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ABSTRACT

Singing voice beat tracking is a challenging task, due to

the lack of musical accompaniment that often contains

robust rhythmic and harmonic patterns, something most

existing beat tracking systems utilize and can be essen-

tial for estimating beats. In this paper, a novel temporal

convolutional network-based beat-tracking approach fea-

turing self-supervised learning (SSL) representations and

adapter tuning is proposed to track the beat and downbeat

of singing voices jointly. The SSL DistilHuBERT repre-

sentations are utilized to capture the semantic information

of singing voices and are further fused with the generic

spectral features to facilitate beat estimation. Sources of

variabilities that are particularly prominent with the non-

homogeneous singing voice data are reduced by the effi-

cient adapter tuning. Extensive experiments show that fea-

ture fusion and adapter tuning improve the performance

individually, and the combination of both leads to signif-

icantly better performances than the un-adapted baseline

system, with up to 31.6% and 42.4% absolute F1-score im-

provements on beat and downbeat tracking, respectively.

1. INTRODUCTION

Singing voice beat tracking is an important music informa-

tion retrieval (MIR) task that can serve many downstream

applications. For example, singing transcription can uti-

lize beats to finetune the onsets of the transcribed notes for

better accuracies [1] as well as automatic accompaniment

generation, where the beat information can be instrumen-

tal for drum arrangements [2]. However, existing literature

on beat tracking mostly focused on music with instrumen-

tal accompaniment [3–11], and tracking beats of singing

voice is largely unaddressed and remains a key challenge

to date. Its difficulty can be attributed to the lack of mu-

sical accompaniment that contains rhythmic and harmonic
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patterns vital for beat tracking in general. This leads to sev-

eral challenges in developing effective singing voice beat

tracking systems.

First, the existing state-of-the-art music beat tracking

systems deliver poor performances on singing voices due

to the notable inherent disparities between complete mu-

sic songs and singing voices [12]. For example, the tradi-

tional music beat tracking system often learns latent map-

ping based on acoustic clues such as the spectrogram mag-

nitude [13–15], which is often caused by the reoccurring

drums or bass. Such clues, however, are barely present

in singing voices. Inspired by the similarity between the

singing voice and speech [16], the self-supervised learning

(SSL) speech representations are utilized and demonstrate

advantages over spectral features in singing voices [12].

Second, the naturalistic singing voice data is generally

highly non-homogeneous due to its inherent variabilities

from different conditions, such as genres, singers, record-

ing devices, or languages [17]. The resulting high degree

of singing voice heterogeneity may cause a large mismatch

between training and test distributions, which can signifi-

cantly degrade system performances. This issue is partic-

ularly prominent with the singing voice beat tracking that

lacks musical accompaniment, as opposed to music beat

tracking containing rich percussive and harmonic profiles.

To this end, we present a novel singing voice beat and

downbeat tracking system using a temporal convolutional

network featuring SSL representations and adapter tuning.

More specifically, the SSL DistilHuBERT representations

are utilized to capture the essential para-linguistics, se-

mantic, and phonemic level characteristics and are further

fused with the generic spectral features to facilitate beat es-

timations. A series of parameter-efficient adapters are per-

formed to compensate for mismatch arising from the inher-

ent variabilities among diverse singing voice datasets. The

main contributions of the paper are summarized below:

1) To our knowledge, this paper is the first to investigate

the joint beat and downbeat tracking task featuring the fu-

sion of SSL representations and spectral features. In con-

trast, similar prior research was conducted in the context of

only beat estimations [12] or beat/downbeat tracking using

spectral features only [18].

2) Extensive experiments show that the train-test
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Figure 1. Examples of joint beat and downbeat tracking systems using Temporal Convolutional Network (TCN) shown

in the light grey box (top). The pre-trained self-supervised DistilHuBERT model is shown in the deep cyan-blue box (top

left). The parameter-efficient adapters described in Section 4 are shown in the light purple colored box (bottom left corner),

which includes a) Learning Hidden Unit Contributions adaptation, b) Bias Adapter adaptation, c) Residual Adapter (RA)

adaptation and d) Low-Rank Adaptation (LoRA). The fusion layer described in Section 3 is shown in the light orange box

(bottom right), which includes e) Concatenation, f) Weighted linear interpolation fusion, and g) Factorized attention fusion.

