIR acknowledges and documents the
environmental impact of energy consumption.

Other research communities around music technology
(e.g., NIME [8]) and machine learning technology (e.g.,
NeurIPS [9]) have shown increasing attention to various
aspects of negative ethical impacts, among them environ-
mental. Discussions of such topics continue, however, to
be severely underrepresented in the generative music and
audio research [10], and entirely absent from the ethics
principles and guidelines for AI-music [11, p. 148]. In
the context of the ISMIR community, Morreale [12] es-
timated that between 2011 and 2020, less than 0.5% of
ISMIR submissions discussed issues related generally to
ethics, of which sustainability could be seen as a subcate-
gory. Our present scoping inquiry demonstrates this lack
of concern and transparency in reporting the environmen-
tal impacts of AMG and other DL research, with a focus
on ISMIR conferences. The title of our paper refers to
Schwartz et al. [13], which proposes the concept of Green

AI as “AI research that is more environmentally friendly
and inclusive”. While the concept of Green MIR should
be used carefully, as it can lead to practices of greenwash-
ing research, we use this term to raise questions about the
current practices and energy impact of MIR.

This study advances a critical discussion in the ISMIR
community around the ethical impacts of model develop-
ment work and the responsibility of MIR research from the
underexplored perspective of environmental sustainability.
It documents, firstly, the level of transparency in reporting
the environmental impact in terms of energy consumption
and the computational resource use in the model training
process in ISMIR papers in the seven years 2017–2023.
Secondly, based on the information documented in these
ISMIR publications, we provide preliminary estimates of
the energy demands related to training individual AMG
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and other DL models, as well as an overall estimate of
the total energy use and carbon footprint associated with
DL training at an ISMIR conference. In this process, we
also investigate if AMG models are related to higher en-
ergy consumption than other models at ISMIR. Our cal-
culations establish a baseline to set the ISMIR community
in relation to other machine learning communities and call
for the issue of environmental impact to be addressed more
systematically so that the conference can grow and evolve
without compromising the environment. Thirdly, we map
the geographical distribution of generative model contribu-
tions and discuss the role of corporate participation and the
consequent political economies in this body of work.

Some limitations of the paper lie within (a) the many
uncertainties in estimating the overall energy consumption
of developing a DL model based on limited data related to
the training process, (b) our focus on model training that
leaves a focus on inference processes to future work, and,
(c), the reduction of environmental sustainability to energy
consumption. In the following two sections, we explain
how these limitations emerge from the sparse amount of
information and the complexity of the problem. We hope
that this paper will motivate both individual authors and
the ISMIR conference to take action toward more minute
documentation of resource use in DL model development.

2. BACKGROUND

2.1 Environmental Impact of (Music-)AI

The soaring energy cost of AI technology is increasingly
discussed in the academic literature [2, 3, 13–19]. Early
work on the environmental impact of AI has introduced
concepts, such as “green” and its opposite, “red” AI [13],
problematized hidden environmental costs in AI [2], and
provided methods for quantifying environmental impact
[3]. We found only a few works that are related to music-
AI (as a term to cover analytic and generative approaches
based on – predominantly – deep learning). The first two
concern the energy cost of AI models used in music in-
formation retrieval [20, 21], and the third focuses on the
importance of studying sustainability in arts generally [4].

AI development has been increasingly steering towards
Large Language Models (LLMs), which have a particu-
larly high energy expenditure. The popularity of these
models is attributed to their success in “generalizing” and
performing better in tasks that have traditionally required
human labor. But as a consequence, many research pa-
pers [22,23] take a pre-trained foundation model and adapt
it. This results in a situation in which the energy cost
can be estimated only partially, i.e. for the part that ex-
tended the pre-trained LLM. Furthermore, it raises ques-
tions about how research can account for the environmen-
tal cost of using LLMs. Arguably, the researchers who use
those LLMs are somewhat responsible for the popularity
and increased use of LLMs – through creating demand for
their use – which can further aggravate the use of compu-
tational resources and energy in LLM development.

