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ABSTRACT

Existing text-to-music models can produce high-quality

audio with great diversity. However, textual prompts alone

cannot precisely control temporal musical features such as

chords and rhythm of the generated music. To address

this challenge, we introduce MusiConGen, a temporally-

conditioned Transformer-based text-to-music model that

builds upon the pretrained MusicGen framework. Our in-

novation lies in an efficient finetuning mechanism, tailored

for consumer-grade GPUs, that integrates automatically-

extracted rhythm and chords as the condition signal. Dur-

ing inference, the condition can either be musical features

extracted from a reference audio signal, or be user-defined

symbolic chord sequence, BPM, and textual prompts.

Our performance evaluation on two datasets—one derived

from extracted features and the other from user-created

inputs—demonstrates that MusiConGen can generate real-

istic backing track music that aligns well with the specified

conditions. We open-source the code and model check-

points, and provide audio examples online, https://

musicongen.github.io/musicongen_demo/.

1. INTRODUCTION

The realm of text-to-music generation has seen signifi-

cant progress over the recent years [1–11]. These mod-

els span various genres and styles, largely leveraging tex-

tual prompts to guide the creative process. There have

been two primary methodological frameworks so far. The

first employs Transformer architectures to model audio to-

kens [12] derived from pre-trained audio codec models

[13–15]; noted examples include MusicLM [1] and Mu-

sicGen [2]. The second employs diffusion models to repre-

sent audio through spectrograms or audio features, such as

AudioLDM 2 [4] and JEN-1 [5].

Text-to-music generation model generally relies on the

global textual conditions to guide the music generation

process. Textual prompts serving as high-level conceptual

guides, however, introduce a degree of ambiguity and ver-

boseness into the music generation for describing the musi-
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Model
Chord Rhythm Do not need

control control reference audio

Coco-Mulla [6]
√ √

Music ControlNet [7]
√ √

Ours
√ √ √

Table 1. The comparison for conditions and condition type

of related temporally-conditioned text-to-music models.

cal features [7]. This inherent vagueness poses a challenge

in precisely controlling temporal musical features such as

melody, chords and rhythm, which are crucial for music

creation. Building on the success of MusicGen-melody [2]

in melody control, our focus now shifts to enhancing chord

and rhythm control, aiming to create a more integrated ap-

proach to music generation that captures the full spectrum

of musical elements.

Table 1 tabulates two existing studies that have explored

the incorporation of time-varying chord- and rhythm-

related attributes in text-to-music generation. Coco-Mulla

[6] is a Transformer-based model that employs a large-

scale, 3.3B-parameter MusicGen model, finetuned with an

adapted LLaMA-adapter [16] for chord and rhythm con-

trol. For rhythm control in particular, Coco-Mulla uses

drum audio codec tokens extracted from a reference drum

audio signal as a condition for guiding the music gen-

eration, thereby demanding reference audio for control.

While it is appropriate to assume the availability of such

reference audio in some scenarios, for broader use cases

we desire to have a model that can take user-provided text-

like inputs as well, such as the intended beats-per-minute

(BPM) value (for rhythm) and the chord progression as a

series of chord symbols (for chords). This function is not

supported by Coco-Mulla.

The other model, Music ControlNet [7], leverages a

diffusion model architecture and the adapter-based condi-

tioning mechanism of ControlNet [17] to manipulate text-

like, symbolic melody, dynamics, and rhythm conditions.

This diffusion model creates a spectrogram based on the

provided conditions, which is then transformed into au-

dio using their pretrained vocoder. For musical condi-

tions, a 12-pitch-class chromagram representation is used

for the melody, combined with beat and downbeat proba-

bility curves concatenation for rhythm control, and an en-

ergy curve to adjust the dynamic volume. However, Music

ControlNet does not deal with chord conditions.
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In view of the limits of the prior works, we introduce

in this paper MusiConGen, a Transformer-based text-to-

music model that applies temporal conditioning to enhance

control over rhythm and chord. MusiConGen is finetuned

from the pretrained MusicGen framework [2]. We design

our temporal condition controls in a way that it supports

not only musical features extracted from reference audio

signals, but also the aforementioned user-provided text-

like symbolic inputs such as BPM value and chord pro-

gression. For effective conditioning of such time-varying

features, we propose “adaptive in-attention” conditioning

by extending the in-attention mechanism proposed in the

MuseMorphose model [18]. Table 1 includes a conceptual

comparison of MusiConGen with existing models in terms

of the conditions and their types.