.
data distribution mismatch issue presented in the non-

homogeneous singing voice data significantly degrades the

beat-tracking performance, particularly in downbeat esti-

mation. To this end, inspired by the use of parameter-

efficient adaptation techniques in machine learning fields

[19–24], this paper presents the first work that successfully

employs efficient adapter tuning approaches for singing

voice beat-tracking tasks to address the mismatch above.

3) The efficacy of the proposed beat tracking approach

is consistently demonstrated across various public datasets

over the un-adapted baseline beat tracking system. In addi-

tion, the inherent generality of the proposed approach and

the accompanying implementation details outlined in this

paper allow their further application to other beat-tracking

systems or MIR tasks.

2. TCN-BASED BEAT TRACKING SYSTEMS

In this paper, we adopt temporal convolutional network

(TCN) as the backbone for singing voice beat tracking for

two reasons: 1) TCN has shown solid performances in

the traditional beat tracking involving musical accompani-

ment. First proposed by [25], TCN achieved superior per-

formances to the previous SOTA bi-directional LSTM and

has been widely used for beat tracking since then [26, 27].

2) Although SpecTNT has recently outperformed TCN [9],

TCN is still lightweight with way fewer parameters than

SpecTNT, making it easy for deployment and cost-efficient

as commercial applications.

2.1 Architecture

The conventional TCN-based beat tracking system con-

sists of a front-end convolution module and a TCN mod-

ule, connected by a fusion layer shown in Fig. 1 (light grey

box, top). Each convolution layer in the front-end module

has 20 channels, a stride of one, and kernels with various

sizes. Max-pooling, exponential linear unit (ELU) acti-

vation [28], and dropout neural operations are applied to

each convolution layer in sequence. The TCN module is

stacked by ten dilated convolutional layers with exponen-

tially increased dilation factors 20, 21, · · · , 29 resulting in

a large receptive to capture long temporal contexts. Each

dilated convolutional layer contains three dilated convo-

lution blocks, each with different dilation rates (one dila-

tion factor, half the dilation factor, and twice the dilation

factor) and 20 channels. ELU activation and dropout op-

erations are applied to each dilated convolution block, fol-

lowed by an output linear layer shown in Fig. 1 (green box,

top right).

2.2 Multi-task Learning

Based on the above TCN-based architecture, the beat-

tracking task can be cast as a binary classification through

time, for example, classifying the presence or absence of a

beat for each frame. To perform the joint beat and down-

beat tracking in a single system [26,27], an auxiliary down-

beat tracking task by introducing a separate binary classi-

fication linear layer is carried out to produce the down-

beat. Thus a multi-task criterion that interpolates between

the beat and downbeat binary cross entropy (BCE) costs is

adopted for training, which can be formulated as

LMTL = ηLBEAT + (1− η)LDBEAT , (1)

where η ∈ [0, 1] is the tunable hyper-parameter for bal-

ancing the beat BCE cost LBEAT and downbeat BCE cost

LDBEAT . Both beat and downbeat prediction outputs are

post-processed with a dynamic Bayesian network (DBN)

[29–31] to produce the final sequence of predictions [15].

2.3 Input Features

Two types of feature embeddings are fed into the TCN-

based beat-tracking system. The first is the traditional 81-

dim log-magnitude mel-frequency spectrogram features,

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

344



which are widely adopted in the music beat tracking tasks

[9, 27, 32]. Another is the SSL DistilHuBERT features.

DistilHuBERT [33, 34] is a lightweight self-supervised

pre-trained speech foundation model. Its lighter architec-

ture enables faster inference than other pre-trained foun-

dation models. The 768-dim DistilHuBERT feature rep-

resentations extracted from the last HuBERT layer are

proven to serve as beneficial feature embeddings in analyz-

ing singing rhythms [12] due to the acoustic and linguistic

similarities between singing voices and speech.

3. FEATURE FUSION

The process of combining diverse feature representations,

named feature fusion, plays a vital role in determining the

effectiveness of beat-tracking systems [35]. To this end,

several fusion approaches are introduced in this section to

integrate the traditional spectrogram and pre-trained Hu-

BERT feature representations effectively.