Many research works that focus on the environmental

impact of AI take the assumption that energy (computa-
tional) cost is the core environmental problem of these
technologies, and by reducing energy consumption, it is
possible to work towards sustainability. However, this is
a simplistic view because sustainability is a complex phe-
nomenon that does not only concern electricity usage. For
example, Jääskeläinen et al. [24,25] discussed the complex
networks of environmental harm resulting from resource
consumption and capitalistic colonialism that prevail in the
case of generative AI. Strengers [26] has generally outlined
how behavior change is central to change toward sustain-
ability, and providing metrics such as energy consumption
data is insufficient to address change toward sustainability.
While keeping this in mind, energy use is a valid starting
point for discussing the environmental impact of AI. In this
paper, when we refer to environmental impact, we explic-
itly refer to the energy cost and leave out factors such as
the life cycle of the technology and water usage of data
centers [27], among others.

Technological advances in recent decades have entered
the music industry with the promise of reduced material
and energy demands. For instance, it was expected that the
introduction of mp3, the digitalization of music produc-
tion, and eventually the platformization of its consumption
would diminish the environmental footprint of the indus-
try. As Devine [28] and Brennan [29] have demonstrated,
the opposite has historically been the case: while the de-
mand for plastic dropped in the era of the mp3 to a fraction
compared the previous music consumption models (CD,
cassette, vinyl, etc.), the greenhouse gas emissions of the
industry, on the contrary, increased. This increase was
explained in sustainability research by Hilty’s concept re-

bound effects [30], which describes indirect 2nd and 3rd
order effects that result from adopting new technology.

Similar negative effects are emerging in the prolifera-
tion of AI in music. Calculations by Holzapfel [31] illus-
trate that creative applications of LLMs can amount to con-
siderable levels of energy demand. Furthermore, results
by Douwes [20, 21] and Ronchini and Serizel [32] indi-
cate that the scale of energy consumption for audio gener-
ation and analysis tasks are not in a linear relation with the
model performance, thus questioning the assumption that
the growth in model complexity and resource demands are
a prerequisite for better models. Even more importantly,
Holzapfel [31] calls for the focus of inquiry to be expanded
from the carbon footprint to the wider questions of politi-
cal ecology, and to the perspectives of economic gain and
power (see also [33]). In this view, we should not only
measure the environmental impact but also form a more
complete picture by looking at who is causing it, who is
financing that work, and who benefits from it.

2.2 Timeliness of Addressing the Environmental

Impact of Music-AI

Bringing energy concerns into research practices is still at
an early stage in many communities [19], including MIR.
In 2023, Morreale et al. [1] ran a systematic survey of
the training datasets for AMG models presented at ISMIR

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

372



2013–2023. Their work illustrates a dramatic increase in
the development of AMG models in the last decade, and
especially since 2017. Taken together with the general
lack of both breadth and depth of addressing environmen-
tal concerns in music and audio research contexts [10], this
increase highlights the urgency of addressing the compu-
tational cost of the AMG models in ISMIR research.

Conferences such as NIME have already taken a proac-
tive lead in promoting awareness of the environmental
impacts of the research conducted around the conference
[34], and by making resources available [35] for the re-
search community to adopt more environmentally con-
scious research and development practices. NeurIPS [36]
requires authors to disclose information on the training
procedure as well as the amount and type of compute re-
sources used in the development and research of AI mod-
els. 1 We argue that such practices of accessible documen-
tation should be part of the submission requirements in IS-
MIR research publications as well. This is useful for re-
producibility and allows examining the energy cost that IS-
MIR research contributes to when developing AMGs and
other models. However, in order to start such a discussion,
it is essential to examine the current practices of reporting
environmental impact-related information on AMG devel-
opment at ISMIR.

3. METHOD

This study covers two corpora (total N = 113) of papers:
1) ISMIR papers published in the years 2017–2023 that in-
troduce an AMG model, and 2) a complementary corpus
of ISMIR papers from the years 2022–2023 that present
analysis models and discuss processes that included heavy
computations with GPUs. This will provide a perspective
on training resource documentation in recent ISMIR con-
ferences beyond AMG.

The first corpus was obtained by selecting papers that
were specified as introducing an AMG model in the table
compiled by Morreale et al. [1]. We extended this initial
list by adding all papers from ISMIR 2023 that presented
such a model in that year. This resulted in an overall list
of 88 papers that present AMG models between 2013 and
2023. An analysis of the older papers revealed that the
majority of papers published before 2017 did not involve
DL models trained on GPUs, but rather shallow models
(e.g., [38, 39]) or no training at all (e.g., [40, 41]). There-
fore, we decided to exclude the 8 papers in the list by [1]
published before 2017, resulting in 80 papers in this first
corpus.