In our implementation, we train MusiConGen on a

dataset of backing track music comprising 5,000 text-audio

pairs obtained from YouTube. This training utilizes beat

tracking and chord recognition models to extract necessary

condition signals without the need for manual labeling. We

note that rhythm and chord controls are inherently critical

for backing tracks, for backing tracks often do not include

the primary melody and their purpose is mainly to provide

accompaniment for a lead performer.

Moreover, instead of using the adapter-based finetun-

ing methods [16, 17, 19], we apply the straightforward

“direct finetuning” approach to accommodate the domain

shift from general instrumental music (on which Music-

Gen was trained) to the intended backing track music. We

leave the use of adapter-based finetuning as future work.

To make our approach suited for operations on consumer-

grade GPUs, we propose a mechanism referred to as “jump

finetuning” instead of finetuning the full MusicGen model.

We present a comprehensive performance study in-

volving objective and subjective evaluation using two

public-domain datasets, MUSDB18 [20] and RWC-pop-

100 [21]. Our evaluation demonstrates MusiConGen’s en-

hanced ability to offer nuanced temporal control, surpass-

ing the original MusicGen model in producing music that

aligns more faithfully with the given conditions.

The contributions of this work are two-fold. First, to our

best knowledge, this work presents the first Transformer-

based text-to-music generation model that follows user-

provided rhythm and chords conditions, requiring no ref-

erence audio signals. Second, we present efficient training

configuration allowing such a model to be built by finetun-

ing the publicly-available MusicGen model with customer-

level GPU, specifically 4x RTX-3090 in all our experi-

ments. We open-source the code, checkpoint, and informa-

tion about the training data of MusiConGen on GitHub. 1

2. BACKGROUND

2.1 Codec Models for Audio Representation

In contemporary music generation tasks, audio signals are

typically compressed into more compact representations

1 https://github.com/Cyan0731/MusiConGen

using two main methods: Mel spectrograms and codec to-

kens. Mel spectrograms provide a two-dimensional time-

frequency representation, adjusting the frequency axis to

the Mel scale to better align with human auditory percep-

tion. Codec tokens, on the other hand, are often residual

vector quantization (RVQ) tokens that are encoded from

audio signals by a codec model [13–15]. Following Mu-

sicGen, we employ in our work the Encodec (32k) [14] as

the pretrained codec model to encode audio data at a sam-

ple rate of 32,000 Hz. This Encodec model comprises 4

codebooks, each containing 2,048 codes, and operates at a

code frame rate fs of 50 Hz.

2.2 Classifier-Free Guidance

Classifier-free guidance [22] is a technique initially de-

veloped for diffusion models in generative modeling to

enhance the quality and relevance of the outputs with-

out the need for an external classifier. This approach

involves training the generative model in both a condi-

tional and an unconditional manner, combining the out-

put score estimates from both methods during the inference

stage. The mathematical expression is as ∇x log p̃θ(x|c) =
(1−γ)∇x log pθ(x)+γ∇x log pθ(x|c). Here, γ represents

the guidance scale, which adjusts the influence of the con-

ditioning information. We perform a weighted average of

fθ(x, c) and fθ(x) when sampling from the output logits.

2.3 Pretrained MusicGen Model

The pretrained model used in our study is a MusicGen

model with 1.5B parameters, equipped with melody con-

trol (i.e., MusicGen-Melody). The melody condition em-

ploys a chromagram of 12 pitch classes at a frame rate

fM, denoted as M ∈ R
TfM

×12×1, derived from the lin-

ear spectrogram of the provided reference audio. For text

encoding, the model leverages the FLAN-T5 [23] as a text

encoder to generate conditioning text embeddings, repre-

sented as T ∈ R
Tt5×dt5×1. Both the melody and text

conditions undergo linear projection into a D-dimensional

space before being prepended to the input audio embed-

ding. Regarding the input audio for training, audio signals

are initially encoded into RVQ tokens, Xrvq ∈ R
Tfs×1×4,

using the pretrained Encodec model. These tokens are then

formatted into a “delay pattern” [2], maintaining the same

sequence length. Subsequently, an embedding lookup ta-

ble, Wemb ∈ R
N×D×4, where N represents for numbers

of codes in a codebook, is used to represent the associ-

ated codes, summing contributions from each codebook of

Xrvq to form the audio embedding Xemb ∈ R
Tfs×D×1.