3.1 Early Feature Fusion

Early feature fusion is the combination of diverse feature

representations performed early in a neural network [36].

For example, the features are fused at the network’s in-

put layer. Let x = [x1,x2, · · · ,xT ] ∈ R
m×T and u =

[u1,u2, · · · ,uT ] ∈ R
n×T denote the spectrogram and

HuBERT feature representations with T frames, respec-

tively. Two forms of early feature fusion are investigated.

a) Input concatenation refers to directly concatenating

the spectrogram and HuBERT features at the frame level.

The concatenated feature representation z at t-th frame can

be expressed as zt = [xt;ut] ∈ R
n+m.

b) Weighted linear interpolation refers to interpolat-

ing the frame-level spectrogram and HuBERT feature rep-

resentations with a learnable hyper-parameter α ∈ [0, 1].
The interpolated feature representation at t-th frame can be

formulated as zt = αxt+(1−α)Aut, where A ∈ R
n×m

is a learnable projection matrix to enable the dimension of

HuBERT features to be consistent with that of the spectro-

gram features.

3.2 Late Feature Fusion

The combination of diverse features at a later network layer

leads to late feature fusion [37]. This allows the model

to leverage high-level, abstract representations, leading

to more informed decisions and improved performance.

As shown in Fig. 1, the spectrogram and pre-trained Hu-

BERT features are first fed into a separate CNN mod-

ule before being further combined using different fusion

schemes. Let x̂ = [x̂1, x̂2, · · · , x̂T ] ∈ R
k×T and û =

[û1, û2, · · · , ûT ] ∈ R
k×T denote the high-level CNN out-

put hidden representations with T frames using the spec-

trogram and HuBERT features, respectively. The concate-

nation and weighted combination operations can also be

performed in a late fusion style, which is illustrated as a)

late concatenation fusion ẑt = [x̂t; ût] ∈ R
2k and b) late

weighted linear interpolation fusion ẑt = αx̂t+(1−α)ût.

3.3 Factorized Attention Fusion

In order to focus on relevant selective representations while

suppressing less important ones, factorized attention fu-

sion is performed in a late fusion fashion. The SSL hidden

representation at t-th frame ût are first factorized into R
subspace representations [v1

t ,v
2
t , · · · ,v

R
t ] ∈ R

k×R using

a series of parallel linear transforms, which is expressed as

[v1
t ,v

2
t , · · · ,v

R
t ] = [Q1,Q2, · · · ,QR

t ]ût, (2)

where Qr ∈ R
k×k is the linear transformations for r-

th subspace. The spectrogram hidden embedding at t-th
frame x̂t is projected into a R-dim interpolation vector

wt = [w1
t , w

2
t , · · · , w

R
t ] ∈ R

R using a projection matrix

P ∈ R
R×k, which is given as wt = Softmax(Px̂t). Sub-

sequently, the fused feature representation can be obtained

by an attention mechanism [38],

ẑt = Sigmoid(
R∑

r=1

wr
tv

r
t ). (3)

4. PARAMETER EFFICIENT ADAPTATION

A straightforward solution to reduce the mismatch between

training and evaluation distributions is to directly fine-tune

the entire system using the target-domain singing voice

data. However, this adaptation scheme not only encounters

overfitting problems due to the scarcity of singing voices

but also poses key challenges to adaptation parameter stor-

age. Parameter-efficient adaptation approaches [39–41]

that introduce limited adaptation parameters with the orig-

inal model parameters unchanged have been proposed to

tail for the above overfitting and parameter storage issues.

Inspired by this idea, several prominent parameter-efficient

adapters are explored for singing voice beat-tracking sys-

tems in this section.

4.1 Learning Hidden Unit Contributions

Learning hidden unit contributions (LHUC) adaptation is

an effective speaker adaptation solution that accounts for

speaker variation of speech [42]. The basic idea of LHUC

adaptation is to modify the amplitudes of activation out-

puts using a scaling vector. Let rl,e ∈ R
u denote the adap-

tation parameters for the e-th domain in the l-th hidden

layer, where u is the dimension of adaptation parameters.