For each of these 80 papers, we documented whether
there was information about the training time, whether the
number of parameters was specified (search “param*” 2 ),
and whether the computational resources used for train-
ing were documented (search “GPU*”, “CPU*”, “TPU*”).

1 Interestingly, the first editions (2021, 2022) of this checklist included
a recommendation to use a CO2 emissions tracker [37], but this aspect has
been omitted from the latest version of the guidelines.

2 The asterisk character (*) is used to find all spelling variations of a
search term, e.g. parameter, parameters, parametric etc.

We further searched the papers for discussions on energy
consumption and environmental impact of the models, us-
ing terms “environment*”, sustainab*, “ecolog*”, “car-
bon”, “energy” and “kWh”. Finally, as an effort to connect
these aspects to the wider perspectives of political ecol-
ogy, we documented whether the paper indicated company
connections in the author affiliations, whether funding in-
formation was included in the acknowledgments or else-
where (search “fund*”, “support*”), whether there were
indications of full or partial corporate funding, as well as
which countries were the author affiliations related to. The
full information retrieved is available in a published data
table [42]. Whereas our analysis mainly focuses on the
documentation of energy consumption, the additional in-
formation included in our data collection was intended to
facilitate further contextualization and future research in-
vestigations.

To account for the most recent work at ISMIR in our
second corpus, we searched the proceedings documents
of 2022 and 2023 for the keywords “GPU*” and “TPU*”.
We did not consider papers that discuss CPU usage in or-
der to focus on DL models, and we excluded all papers that
are already part of the first corpus. This way, we obtained a
corpus of 33 papers that present models for analysis rather
than generation, with some consideration of computational
resources (15 papers from 2023, 18 papers from 2022).
From the papers we obtained, we collected further infor-
mation relating to training time, computational resources,
and company connections. We focused on energy-related
aspects in the second corpus in order to facilitate a com-
parison with AMG models.

For both corpora, the energy used in the training of
a model was estimated for papers that provided informa-
tion about the type and number of GPUs/TPUs used, along
with the training time. We found that websites or GitHub
sources did not add information for the vast majority of
papers and, therefore, focused on information provided in
the published papers. The Thermal Design Power (TDP)
of each processor type was obtained from the datasheets of
the manufacturer, and the energy used for a single training
run was computed as the product of a number of proces-
sors, computing time in hours, and TDP. Using the TDP
as a basis for energy consumption is a rather conservative
estimate, as it ignores the energy consumption of the re-
maining computer hardware [19]. To take these factors
into account, the use of tools (e.g. [3, 43]) to measure ac-
tual energy consumption during model development and
the publication of this overall consumption would be re-
quired. We refrain from attempting to estimate the carbon
emissions related to the computed energy consumption of
individual papers because a reliable estimate would require
detailed information about the energy sources used in the
specific computation environment [43]. In our analysis, we
do not consider the energy consumption related to model
inference, but we will discuss insights related to the energy
demands of inference.

Authors 1 and 2 collaborated on collecting data from
both corpora by dividing the conference years between
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Figure 1. Geographical distribution of the authors in corpus 1 (N=80) at ISMIR 2017–2023, as indicated by the author
affiliations. The block chart includes only countries from which at least two publications were found in the corpus.

them. The proceedings’ PDF files were searched for the
above-listed terms, and the identified occurrences were an-
alyzed manually without the use of scripts. Papers that pre-
sented unclear aspects in the data collection were flagged
and discussed between both co-authors. Author 1 con-
ducted the estimates of energy use for models in both cor-
pora.

4. RESULTS

4.1 Results from Corpora 1 and 2

Our analysis revealed that 60 of the 80 papers (75%) in
corpus 1 do not provide any information about the time
and hardware required to train the model proposed in the
paper. Of the remaining 20 papers, seven only provide
information about the type and numbers of GPU but do
not specify the time required for training. The remaining
13 papers provide full information about GPUs as well as
training time. For corpus 2 (33 papers), we identified 13
papers that disclose full information about the computa-
tional hardware and training time, another 15 papers that
provide partial compute information, and 5 papers that do
not include such information. Overall, only 23 % of the
papers in corpora 1 and 2 are fully transparent about the
hardware and the model training.