The input representation is then fed to the self-attention

layers via additive sinusoidal encoding.

3. METHODOLOGY

Our method seeks to efficiently finetune the foundational

MusicGen model using time-varying symbolic rhythm and

chord conditions as guiding conditions. To achieve this,

we must carefully consider both the representation of these

conditions and the finetuning mechanism as follows:
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Figure 1. The model structure of MusiConGen and the self-attention block. a) MusiConGen takes text T , downsampled

chord Cpre as prepended condition and frame-wise chord Csum and rhythm R as additive condition. The addition operation

of frame-wise conditions to each self-attention block is regulated by the condition gate control (⊗). b) Each self-attention

block consists of four layers. In our proposed model, only the first layer is finetuned, which is also called jump finetuning.

3.1 Representing Temporal & Symbolic Conditions

Chords. For chord condition, we employ two methods.

The first prepend method is similar to the melody con-

trol method of MusicGen, denoted as Cpre ∈ R
TfM

×12

where Cpre maintains the same resolution (i.e. frame rate

fM and sequence length) as MusicGen’s melody condi-

tion M. This allows us to utilize the pretrained melody

projection weights from MusicGen as initial weights. Fur-

thermore, we have noted that chord transitions can lead to

asynchronization issues. To address this, we introduce a

second frame-wise chord condition, Csum ∈ R
Tfs×12×1,

which matches the resolution of the audio codec tokens,

thus providing a solution for the synchronization problem.

Rhythm. To control rhythm, we derive conditions from

both the beat and the downbeat. The beat represents the

consistent pulse within a piece of music, and the down-

beat signifies the first and most emphasized beat of each

measure, forming the piece’s rhythmic backbone. We en-

code beat and downbeat information into one-hot embed-

ding each at a frame rate of fs. For the beat embedding,

a soft kernel is applied to allow for a tolerance of 70ms.

Subsequently, the beat and downbeat arrays are summed

to yield the frame-wise rhythm condition R ∈ R
Tfs×1.

3.2 Finetuning Mechanisms

The finetuning mechanism we employ consists of two

parts: 1) jump finetuning, and 2) an adaptive in-attention

mechanism. As illustrated in Figure 1, our proposed model

activates condition gates at the “block” level, treating four

consecutive self-attention layers as a block.

Jump finetuning is designed to specifically target the

first self-attention layer within each block for finetuning,

while freezing the remaining three self-attention layers of

the same block, as shown in Figure 1 (b). Doing so reduces

the number of parameters of finetuning while maintaining

the flexibility to learn to respond to the new conditions by

refining the first self-attention layer per block.

The adaptive in-attention mechanism is designed to im-

prove control over chords and rhythm. It is an adapta-

tion of the in-attention technique of MuseMorphose [18],

whose main idea is to augment every intermediate out-

put of the self-attention layers with copies of the condi-

tion. Unlike the original implementation that augment all

the self-attention layers, we selectively apply it to the first

three-quarters of self-attention blocks (e.g., for a model

with 12 blocks, in-attention is applied to first 9 blocks) to

relax the control in the last few blocks for better balancing

on rhythm and chords. This leads to better result empiri-

cally, as will be shown in Section 5.2 and Table 3.

4. EXPERIMENTAL SETUP

4.1 Datasets

We finetuned the model using a dataset of ∼250 hours

backing track music sourced from YouTube, comprising

5K songs across five genres: Rock, Funk, Jazz, Blues, and

Metal, with 1K songs per genre. After preprocessing (see

Section 4.2), the training data contained 80,871 clips.
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For evaluation, we used the rhythm and chords from

two public-domain datasets—MUSDB18 [20] and RWC-

pop-100 [21]. For MUSDB18, the rhythm and chords are

extracted from the audio signals, so this dataset reflects

the case where the condition signals are from a reference

audio. There are 150 songs with four isolated stems: vocal,

bass, drum, and others. For each song, we dropped the

vocals and divided the mix of the remaining tracks into 30-

second clips, resulting in a total of 1,089 clips.