The adapted hidden output hl,k can be given as

hl,k = hl ⊙ ξ(rl,k), (4)

where hl is the original hidden activation output at the

l-th hidden layer, ⊙ is the Hadamard product operation,

ξ(rl,e) is the scaling vector parameterized by rl,e, and ξ(·)
is the element-wise 2×Sigmoid(·) function with a range of

(0, 2). During adaptation, the adaptation parameters rl,k
for each domain are initialized as zeros vector. An exam-

ple of LHUC adaptation is shown in Fig. 1(a).
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4.2 Bias Adaptation

The bias adapter adaptation [43] adds frame-level bias to

the hidden representation shifts using a domain-dependent

shift vector ve ∈ R
u and a linear layer Cβ , which is shown

in Fig. 1(b). The frames crucial for beat tracking should

be assigned a larger representation shift compared to other

frames. The linear layer produces a frame-level weight

vector β = Cβhl = [β1, β2, · · · , βT ] ∈ R
T , where βt

denotes the weight of the t-th frame hidden representation.

Therefore, the domain-dependent representation shifts ve

can be enhanced by applying frame-level weights, and the

adapted hidden layer output can be expressed as

hl,e = hl + ve ⊗ β, (5)

where ⊗ is the outer product operation, and the outer prod-

uct of shift-vector v and the weight β can be expressed as

ve ⊗ β = [β1ve, β2ve, · · · , βTve] ∈ R
u×T .

4.3 Residual Adapter

Inspired by the residual idea [44], a residual adapter (RA)

with slight modifications is designed for beat tracking. The

adapter starts with a down-linear projection Wd
e ∈ R

r×u,

followed by a non-linear GeLU activation function ζ(·),
and an up-linear projection Wu

e ∈ R
u×r. Let fRA(·;Θl,e)

denote the residual adapter function for e-th domain in the

l-th hidden layer, where Θl,e is the adaptation parameters

for e-th domain. The adapted hidden outputs are given as

hl,k = hl + fRA(hl;Θl,e), (6)

fRA(hl;Θl,e) = LN(DP(Wu
l,eζ(W

d
l,ehl))), (7)

where DP(·) and LN(·) denote the dropout and layernorm

operations, respectively. The adaptation capacity can be

controlled by managing the number of parameters in each

adapter module through controlling the bottleneck dimen-

sion r. An example of an RA adapter is shown in Fig. 1(c).

4.4 Low-rank Adaptation

Instead of the non-parallel nature of adapter modules that

consumes additional GPU time mentioned above, Low-

rank adaptation (LoRA) [45] reduces the number of adap-

tation parameters by learning rank-decomposition matrix

pairs {Wd,Wu} while freezing the original weights. The

LoRA-adapted linear hidden output can be expressed as

hl,k = fLoRA(hl−1;Θl,e), (8)

= (Wo
l +Wu

l,eW
d
l,e)hl−1, (9)

where fLoRA(·;Θl,e) is the LoRA adapter, Wo
l ∈ R

n×u

is the original pre-trained weight matrix, Wd
l,e ∈ R

r×u

and Wu
l,e ∈ R

n×r are the trainable low-rank decomposi-

tion matrices. It is noted that the rank r ≪ min(u, n) is

far less than the dimension of the original matrix, which

allows for reducing the number of adaptation parameters.

An example of a LoRA adapter is shown in Fig. 1(d).

Table 1. Description of the singing voice beat tracking

datasets. † and ∗ represent the music beat tracking dataset

and the music source separation dataset, respectively.

Dataset # Hours # Excerpts Genres

GTZAN† [48] 5.9 754 Blues, Country, Disco, Hiphop, etc.

RWC Pop† [49] 5.4 273 Japanese Pop., etc.

Ballroom† [50] 2.8 313 Rumba, Tango, Waltz, Jive, etc.

Hainsworth† [51] 1.9 173 Jazz, Metal, Rock, Opera, etc.

MUSDB18∗ [52] 6.4 144 Pop., Country, Rock, etc.

URSing∗ [53] 3.4 142 Chinese Pop., etc.