When investigating potential change over time in cor-
pus 1, we see that between the years 2017 and 2021, one
or two papers annually disclose the full training and hard-
ware data. In 2022, an exceptional six papers provided
the full information (30% of the submissions analyzed for
that year), whereas, in 2023, only three papers were par-
tially transparent with the information about the GPU bud-
gets. While this may indicate a general trend of increasing
transparency in reporting the computational hardware and
training cost of the AMG models, it would be misleading
to claim this as the current norm in the ISMIR commu-
nity. The lack of general reflection around the issues of
environmental impact is furthermore evident from how the
keywords “environment*”, “sustainab*”, “ecolog*”, “car-
bon’, “energ*”, and “kWh” were completely missing from
the analyzed corpus (0 hits for proceedings of 2013–2023).

A few recent papers include reflections regarding increas-
ing computational demands [44–46], but these reflections
are motivated by the cost of computing and do not make a
relation to environmental impact explicit.

It is also noteworthy how the increase in research en-
gagement with AMG, as documented by Morreale at al.
[1], coincides with corporate participation in these efforts.
In the years 2020 until 2023, ca. 40 % of the papers in
our corpus are co-authored by individuals with affiliations
in private companies, compared to 27% in the years be-
fore that. This interestingly compares to the 27% of papers
with industry-affiliated co-authors in our second corpus,
i.e. papers that train models for non-generative purposes.
Overall, these numbers suggest a certain focus of corporate
interest on generative approaches.

Direct corporate funding of the research efforts is,
however, rarely documented, with only four papers in
the whole analyzed first corpus (N = 80) indicating ei-
ther involvement of private funding or GPU support from
NVIDIA. Overall, a slight majority of papers does not
report any funding sources at all. The remainder refers
mainly to public funding agencies, most likely as a re-
sponse to the demands by the agencies for acknowledg-
ment. This suggests an overall situation in which vested
financial interests –– by private and public stakeholders ––
are documented in a way that is not very transparent.

As shown in Figure 1, the majority of the AMG model
development comes from researchers affiliated with insti-
tutions in the US (20 papers) or China (16), followed by
Taiwan (11), Japan (11), and the UK (8). In total, these
five countries account for over 60% of the ISMIR publica-
tions included in corpus 1. These numbers will gain sig-
nificance in the context of carbon footprint estimates in the
next section.

4.2 Energy Use Calculations

For the set of models from corpora 1 and 2 described above
that reported the full details of the computational hardware
and training time (N = 26), we conducted calculations on
the estimated energy use based on the type and number of
GPUs/TPUs, the reported training time, and the Thermal
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Design Power (TDP) of each processor type, as provided
by the manufacturers. The energy used for a single train-
ing run was consequently computed as the product of the
number of processors, computing time in hours, and TDP.
The results of this calculation for each model analyzed are
shown in Table 1.

Based on our calculations, the mean/median amount re-
quired to train an ISMIR model (for either corpus 1 or 2)
is about 224.8kWh (mean) and 18.46kWh (median). This
amounts roughly to the energy demand of a single-person
household for two months/three days in a Western country,
such as Germany. 3 As is evident from Table 1, there is
no clear distinction between the energy use of generative
or analytic models, which implies that the pursued MIR
task may not be an important factor. Instead, the distribu-
tion of values is strongly focused around smaller values,
and only four outlier models require an amount of energy
that lies above the average of 225kWh (hence, the large
difference between mean and median). Out of these, the
three most energy-demanding models in terms of training
come from large IT corporations. The amount of energy
required to train the models provided in these papers sums
to 5.11MWh, which is about 87% of the total energy de-
mand related to all 26 papers with full resource disclosure.
In total, taking into account the full range of energy re-
quirements, the papers with industry-affiliated authors de-
mand about 89% of the total resources related to all 26
full-disclosure papers. In contrast, industry-affiliated au-
thors are found only in 40 out of the 113 papers (35%) in
our two corpora.

