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ABSTRACT

Cloned voices of popular singers sound increasingly re-

alistic and have gained popularity over the past few years.

They however pose a threat to the industry due to personal-

ity rights concerns. As such, methods to identify the orig-

inal singer in synthetic voices are needed. In this paper,

we investigate how singer identification methods could be

used for such a task. We present three embedding mod-

els that are trained using a singer-level contrastive learning

scheme, where positive pairs consist of segments with vo-

cals from the same singers. These segments can be mix-

tures for the first model, vocals for the second, and both

for the third. We demonstrate that all three models are

highly capable of identifying real singers. However, their

performance deteriorates when classifying cloned versions

of singers in our evaluation set. This is especially true for

models that use mixtures as an input. These findings high-

light the need to understand the biases that exist within

singer identification systems, and how they can influence

the identification of voice deepfakes in music.

1. INTRODUCTION

In April 2023, the track “Heart on my Sleeve” by an anony-

mous TikTok user Ghostwriter977 put the music industry

in a frenzy [1,2]. The artist used artificial intelligence (AI)

based cloning technologies to turn their voice into Drake

and the Weeknd’s [3], two of the most popular singers in

the world. The song became very popular across music

streaming platforms, before being removed by demand of

the original artists’ right owners. This situation raised the

need for singer identification systems that can also identify

the original singer a synthetic voice was generated from.

In this paper, we train three embedding models for

singer identification using a singer-level contrastive learn-

ing scheme, where positive pairs consist of segments with

vocals of the same singers whilst negatives come from dif-

ferent singers. These samples can be mixtures for the first

model, vocals for the second, and both for the third. The

models are then evaluated on real singers using novel splits

of two open datasets, the Free Music Archive (FMA) [4,5]
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and MTG-Jamendo (MTG) [6], and a closed dataset con-

sisting of 176,141 songs that span 7500 popular singers.

We use this dataset due to its scale and the fact that its

singers are often the target of music voice deepfakes, some

of which we use in this paper. We demonstrate that all

three models are highly capable of classifying real voices,

though genres that use effects on vocals, such as hip-hop,

pop, and electronic music, and singers with long discogra-

phies can be much harder to classify. We then test whether

the performance of our models generalizes to cloned voices

of singers present in our closed dataset, using songs from

YouTube. In this context, singers are often cloned onto

famous instrumentals, or instrumentals that differ greatly

from their usual environments. We find that the perfor-

mance of all three models deteriorates quite significantly.

This is especially true for models that use mixtures as in-

puts. We hope that these findings can be useful for future

singer identification works. We believe that these should

aim to design systems that can identify both a singer’s real

and synthetic voice, in the hopes of combating the growing

problem of voice deepfakes in music.

We summarize the contributions of this work as follows:

1) We evaluate singer identification systems on songs with

real singers and cloned voices of some of the same singers.

2) We offer a detailed inspection of their performance, and

demonstrate that these systems struggle to classify syn-

thetic voices, genres where audio effects are applied to nat-

ural voices, and singers with long discographies. For syn-

thetic voices, this decline is even greater when instrumen-

tal information is present during training, and highlights

the need to understand the biases that exist within singer

identification systems. 3) We open source singer identifi-

cation splits of two open datasets, the FMA and MTG, that

can serve as future performance benchmarks for the task

of singer identification in polyphonic mixtures. 1

2. RELATED WORK

Singer identification, has been a staple of the music infor-

mation retrieval (MIR) community for more than twenty

years [7, 8]. Early approaches aimed to attenuate the in-

strumental parts of a song through the use of vocal melody

or pitch extraction and voice re-synthesis and detection al-

gorithms [9–11]. Classic features, such as mel-frequency

cepstral coefficients (MFCCs), were then computed on

these signals and used as inputs for a classifier. The im-

provements in music source separation [12,13] then led re-

1 https://github.com/deezer/real-cloned-singer-id
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searchers to build models that classify singers using the vo-

cals of each song [14, 15]. More recently, self-supervised

methods that process the vocal stem of each track have

been shown to be effective for singer identification [16,17].

However, source separation is computationally costly. As

such, these algorithms are hard to deploy on catalogues

that span millions of tracks. Several works have attempted

to build embedding models for singer identification that

use mixtures as inputs [18, 19], most notably by using

triplet learning where anchors and positives come from the

same singers in different instrumental environments.