4.5 Estimation of Adaptation Parameters

Let De = {Xe,Y e} denote the adaptation data for

e-th domain, where Xe and Y e stand for the singing

voice waveform and the corresponding beat/downbeat se-

quences, respectively. Without loss of generality and for

simplicity, let Θ denote the original model parameters. In

the context of adaptation, the adaptation parameters Θe

conditioned on the e-th domain can be estimated by mini-

mizing the loss function in Eqn. (1), which is given by

Θ̂e = argmin
Θe

{LMTL(De;Θ,Θe)}. (10)

5. EXPERIMENTS

5.1 Datasets and Evaluation Metrics

To the best of our knowledge, there are no publicly avail-

able datasets that include pristine vocal audio alongside

beats and downbeats annotations. Annotating beats and

downbeats based solely on vocal signals can be arduous

and subjective, even by human experts, since there are no

evident rhythmic cues like percussive instruments to accu-

rately comprehend the singer’s rhythmic intentions.

Therefore, we follow the strategy described in [12] to

utilize the existing public MIR datasets and systems to

create the singing voice data with beat/downbeat annota-

tions. This includes a) four music beat tracking datasets

with available beat annotations, where the singing signals

are extracted by the Demucs source separation model [46],

and b) two music source separation datasets with avail-

able isolated singing tracks, where the preliminary beats

and downbeats annotations are generated by the existing

TCN-based beat tracking system [25] using the full music

mix (singing with musical accompaniment), then manual

revision is further performed to correct the potential anno-

tation errors. Altogether, six datasets are used in this paper

as shown in Table 1, where a silence-stripping technique

is applied to each dataset to remove the long chunks of si-

lence. The 90% of the whole data randomly selected from

a uniform distribution is used for training, while the re-

maining 10% is used for evaluation. The evaluation metric

of F1-score with a tolerance window of ±70 ms, a typical

setting commonly used in the traditional beat tracking [25],

is adopted for our performance evaluation. We also adopt

P-score, Cemgil, and Goto [47] as additional evaluation

metrics to further demonstrate the advantages of the pro-

posed approaches in the final experiments (Table 4).
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Table 2. Beat and downbeat tracking performance of TCN

systems using different feature fusion methods evaluated

on the GTZAN, RWC pop (RWCPO), and MUSDB18

(MUSDB) datasets in terms of F1-score.

ID Input Features Fusion Methods GTZAN RWCPO MUSDB

Beat/Downbeat Tracking F1 Scores

1 Spectrogram - 0.48/0.26 0.65/0.53 0.31/0.15

2 DistilHuBERT - 0.74/0.47 0.76/0.68 0.38/0.17

3

Spectogram

&

DistilHuBERT

Input Concatenation 0.78/0.56 0.83/0.79 0.41/0.25

4 Input Weighted 0.77/0.55 0.86/0.81 0.43/0.25

5 Late Concatenation 0.81/0.53 0.87/0.81 0.45/0.25

6 Late Weighted 0.79/0.58 0.88/0.84 0.47/0.26

7 Factorized Attention 0.80/0.51 0.91/0.82 0.48/0.23

5.2 Implementation Details

Two feature extractors, including the mel-spectrogram fea-

ture extractor and the pre-trained SSL DistilHuBERT fea-

ture extractor [34], are employed to generate the 81-

dimensional spectral features and 768-dimensional SSL

feature representations of vocal signals. In this paper, the

vocal signals of all datasets are resampled to 16000 Hz. As

illustrated in Section 2, the temporal convolution network

consists of a front-end convolution and TCN modules. The

front-end convolution module tailored for late feature fu-

sion consists of a 3-layer convolution network1 and a 5-

layer convolution network2 for processing the spectral and

SSL feature representations, respectively. The kernel size

and stride for the Max-pooling operation are 1 × 3 for all

convolution layers. The TCN module consists of ten di-

lated convolution layers, wherein the dilation factors in-

crease exponentially.

During the TCN-based beat tracking system training,

all weights of the system are randomly initialized. The

Ranger optimizer [54] with an initial learning rate of 0.001,

the ReduceLRonPlateau scheduler with a factor of 0.9 and

patience of 5, and a dropout rate of 0.1 are used for training

and adaptation. The training and adaptation epochs are set

as 100 and 30, respectively. The hyper-parameter of multi-

task learning in Eqn. (1) is empirically set as η = 0.2.

Since the ratio of positive and negative examples in the

beat-tracing task is often imbalanced, the weighted binary

cross-entropy loss is applied, and the weights of positive

examples for the beat and downbeat costs are set to be 10
and 20, respectively.