As mentioned in Section 3, an estimate of the actual car-
bon footprint requires – among other aspects – detailed in-
formation about the data centers at which the computation
takes place and their energy sources. Nevertheless, we will
approach a preliminary estimate of the carbon footprint
related to model training at the most recent ISMIR con-
ference. We carefully checked all papers in ISMIR 2023
and determined the number of papers that train a machine
learning model, resulting in 62 out of 104 papers (59.6%).
We accommodate for the fact that a small amount of these
papers train “shallow” machine learning models and use an
estimate of 50% of ISMIR papers that train deep learning
models in recent years. Assuming the median as the repre-
sentative statistic for the average energy consumption for
training a model, we arrive at an energy consumption of
18.46kWh * 52 papers = 959.92kWh.

Starting from this number, two further obstacles impede
a reliable estimate of the carbon footprint: 1) In each pa-
per, the model has not been trained only once, but the to-
tal development of the presented model will have required
more energy. Strubell et al. [14] have documented how
the process of fine-tuning a specific model exceeded the
energy demand of one training run by 24 times, and that
a whole R&D cycle is three orders more expensive than
a single training run. Lacking more precise numbers, it
seems, therefore, fair to assume that the actual energy con-

3 5.77kWh per day for a one-person household in 2021 in Germany
according to www.destatis.de.

Article Corpus Energy cost

Hawthorne et al 2022 [47] 4 1 4 375 kWh
McCallum et al 2022 [44] 2 444 kWh
Toyama et al 2023 [48] 2 296 kWh
Sarkar et al 2022 [49] 2 240 kWh
Ma et al 2023 [50] 2 144 kWh
Alonso-Jiménez et al 2 79 kWh
2023 [51]
Perez et al 2023 [52] 2 36 kWh
Brunner 2018 [53] 1 33 kWh
Teng 2017 [54] 1 29 kWh
Di Giorgi et al 2022 [55] 2 24 kWh
Wu, Hsiao et al 2022 [56] 1 22 kWh
Zhao et al 2022b [57] 2 20 kWh
Donahue et al 2019 [58] 1 20 kWh
Donahue et al 2022 [59] 2 17 kWh
Yeh et al 2022 [60] 1 12 kWh
Wu, Chiu et al 2022 [61] 1 12 kWh
Singh et al 2022 [62] 2 10 kWh
Wei et al 2022 [46] 2 8 kWh
Wu & Yang 2020 [63] 1 6 kWh
Pasini & 1 6 kWh
Schlüter 2022 [64] 5

Zhao et al 2022a [65] 1 4 kWh
Zhang et al 2022 [66] 1 3 kWh
Srivatsan & 2 3 kWh
Berg-Kirkpatrick 2022 [67]
Mittal et al 2021 [68] 1 3 kWh
Foscarin et al 2023 [69] 2 0,3 kWh
Peracha 2020 [70] 1 0,2 kWh

Table 1. Energy cost of model training in corpora 1 (N=13)
and 2 (N=13).

sumption related to a paper is at least that of fine-tuning
an existing model. Hence, with a very conservative as-
sumption of a factor of 20, we arrive at an estimate of
Eest = 19.20MWh for all model development related to
a recent ISMIR conference.

The second obstacle is that the location of the data cen-
ter at which computation took place is not documented.
Therefore, we decided to use the countries of author affili-
ations as an indicator of where computation took place. In
terms of carbon footprint, this has an impact as the USA
and China are both on the high end of the carbon intensity
spectrum [19]. We retrieved the average carbon intensity
of the grids in 2022 6 for each country depicted in Figure
1, Ic (in gCO2eq/kWh) and computed the estimate for the
total carbon footprint Ctotal of one conference as

Ctotal = (Eest/Ntotal) ·
∑

c∈C

Nc · Ic (1)

with Nc being the number of times co-authors were from

4 For the four models in this paper, only the minimum and maximum
training times were specified. We use the mean of these two values as an
estimate.

5 Full compute info for one of the included models only.
6 https://ember-climate.org/data-catalogue/yearly-electricity-data/
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a specific country out of the set C of all countries as de-
picted in Figure 1, Ntotal = 96 is the total count of the
histogram. This results in an estimate of Ctotal = 7.593
tons of carbon dioxide from training processes related to
one recent ISMIR conference.

Putting this number into context, according to the es-
timates by [43], the training of GPT-3 has caused energy
consumption of about 189 MWh. With the carbon inten-
sity of the USA in 2017 (higher than in 2022) of 449.06
gCO2eq/kWh, this has produced 85 tons of carbon diox-
ide, one order larger than our estimate for the whole of
ISMIR.