The RWC comprises 100 Japanese pop songs with hu-

man annotated chord progressions and BPM labels. We

simply use the human labels as the conditions here, reflect-

ing the case where the condition signals are user provided

in a text-like format. We similarly divided each song into

30-second clips, leading to 755 clips in total.

4.2 Dataset Pre-processing Details

The training and evaluation datasets consist of full-song

data, with durations ranging from 2 to 5 minutes per song.

Below are the preprocessing details for each type of input:

Audios: All audio data have vocals removed. For the

training and RWC dataset, we employed the source sepa-

ration model Demucs [24, 25] to eliminate the vocal stem.

In the MUSDB18 dataset, which already features isolated

stems, we combined the bass, drum, and others stems to

form the dataset. Each song was segmented into 30-second

clips, ensuring each clip starts at a downbeat.

Descriptions: For the training set, the text prompts

were simply extracted from the titles of the correspond-

ing YouTube videos. For the two evaluation datasets, we

tasked ChatGPT [26] to generate 16 distinct text prompts,

covering the five genres included by the training set. Here

is an example—“A smooth acid Jazz track with a laid-back

groove, silky electric piano, and a cool bass, providing a

modern take on Jazz. Instruments: electric piano, bass,

drums.” At inference time, we randomly selected one of

the 16 text prompts in a uniform distribution.

Chords: The RWC dataset comes with ground truth la-

beled chords. For both the training set and MUSDB18, we

used the BTC model [27] as the chord extraction model

to predict symbolic chords with time tags for each clip.

The detailed chord quality extends to the seventh note. We

then translated the extracted chord symbols with time tags

into a 12-pitch chromagram in the order of C, C#, ..., B.

The chromagram’s frame rate for the frame-wise condition

Csum is fs, and for the prepend condition Cpre it is fM.

Rhythm: Except for RWC, beat and downbeat were ex-

tracted using the RNN+HMM model [28] from the Mad-

mom library [29]. The timing format for beats and down-

beats was transformed into a one-hot representation match-

ing the audio token frame rate fs. A soft kernel was applied

to the one-hot beat array to create a softened beat array.

The rhythm representation R was the frame-wise summa-

tion of the softened beat array and downbeat array.

4.3 Training Configuration

The proposed rhythm and chord-conditioned Transformer

was built upon the architecture of the medium-sized (1.5B)

MusicGen-melody, featuring L = 48 self-attention layers

with dimension D = 1, 536 and 24 multi-head attention

units. The condition dropout rate is 0.5 and guidance scale

is set to be γ = 3 for classifier-free guidance. We finetuned

only a quarter of the full model, which corresponds to 352

million parameters, while keeping both the audio token

embedding lookup table and the FLAN-T5 text encoder

frozen. The training involved 100K finetuning steps, car-

ried out over approximately 2 days on 4 RTX-3090 GPUs,

with a batch size of 2 per GPU for each experiment.

4.4 Objective Evaluation Metrics

We employed metrics to evaluate controllability of chords

and rhythm, textual adherence and audio fidelity. For the

first two metrics, we used the rhythm and chord conditions

from a clip in a evaluation dataset to generate music (along

with a text prompt generated by ChatGPT; see Section 4.2),

applied the Madmom and BTC models on the generated

audio to estimate beats and chords, and evaluated how they

reflect the given conditions. See Figure 2 for examples.

Chord. We used the mir_eval [30] package to measure

3 different degrees of frame-wise chord correctness: ma-

jmin, triads and tetrads. The majmin function compares

chords in major-minor rule ignoring chord qualities out-

side major/minor/no-chord. The triads function compares

chords along triad (root & qulaity to #5), while the tetrads

compares chords along tetrad (root & full quality).

Rhythm F1 measurement follows the standard method-

ology for beat evaluation. We measured the beat accu-

racy also via mir_eval, assessing the alignment between

the beat timestamps of the generated music and the refer-

ence rhythm music data, with a tolerance window of 70ms.

CLAP [31,32] score examines the textual adherence by

the cosine similarity between the embedding of the text

prompt and that of the generated audio in a text-audio joint

embedding space learned by contrastive learning. Here,

we used the LAION CLAP model trained for music [33],

music_audioset_epoch_15_esc_90.14.pt.