5.3 Performance of Feature Fusion

Table 2 shows the beat and downbeat tracking F1 scores

of TCN systems using different feature representation fu-

sion methods. Several important findings can be observed.

a) The systems using SSL DistilHuBERT features (ID.2)

show better F1 performance than those using the traditional

spectral features (ID.1) in all three evaluation sets. This

demonstrates that the semantic information captured by

SSL speech representation is crucial for singing voice beat

1 The channel, kernel size, stride, and padding of Conv2D used in 3-
layer convolution network for each convolution layer are {20, 20, 20},
{3x3,1x12,1x3}, {1,1,1} and {1x0, 0x0, 1x0} respectively.

2 The channel, kernel size, stride, and padding of Conv2D used in
5-layer convolution network for each convolution layer are {20, 20,
20, 20, 20}, {3x3,1x12,1x3,3x3,1x12,3x3}, {1,1,1,1,1} and {1x0, 0x0,
1x0,0x0,1x0} respectively.
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Figure 2. F1-score of the beat (upper) and downbeat (bot-

tom) tracking when training data and test data are collected

from the same (diagonal value) or different sources.

tracking. b) All systems that leverage feature fusion ap-

proaches (ID.3-7) outperform the systems using only one

single spectral (ID.1) or SSL feature (ID.2). This confirms

our motivation that spectral and SSL features are comple-

mentary as they capture different characteristics of vocal

signals. c) The late weighted linear interpolation fusion

method (ID.6) achieves the best F1 results on the down-

beat tracking and competitive beat tracking performance

among all fusion approaches, therefore we selected it for

the following experiments.

5.4 Performance of Adaptation

The mismatch across different datasets is revealed in

Fig. 2. a) When the system is trained on singing voice

data from the same source as the test data, the best beat

and downbeat tracking performance are obtained (diagonal

value). b) The mismatch between training and test distribu-

tions (non-diagonal) significantly degrades the beat track-

ing performance, especially in downbeat tracking. This

confirms our assumption that the mismatch across differ-

ent datasets is particularly prominent in singing voice beat

tracking due to the lack of robust rhythmic and harmonic

patterns. Therefore, mismatch is an essential issue that

needs to be addressed in multi-condition training.

Table 3 shows the beat and downbeat tracking per-

formance of the TCN systems configured with different

adapters using only DistilHuBERT features. Several trends

can be found. a) It is not surprising that multi-condition

systems (ID.2) trained on all six datasets do not always

outperform the in-domain systems (ID.1) trained on the

well-controlled data from the same source as test data

because of the mismatch issue. This demonstrates that
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Table 3. Beat and downbeat tracking performance of TCN systems configured with different adapters on the GTZAN,

RWCPO, Ballroom (BROOM), Hainsworth (HAINS), MUSDB, and URSing (URSIN) datasets in terms of F1-score.

ID Systems
Adapter Datasets

Method Location # Params GTZAN RWCPO BROOM HAINS MUSDB URSIN

Beat/Downbeat Tracking F1-scores

1 In-domain - - - 0.74/0.47 0.76/0.68 0.75/0.54 0.40/0.17 0.38/0.17 0.62/0.29

2 Multi-condition - - - 0.78/0.57 0.89/0.45 0.72/0.43 0.50/0.33 0.53/0.25 0.61/0.22

3

Multi-condition

with

Adaptation

Fine-tune ALL Layers 100% 0.80/0.59 0.91/0.82 0.80/0.57 0.54/0.38 0.55/0.38 0.72/0.34

4 LHUC First CNN Layer 5% 0.78/0.56 0.88/0.59 0.72/0.46 0.50/0.33 0.53/0.26 0.62/0.25

5 BIAS First CNN Layer 10% 0.79/0.57 0.89/0.61 0.71/0.47 0.52/0.35 0.55/0.31 0.62/0.24

6 LoRA First CNN Layer 20% 0.80/0.62 0.90/0.68 0.78/0.56 0.54/0.37 0.56/0.38 0.66/0.33

7 RA First CNN Layer 20% 0.80/0.65 0.91/0.80 0.80/0.57 0.58/0.43 0.58/0.41 0.68/0.38

8 RA Second CNN Layer 10% 0.78/0.60 0.90/0.77 0.76/0.56 0.57/0.41 0.55/0.40 0.68/0.35

9 RA Third CNN Layer 5% 0.79/0.62 0.90/0.78 0.76/0.56 0.57/0.39 0.55/0.40 0.68/0.33

Table 4. Beat and downbeat tracking performance of the proposed TCN systems incorporating fusion and adapters.