The work in this paper focuses on testing whether singer

identification systems trained on real voices generalize to

cloned voices of the same singers. This task must not be

confused with the task of singing voice deepfake detec-

tion, which has very recently emerged in the signal pro-

cessing community [20,21]. Both works introduce datasets

for Chinese singing voice spoofing detection, and demon-

strate that state-of-the-art speech deepfake detectors fail to

accurately predict whether the songs in their datasets are

deepfakes. After supervised training, their performance is

improved. However, [21] also finds that the classifiers are

not robust to unseen singers, languages, or musical con-

texts, suggesting the need for more complex methods.

Finally, audio embeddings learned using artist-based

sampling scheme have been used in [22]. The authors used

metric learning, with anchors and positives coming from

the same artists, to train a neural network for artist disam-

biguation. More recently, [23] used sampling at the artist

level for contrastive learning and downstream tasks such as

genre and mood classification or music tagging.

3. EXPERIMENTAL SETUP

In this section, we first present the datasets used throughout

this paper. We then present the setup used to train an em-

bedding model for singer disambiguation using contrastive

learning. Finally, we present how this model is used for

singer identification.

3.1 Datasets

We collect a vast number of popular, commercial, and an-

notated songs for both training and evaluating the embed-

ding models. The data and their singer annotations come

from four sources: Deezer, MusicBrainz, Wikidata, and

Discogs [24]. The latter three are publicly available. In

total, we collect more than four million tracks that span

∼ 2.6 million artists. We then filter out all tracks that

are not comprised of vocal segments at least 75% of the

time. For this, we use a simple deep learning model that

classifies three-second segments into either an instrumen-

tal class or a vocal class across all songs. We then filter out

all unique singers that do not have at least two tracks. This

leaves us with 37,525 singers. 7500 of the ones that have

at least seven tracks are used for our singer identification

task. The remaining 30,025 are used to train and validate

our embedding models using contrastive learning.

We then gather 377 tracks, from YouTube, with cloned

Dataset No. Singers No. Songs Songs/Singer

Train 25929 181989 ≥ 2
Validation 4096 8192 2

Closed 7500 176141 ≥ 7
FMA 1019 11676 ≥ 5
MTG 572 7710 ≥ 5

Cloned 67 377 N.A.

Table 1. Attributes of each dataset used in this paper. The

train and validation sets are used for training the embed-

ding models. Upon initial collection, validation singers can

have more than two mostly-vocal tracks; we however ran-

domly select a segment with vocals from two tracks to keep

the set constant. The closed, FMA, and MTG datasets are

used for real singer identification. The cloned dataset con-

tains songs collected from YouTube in which synthesized

voices of real singers are used. The original singers in this

dataset are present in the closed dataset.

voices from 67 singers in our closed dataset. These are

used to test our embedding models on music voice deep-

fakes. We also test our models on two open music tagging

datasets for real singer identification: the FMA and MTG.

For these, we first gather their artist tags. We then filter

out songs that are not comprised of segments with vocals

at least 50% of the time. Artists with less than five songs

are also removed. This leaves us with 1019 artists for the

FMA and 572 artists for the MTG. Unlike the commercial,

closed dataset, each song can contain more than one singer.

We however postulate that the trends observed in the re-

sults are highly indicative of our models’ performances on

the singer identification task. We publish the subsets of

data we used on these datasets for reproducibility and to

serve as future benchmarks. To the best of our knowledge,

other open singer identification datasets, such as the Vo-

calSet [25] and M4Singer [26], only contain snippets of a

capella singing voices. We hope future singer identifica-

tion systems will also be evaluated on our proposed, more

authentic musical data: singers singing to an instrumental.

Table 1 displays the attributes of each of these sets of data.

3.2 Singer-Level Contrastive Learning

We train the embedding models in a contrastive learning

way to predict whether two songs are from the same singer.

During each training iteration, we begin by drawing a batch

of B = 128 positive pairs, which correspond to pairs of

segments with singing. These pairs are drawn on the fly

from different songs of the same singer. For our Mix-

ture model, these segments come from songs’ mixtures.