5. DISCUSSION

While this paper focused on the training phase of music-AI
models, more information is needed about the energy con-
sumption along the full pipeline of model development, in-
ference 7 , and deployment. To this end, authors of ISMIR
papers should – at the very least – clearly document the
resources (compute time; type and number of processors)
needed for training and inference, and – ideally – include
more minute documentation of actual energy use during
the whole development cycle. We encourage a discussion
to adopt standards similar to NeurIPS within the ISMIR
submission process.

A commonly used framework that can guide the direc-
tion towards considering the environmental impact of IS-
MIR in a broader sense can be found in the concept of plan-
etary boundaries [71]. There are nine planetary bound-
aries that can help us to understand and analyze how our
actions might influence the environmental systems. These
include, for example, biodiversity loss and species ex-
tinction, stratospheric ozone depletion, ocean acidification,
land-system change/deforestation, freshwater use, and at-
mospheric aerosol load. Taking the example of freshwa-
ter use, these dimensions can be directly applied to ISMIR
research to examine the environmental impact in relation
to the planetary boundaries. Efforts can be directed to-
ward questions such as what is the level of water use for
hardware cooling in computational tasks at ISMIR, and
whether the life cycles of the used hardware are contribut-
ing to environmental processes such as ocean acidification
or species extinction. Unfortunately, six of nine planetary
boundaries are currently transgressed [72], and that places
us on track for increased climate change and breakage of
the prevailing ecosystems.

While energy estimates provide a baseline for under-
standing the scale of the specific issue of energy consump-
tion and for comparing individual model types to one an-
other, they are not in and of themselves a sufficient solution
to the problem of environmental sustainability in model de-
velopment at ISMIR or elsewhere. In order to address the
complexity of the issues in all dimensions of the planetary
boundaries, context-specific inquiries into the impact and
effect of the ISMIR research and technologies developed

7 Two models in the second corpus discuss the use of GPU resources
for inference, but the included information does not allow conclusions
about the energy consumption during the experiments.

and used by the community are needed. Furthermore, a
broader cultural shift in thinking around AI development is
necessary to bring environmental sustainability to the IS-
MIR research agenda. We argue that ISMIR can lead by
a good example of more environmentally conscious model
development, more mindful and minimalistic energy use,
and reflective accounting for the environmental externali-
ties and their political economies in current research and
development practices.

We acknowledge that the calculations presented here
are necessarily tentative by their nature. This is inherently
a result of the lack of transparency in the ISMIR publica-
tions. While the information currently provided can pro-
vide us with indications of the scale of energy used in
training the models, there are several details that may im-
pact the exact values of these variables, which cannot be
accounted for due to partial or lacking information. Such
inaccuracies may skew the implied environmental impact,
with undesirable consequences for social practices in the
community. However, we argue that our estimate is very
conservative on several points: First, the factor of 20 mul-
tiplied with the energy used for one training is below the
estimates of [14], second, the use of TDP ignores all ad-
ditional energy consumption by other hardware, and third,
we use the median as a statistic. We would therefore like to
point out that the likely underestimated energy costs could
lull the research community into a false sense of security
and encourage it to refrain from efforts that would be valu-
able for the environment. These estimates nevertheless
provide an important basis upon which further inquiries
into the complete environmental and ecological footprint
of the conference can build.

Furthermore, we understand that the authors who con-
tributed to our estimates were those who actively docu-
mented resource requirements. These papers may seem
unfairly a focus of critique in our work, as many other
authors who did not volunteer resource information at all
were not cited in the paper. We believe it is instrumental
to document the need for specifying the use of resources
in the ISMIR community, and encourage further proactive
efforts toward that goal.

6. CONCLUSION

In the era of acute climate crisis, the interest in resource-
demanding music generation and analysis tasks shows
signs of acceleration rather than slowing down. It is essen-
tial that research communities such as ISMIR apply criti-
cal self-reflection and acknowledge their role in promoting
practices that may be excessively harmful to the environ-
ment. Increased transparency in documentation in ISMIR
papers would serve better accounting for the current im-
pacts of the research, steering the community norms and
guidelines towards more sustainable practices, and provid-
ing a positive example for the wider industry. We encour-
age the ISMIR community to continue these critical dis-
cussions around the ethical impacts of MIR, including en-
vironmental sustainability and its political ecologies and
beyond.
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