ID Systems Input Features
Feature

Fusion
Adapter

Beat Tracking Downbeat Tracking

F1 P-score Cemgil Goto F1 P-score Cemgil Goto

1 Multi-condition Spectrogram ✗ ✗ 0.497 0.541 0.410 0.429 0.254 0.420 0.212 0.256

2 Multi-condition DistilHuBERT ✗ ✗ 0.656 0.681 0.565 0.561 0.389 0.501 0.351 0.370

3 Proposed Spec. & HuBERT ✓ ✗ 0.774 0.756 0.684 0.703 0.524 0.603 0.487 0.520

4 Proposed Spec. & HuBERT ✓ ✓ 0.813 0.801 0.713 0.757 0.678 0.692 0.621 0.663

blindly expanding the training data is insufficient to en-

hance the system’s generalization. b) All systems con-

figured with adapters (ID.4-7) improve the performance

over both multi-condition systems (ID.2) and in-domain

systems (ID.1), which suggests that parameter-efficient

adapter tuning methods can address the mismatch issue ef-

fectively. c) The residual adapter (RA) (ID.7) applied at the

first CNN layer achieves the best results relative to other

adaptation approaches. It is noteworthy that RA adapta-

tion using only 20% of adaptation parameters shows com-

parable performance to fully fine-tuned techniques (ID.3).

In addition, the observation that the performance gain of

downbeat tracking is greater than that of beat tracking is

consistent with our finding in Fig. 2 that the downbeat

tracking performance is more sensitive to the mismatch

issue. d) When incorporating adapters into the second

or third CNN layer (ID.8,9), with acceptable performance

degradation, RA adaptation delivers a much lighter archi-

tecture with fewer parameters.

5.5 Performance of The Proposed Method

The advantages of the proposed method incorporating both

late weighted linear interpolation feature fusion and RA

adapter are demonstrated in Table 4. The evaluation results

are the overall performance of all six evaluation sets using

micro averaging. Two main observations can be found.

First, the multi-condition system using the proposed

feature fusion approaches (ID.3) still outperforms the sys-

tems (ID.1,2) using only one spectral or SSL feature. Of

particular interest, this system (ID.3) is compared to the

existing singing voice beat tracking system [12], where the

same evaluation protocol is followed by using the entire

5.9-hrs GTZAN dataset for testing3. As a result, our sys-

tem achieved beat tracking F1-score of 0.784 on GTZAN, a

significant 5.1% absolute improvement compared to 0.733

3 The remaining five datasets are therefore used for training our sys-
tem, which is less data compared to [12].

from [12] even using less training data.

Second, consistent performance improvements across

all evaluation metrics are observed when the adapter tun-

ing scheme (ID.4) is applied. Overall significant F1-score

improvements of up to 31.6% and 42.4% absolute were

obtained over the baseline un-adapted system using only

one feature on the beat and downbeat tracking, respec-

tively. In particular, the beat/downbeat performances of

0.87/0.78, 0.95/0.87, 0.85/0.75, 0.66/0.49, 0.68/0.49,

and 0.79/0.41 are achieved by the proposed approach

(ID.4) on the test split of GTZAN, RWC pop, Ballroom,

Hainsworth, MUSDB, and URSing datasets, respectively.

6. CONCLUSIONS

This paper proposed a temporal convolution network based

beat-tracking framework featuring self-supervised learning

(SSL) representations and efficient adapter tuning to track

the beat and downbeat of singing voices jointly. Feature fu-

sion strategies were performed to leverage the advantages

of the generic spectral and SSL speech feature representa-

tions. Efficient adapter tuning was utilized to mitigate the

sources of variabilities of the non-homogeneous singing

voice data. Experimental results showed that the proposed

approach significantly outperforms the un-adapted base-

line system using only spectral or SSL features. The in-

herent generality of the proposed approaches allows their

further application to other beat-tracking systems or MIR

tasks. Future work will focus on solving the data sparsity

issue of the singing voice beat tracking task.
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