FAD is the Fréchet distance between the embeddings

distribution from a set of reference audios and that from

the generated audios [34, 35]. The metric represent how

realistic the generated audios are compared to the given

reference audios. The audio encoder of FAD we used is

VGGish [36] model which trained on an audio classifica-

tion task. The reference set of audios was from MUSDB18

or RWC depending on the evaluation set.

4.5 Subjective Evaluation Metrics

We also did a listening test to evaluate the followings as-

pects: text relevance, rhythm consistency, and chord rele-

vance. Text relevance concerns how the generated audio

clips reflect the given text prompts. Rhythm consistency

is about how steady the beats is within an audio clip. (We

found that, unlike the case of objective evaluations, minor

out-of-sync beats at the beginning of a clip were deemed

acceptable here perceptually.) Chord relevance concerns

how a generated clip follows the given chord progressions.
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Model
Evaluation Rhythm Chord

FAD CLAP
dataset F-measure(%) majmin(%) triads(%) tetrads(%)

proposed MUSDB18 69.76 67.03 66.19 56.91 1.29 0.34

(Cpre+Csum+R) RWC 79.40 73.03 68.42 54.12 0.96 0.34

chords only MUSDB18 39.47 73.25 72.29 60.89 1.91 0.34

(Cpre+Csum) RWC 49.85 73.30 68.50 50.66 2.18 0.34

rhythm only MUSDB18 61.37 5.84 5.76 3.84 1.95 0.32

(R) RWC 58.39 5.40 5.08 2.90 2.67 0.32

no frame-wise chords MUSDB18 61.68 57.39 56.65 47.17 1.44 0.35

(Cpre+R) RWC 69.30 60.95 57.19 44.21 1.29 0.35

baseline MUSDB18 26.14 53.13 52.31 44.83 2.01 0.34

(no finetuning; M for Cpre) RWC 30.67 51.90 48.54 35.81 2.30 0.35

Table 2. Objective evaluation results for models with different conditions on two different test sets MUSDB18 and RWC.

With the proposed condition representation, we can achieve better performance both in rhythm and chord controls.

Model
Evaluation Rhythm Chord

FAD CLAP
dataset F-measure(%) majmin(%) triads(%) tetrads(%)

proposed MUSDB18 69.76 67.03 66.19 56.91 1.29 0.34

(jump+adaptive in-attn) RWC 79.40 73.03 68.42 54.12 0.96 0.34

ablation 1 MUSDB18 42.28 71.06 70.21 61.58 1.39 0.36

(jump finetuning only) RWC 53.14 76.04 71.33 57.52 1.27 0.36

ablation 2 MUSDB18 67.23 66.47 65.60 56.37 1.59 0.35

(jump+full in-attn) RWC 71.13 64.82 60.77 48.07 1.47 0.35

finetuned baseline MUSDB18 40.15 55.65 54.88 45.52 1.94 0.36

(jump only; no Csum no R) RWC 49.25 56.49 52.66 38.07 2.24 0.36

Table 3. Objective evaluation results for models trained with different finetuning mechanisms. We see that the proposed

jump finetuning with adaptive (partial) in-attention achieves better result on rhythm and chord controls.

5. EXPERIMENTAL RESULTS

5.1 Objective Evaluation: Temporal Conditions

We assessed the audio generated under various condition

combinations applied to the training model, including the

proposed method and its ablations with either chord- or

rhythm-only as the temporal condition, or using both but

without the frame-wise chord condition. The finetuning

configurations and mechanisms for these models were the

same. Moreover, we considered the baseline as follows.

The pretrained MusicGen-melody model originally pro-

cesses text and melody conditions T ,M. We simply used

the prepend chord condition Cpre as input to the linear pro-

jection layers originally pretrained to take the melody con-

dition, without finetuning the entire model at all. In ad-

dition, we appended to the end of the text prompt BPM

information (e.g., “at BPM 90”) as the rhythm condition.

Result shown in Table 2 leads to many findings. Firstly,

a comparison between the result of the proposed model

(first row) and the baseline (last row) demonstrates nicely

the effectiveness of the proposed design. The proposed

model leads to much higher scores in almost all the met-

rics. Moreover, it performs similarly well for the two eval-

uation datasets, suggesting that MusiConGen can deal with

both conditions extracted from a reference audio signals or

provided by creators in a symbolic text-like format.