For our Vocal model, these segments come from the vocal

stem generated by Demucs [27,28]. Finally, for our Hybrid

model, these segments are randomly sampled from either;

the following positive pairings are possible during the con-

trastive learning task: vocal-vocal, vocal-mixture, mixture-

vocal, and mixture-mixture. This is done to better disam-

biguate singing voices, without the need for source sep-

aration during the downstream singer identification task.

All segments are sampled at 16000 Hz and have a six-
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second duration. We then compute their mel-spectrograms

and pass these through the small version of the transformer

model from [29]. We use a FFT size of 800, a hop length

of 400, and a total of 128 mel bins for our mel-spectrogram

operation. The transformer model then maps the resulting

128 × 240 tensor to an embedding of size 2048. Simi-

larly to [30–32], these embeddings are passed through a

fully-connected projector head. In our case, this head maps

our embeddings to outputs of dimension 2048, 1024, and

2048, and uses batch-normalization [33] and ReLU activa-

tions. Let us denote the resulting projections by yi, where

i ∈ [1, 2B]. For each positive pair (i, j), we compute, and

aim to minimize, the normalized temperature-scaled cross-

entropy, or NT-Xent [30], loss function, defined as:

ℓi,j = − log
exp

(

1
T
S(yi, yj)

)

∑2B
k=1 1[k ̸=i] exp

(

1
T
S(yi, yk)

)
, (1)

where the indicator function 1[k ̸=i] evaluates to 1 iff k ̸= i.

T is a temperature parameter that helps the model learn

from hard negatives. In our case, we set T = 0.2 fol-

lowing [34]. S(u, v) denotes the cosine similarity between

vectors u and v. The average loss value is then backprop-

agated to the model. We use the ADAM optimizer [35]

throughout training, with an initial learning rate of 0.0001.

This value is decreased by a factor of 0.5 at every 25-epoch

validation loss plateau. Note that one epoch corresponds

to 32 training and validation iterations. We stop training

when the validation loss has plateaued for 100 epochs.

3.3 Singer Identification

We then train classifiers with the same architecture as the

projector head from the previous section upon the frozen

transformer models. We evaluate these classifiers on two

sets of data for real singer identification: the FMA and

MTG open datasets and the closed set. For all of these, we

randomly set aside one track for testing and one track for

validation per singer. These are constant throughout all our

experiments for reproducibility purposes. Note that four

segments from each validation track are selected randomly

at the beginning of each singer identification experiment

to keep the validation set constant. At least three tracks

per singer are then used for training. During each training

iteration, we select a segment with vocals on the fly to con-

struct batches of size 100. We minimize a Cross Entropy

loss [36] using the ADAM optimizer with an initial learn-

ing rate of 0.01. This value is decreased by a factor of 0.1

every 10-epoch validation loss plateau. Here, one epoch

is, again, equal to 32 training and validation iterations. We

stop training when the validation loss has plateaued for 20

epochs. For each dataset’s test tracks, the final singer pre-

diction is obtained using a majority vote scheme, where

each segment with vocals is passed through the frozen em-

bedding model and classification head. The singer with the

most “votes” is then used as the track’s final output.

We report all our results using 10 runs. For both open

datasets, we report results using all singers. On the other

hand, for our 7500-singer closed set, we report results from

100 to 1000 classes. During each run, we randomly sam-

ple a subset of singers, on which we then train and eval-

uate a classifier. Finally, for the cloned singers dataset,

we: 1) train models to classify 100 to 1000 singers using

the closed dataset; 67 of these are cloned singers, whilst

the remainder are randomly sampled from the rest of our

closed dataset. 2) try to classify the cloned singer of our

deepfake tracks. Our goal is to evaluate whether singer

identification systems trained on real singer data can cor-

rectly classify the singers’ voice deepfakes.

4. RESULTS

4.1 Open Datasets

Dataset Model Top-1 Acc. Top-5 Acc.

FMA

CLMR 73.2 +/– 0.6 73.6 +/– 0.6
Mixture 76.6 +/– 0.5 84.1 +/– 0.6
Hybrid 77.6 +/– 0.3 85.1 +/– 0.6
Vocal 79.9 +/– 0.4 85.7 +/– 0.3

MTG

CLMR 67.9 +/– 1.1 68.0 +/– 1.1
Mixture 78.5 +/– 0.5 88.4 +/– 0.6
Hybrid 79.3 +/– 1.1 88.7 +/– 0.6
Vocal 83.2 +/– 0.6 91.3 +/– 0.6

Table 2. Singer identification results obtained on the open

datasets (%). For each dataset, we report the top-1 and

top-5 accuracies generated by the three models we train

using singer-level contrastive learning. We also use the

embeddings from [37], called CLMR, as a baseline. These

embeddings are trained in a similar fashion to [31], but on

∼ 4M tracks, and are used for both training and testing our

classification heads to generate these results. We display

the means and standard deviations over 10 runs.

The results obtained on open datasets can be visualised

in Table 2. One can immediately notice that the CLMR

[37] results are inferior to the singer-level embedding mod-

els’ results by at least a few percentage points. On the

FMA dataset, we notice a 3.4% top-1 gap between the

CLMR and Mixture models. This gap grows to more than

10 percentage points using a top-5 accuracy and is even

more exacerbated on the MTG dataset and with the Hy-

brid and Vocal models. This highlights the fact that sam-

pling at the singer-level is much more adapted than clas-

sic, high-performing self-supervised learning methods for

pre-training a model for singer identification. We observe

these gaps even though the contrastive model from [37] is

trained on more than 20× more tracks than the embedding

models we trained for this paper.

We can also notice that the Vocal model outperforms the

models that use mixtures as an input by a few percentage

points. More specifically: for the MTG dataset, we observe

a 3.9% gap compared to the Hybrid model on top-1 accu-

racy and a 2.6% gap on top-5 accuracy. The gap is less pro-

nounced on the FMA data. We can also notice that the Hy-

brid model, which samples both mixtures and vocal stems

during pre-training, is slightly better-performing than the

mixture model, though the performance gap never exceeds
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Figure 1. Singer identification results obtained on the closed (left) and cloned (right) datasets. We display results over 10

runs for 100 to 1000 singer classes. For each number of classes, we display the top-1 and top-5 accuracies for each run

(pale markers), and the mean results between all runs (prominent markers). On the closed dataset, we randomly sample a

subset of the 7500 singers on every run and display results on their test tracks. For the cloned dataset, we train our models

to classify the 67 cloned singers and other randomly selected singers. We then display the results on the 377 spoofed tracks.

a percentage point. This highlights one of our main find-

ings: separating vocals from the rest of the track clearly

helps our models disambiguate singers between each other.

However, we can obtain good performance using mixtures

too. In the realm of production, where source separation

can be costly memory and time-wise, the results obtained

using the Hybrid or Mixture models may suffice; they may

not justify the need to separate vocal stems beforehand.

The results obtained on the closed dataset in the next sec-

tion further emphasize this idea.

4.2 Closed Dataset

The results obtained on the closed dataset can be found on

the left side of Figure 1. We observe a similar trend to

the one observed on the open datasets: the Vocal model

outperforms both models that use mixtures as inputs by a

few percentage points. Then, the Hybrid model outper-

forms the Mixture model, though the gap is narrow. For

example, for 400 classes, we observe mean top-5 accura-

cies of 89.2% for the Mixture model, 90.1% for the Hybrid

model, and 93.2% for the Vocal model. For 700 classes,

we observe mean top-1 accuracies of 69.8% for the Mix-

ture model, 74.5% for the Hybrid model, and 80.9% for the

Vocal model. As the number of classes grows, the gaps in

performance are more pronounced, especially on the top-1

accuracy metric. We however suggest that the gap between

the Vocal model and models that work on mixtures does

not warrant the need for source separation in production-

like environments for real-singer identification.

No. Singers Method Dataset Top-1 Top-5

300
[19] MSD 39.5 69.2

Mixture Closed 78.0 90.4

500

[16, 18] MSD 47.9 71.2
[16] MSD 63.1 82.2

Mixture Closed 74.2 87.6

Table 3. Singer identification results for the same number

of singers in this and previous works of the field (%).

Comparing our results to previous works in the field

of music singer identification is quite difficult. These re-

port results on private datasets [16] or on the Million Song

Dataset (MSD) [18, 19, 38], a dataset whose audio is not

publicly available. That is why we hope future works in

singer identification will also be evaluated on the open

splits we report results on in Section 4.1. We however re-

port our worst and previous works’ results for the same

number of singers in Table 3. These highlight that our

methodology is at the very least on par with previous works

and validate sampling at the singer level for contrastive

learning when the downstream task is singer identification.