Secondly, although the baseline model does not perform

well, it still exhibits some level of chord control, showing

the knowledge of melody can be transferred to chords.

Finally, from the ablations (middle three rows), chord-

only and rhythm-only did not work well for rhythm and

chord control respectively, which is expected. Compared

to the proposed model, excluding per-frame chord condi-

tion degrades both chord and rhythm controllability, show-

ing that chord and rhythm are interrelated.

5.2 Objective Evaluation: Finetuning Mechanisms

Besides the proposed finetuning method, we evaluated

the following alternatives. Finetuned baseline is a base-

line model that was finetuned using the prepended chords

(Cpre) instead of melody M the frame-level conditions,

employing the jump finetuning mechanism but no in-

attention. Jump finetuning without in-attention (abal-

ation 1) and jump finetuning with full in-attention (abal-
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Figure 2. Comparison on chord progression and beats of ground truth and generated samples, using the conditions from

RWC. For each example (a) or (b), the top row is ground truth chords and the bottom row is extracted chords from generated

samples. The thick and light gray lines indicate the times of the downbeat and the beat, respectively.

Figure 3. Subjective evaluation of condition controls—

5-scale mean opinion score with 95% confidence interval.

ation 2) are ablations which use full conditions (prepended

chord Cpre, frame-wise chord Csum, and rhythm R), but

we either dropped in-attention entirely, or employed in-

attention to every self-attention block, instead of only the

first three-quarter blocks as done by the proposed method.

The result is tabulated in Table 3. Among the four meth-

ods, the proposed method leads to the best rhythm con-

trol and very competitive chord control. Comparing the

results of the proposed method and the two ablations re-

veals a trade-off in rhythm and chord control when we go

from no in-attention, adaptive (partial) in-attention, to full

in-attention. The proposed method strikes an effective bal-

ance between rhythm and chord controls.

Comparing the last row of Table 2 and that of Table 3

shows that the finetuned baseline outperforms the baseline

(with no finetuning at all) mainly in the rhythm control.

This is notable as the finetuned baseline is actually trained

with only the prepend chord condition Cpre, not using the

rhythm condition R, suggesting again the interrelation of

chord and rhythm. Moreover, although the finetuned base-

line is better than the baseline, it is still much inferior to

the proposed method in both chord and rhythm controls.

5.3 Subjective Evaluation

We evaluated three models in the listening test: the base-

line, the finetuned baseline, and the proposed model.

Each model generates a music clip using the ChatGPT-

generated text prompts, along with the BPM and chords

from the RWC dataset, namely considering text-like sym-

bolic rhythm and chord conditions. Besides the audios

generated by the three models, we also included real audios

from the RWC dataset as the real audio. We note that the

real audios would have perfect rhythm and chord controlla-

bility (for they are where the conditions are from), but the

textual adherence would be bad because RWC songs are

J-Pop rather than any of the five genres (i.e., Rock, Funk,

Jazz, Blues, and Metal) described by the text prompts.

We had 23 participants in the user study, 85% of whom

have over three years of musical training. Each time, we

displayed the given text, rhythm and chord conditions, and

asked a participant to rate the generated audio and the real

audio (anonymized and in random order) on a five-point

Likert scale. The result is shown in Figure 3.

Several findings emerged. Firstly, the proposed model

demonstrated superior chord control compared to the other

two models, although it still fell short of matching the real

audio. Secondly, the proposed model has no significant ad-

vantage on rhythm consistency against the finetuned base-

line. As suggested by the examples on our demo page, we

found that being on the precise beat onset does not signif-

icantly impact rhythm perception. Thirdly, our model had

lower text relevance than the finetuned baseline, suggesting

that our model may have traded text control for increased

temporal control of rhythm and chords.

6. CONCLUSION AND FUTURE WORK

This paper has presented conditioning mechanisms and

finetuning techniques to adapt MusicGen for better rhythm

and chord control. Our evaluation on backing track gener-

ation shows that the model can take condition signals from

either a reference audio or a symbolic input. For future

work, our user study shows room to further improve the

rhythm and chord controllability while keeping the text rel-

evance. This might be done by scaling up the model size,

better language model, or audio codecs. It is also interest-

ing to incorporate additional conditions, such as symbolic

melody, instrumentation, vocal audio, and video clips.
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