We should however point out that, even though our

models identify real singers quite well, there remain open

challenges. As displayed in Figure 2, our performance over

musical genres is not uniform. For example, for Country

and Folk music, the mean top-5 accuracies are 86.3% and

86.6%. On the other hand, for Hip-hop and Pop music, the
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Figure 2. Vocal model performance by genre when trying

to classify 1500 singers. The macro genre tags are gathered

from Deezer and are unique for each test track. We display

the mean top-5 accuracy for each run with the orange dots.

The boxes then display the median and interquartile range

(IQR) between runs. The whiskers extend to points that lie

within 1.5 IQRs of the lower and upper quantiles. Finally,

outlier runs have circles drawn around them. Genres con-

taining less than 100 test tracks are omitted from this plot.

mean top-5 accuracies are 72.7% and 72.7%. The perfor-

mance drops even further for Electronic music, where we

observe a mean top-5 accuracy of 41.6%. The same trends

can be observed for top-1 accuracy, our other models, and

different numbers of classes. Hip-hop, Pop, and Electronic

genres tend to employ effects such as reverb and vocoder

on singing voices. These effects can change a voice’s tim-

bre quite substantially, and seem to have an effect on our

singer identification performance. On the other hand, Folk

and Country tend to have natural-sounding singing voices.

We suggest that future singer classification works should

aim to lessen the gap between these genres, perhaps by in-

troducing augmentations during either the embedding or

classifier’s training. We also did experiments on the in-

fluence of language on performance, and did not find our

results to be biased towards any of these. We found all 10,

commonly-represented languages to have a median top-5

accuracy between 68 and 82% for 1500-singer identifica-

tion, with substantial overlaps in distribution.

One can also notice the following trend from Figure 3:

when we are trying to classify a small number of singers,

having more tracks per singer for training leads to higher

performance; on the other hand, when we are trying to

classify a large number of singers, having fewer tracks for

training leads to higher performance. For example, for

500-singer identification, we merely observe a top-1 ac-

curacy of 78.5% when singers have 5 to 9 training tracks.

This top-1 accuracy grows to 88.5% when singers have 20

Figure 3. Vocal model performance over 500, 1000, and

1500-singer identification. We report results from each run

in buckets that describe the number of training tracks per

singer, that are used to train our classifiers. In the first, we

display the top-1 accuracies observed for singers with only

5 to 9 training tracks. In the second, we display the top-

1 accuracies observed for singers with 10 to 19 training

tracks. Finally, in the last, we display the top-1 accuracies

observed for singers with 20 or more training tracks. We

report results using violin plots, where, for each bucket, the

inner figure is a box plot similar to that in Figure 2 and the

outer figure is a kernel density estimation of the data.

or more training tracks. On the other hand, for 1500-singer

identification, we observe top-1 accuracies of 68.1% and

51.5% for these same buckets. These trends can also be ob-

served on our other models and for top-5 accuracy. They

suggest that, as the singer identification task gets harder,

singers with more songs to their name, and most likely

much longer careers, get harder to correctly classify than

singers with just an extended play (EP) or album to their

name. This could be due to changes in style, mixing ef-

fects, or even singing voice. We hope that future works in

the field will design systems that are more robust to singing

voice evolution over a variety of musical projects.

4.3 Cloned Voices

The results on our cloned dataset can be found on the

right side of Figure 1. One can immediately notice a

sharp decline between the performance we observed on

real singers and synthetic ones. For 200-singer identifica-

tion, the worst-performing model on real singers, the Mix-

ture one, has a mean top-1 accuracy of 82.3%. In compar-
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Figure 4. Mean all-pairs cosine similarity between each

of the closed set singers’ test track embeddings and: in

purple (test/other), the embeddings from a random track

from another singer; in red (test/val), their validation track

embeddings; in green (test/vocal), their test track’s vocal

stem embeddings; in orange (test/instru), their test track’s

instrumental stem embeddings; in blue (test/test), the other

embeddings from the same track. All embeddings are gen-

erated on segments with vocals.

ison, the best-performing model on synthetic voices, the

Vocal one, has a top-1 accuracy of 65.8%. For 600-singer

identification, their respective top-5 accuracies are 85.3%

and 72.3%. The decline in performance on cloned singers

is hence quite dramatic. However, in a lot of ways, it is to

be expected. Synthetic voices can sometimes be quite un-

realistic depending on the voice conversion or generation

techniques used, which should obviously lead to deteriora-

tion in singer identification performance.

The more striking decline is that which we observe be-

tween models themselves. More notably, the Vocal model

performs substantially better than the models that use mix-

tures as inputs. Starting at 100 classes, the mean top-1 ac-

curacy of the Vocal model is 65.8% versus 51.2% for the

Hybrid model and 40.1% for the Mixture model. For 800

classes, we observe accuracies of 33.4% versus 15.3% and

12.7%. On the one hand, for real singers, we found the gap

in performance between the Vocal and Hybrid to be mini-

mal enough to justify using mixtures over vocal stems, and

hence avoid using source separation pre-processing. Here,

however, the answer is much more clear cut: the Vocal

model is the only one with decent performance on cloned

singer identification task, whilst the models that use mix-

ture inputs see a very significant drop in performance.

The reason behind the performance drop between mod-

els is illustrated in Figure 4. When comparing the embed-

dings of each closed set test track to other embeddings of

the same track, we see that these are very similar, with co-

sine similarities of ∼ 95%. However, the comparison with

the test tracks’ stem embeddings can differ significantly.

For the Mixture model, we see that the instrumental em-

beddings are actually more similar to the “ground truth”

test track embeddings (GTEs) than the vocal embeddings,

with mean similarities of 90.8% and 89.1%. Even worse,

the instrumental embeddings are closer to the GTEs than

the validation track’s. Hence, even though our Mixture

model, like the Hybrid and Vocal models, is pre-trained to

disambiguate singers, we find that its embeddings are more

suitable for finding similar songs based on instrumental in-

formation than vocal information. This problem is partly

solved in the Hybrid model and fully solved in the Vocal

model. Note that these results extend to other vector simi-

larity measures such as Euclidean distance.

These findings outline why the models that are trained

using mixtures drop off significantly on spoofed versions

of famous artists. On these tracks, singers are often used

on an instrumental which is either from another famous

track, or an instrumental which is very different from their

usual environment. Some of the cloned tracks’ instrumen-

tals are even present in their original tracks during training

on real singers, which leads to obvious misclassifications.

As such, models that bias singers towards certain types of

musical backgrounds fail to correctly identify them in al-

tered contexts. Source separation allows us to better dis-

ambiguate voices only during training, and thus classify

synthetic versions of performers. In the future, perhaps

reintegrating mashups to alter a singer’s context on the fly,

such as was done in [18], could lead to more robust singer

identification models. These could solve the two main re-

maining problems in the field: 1) the need for source sep-

aration pre-processing and 2) the identification of cloned

versions of existing singers.

5. CONCLUSION

In this paper, we train three models using singer-level con-

trastive learning. The first is only trained using mixtures,

the second is only trained using vocal stems, while the

third is trained using both. We find that all three mod-

els are highly capable of classifying real singers, though

there remain open challenges, such as classifying genres

that use more vocal effects and singers with long discogra-

phies. However, all three models’ performance decreases

drastically when trying to identify cloned voices of ex-

isting singers. This decrease is much more pronounced

for models that are trained using mixtures. These models

bias singers towards certain types of instrumentals. They

therefore struggle to correctly classify them in different

background music environments, such as those offered by

singing voice deepfakes. By publishing our results and

novel, singer identification splits of the FMA and MTG

datasets, we aim to generate more research in this field

of MIR. Future works could notably incorporate cloned

voices in a few-shot fashion in the hopes of minimizing

the gap between real and synthetic singer identification.
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6. ETHICS STATEMENT

Our work offers a glimpse into how we, as a field, can

identify the original singers in music voice deepfakes. It

is important that outputs of systems like ours not be used

as justification to make important decisions, however, such

as content removal from platforms. As demonstrated in

this paper, singer identification systems are often wrong;

they often return false positives. This is even more true on

deepfakes. As such, human emotion and decision-making

should still be at the heart of the music deepfake battle.

Creative, talented singers should never see their work de-

platformed because a machine learning model falsely said

so. The outputs of these models should always be inter-

preted with caution, as an indication but not a truth.
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