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ABSTRACT

It is a well known fact that the dynamics in piano per-

formance gives significant effect in expressiveness. Tak-

ing the polyphonic nature of the instrument into account,

analysing information to form dynamics for each per-

formed note has significant meaning to understand piano

performance in a quantitative way. It is also a key element

in an education context for piano learners.

In this study, we developed a model for estimating

MIDI velocity for each note, as one of indicators to rep-

resent loudness, with a condition of score assuming educa-

tional use case, by a Deep Neural Network (DNN) utilizing

a U-Net with Scaled Dot-Product Attention (Attention) and

Feature-wise Linear Modulation (FiLM) conditioning. As

a result, we prove that effectiveness of Attention and FiLM

conditioning, improved estimation accuracy and achieved

the best result among previous researches using DNNs and

showed its robustness across the various domain of test

data.

1. INTRODUCTION

In the realm of piano performance, the loudness of each

note plays a pivotal role, alongside other factors such as

tempo and precise keystrokes [1]. When analyzing piano

performances, the loudness of each note is quantitatively

represented by MIDI velocity. Given the polyphonic na-

ture of the piano, measuring the overall loudness within

a specific timeframe fails to provide meaningful insights

into the performance’s quality. Loudness can be observed

at various granularities, ranging from note-level loudness

and frame-level aggregated loudness to the transcription of

symbolic loudness representations. Each note in a piano

performance can exhibit varying loudness levels, contin-

gent on the music’s texture [2, 3]. The unique loudness

of each note, especially in the context of the piano’s poly-

phonic attributes, holds significant meaning. Mastery over

the loudness of individual notes is paramount, particularly

in educational settings. To hone this control, score infor-

mation serves as an essential benchmark. Visualization
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further enhances this educational endeavor [4]. Conse-

quently, this study operates under the assumption that score

information is accessible.

To ensure clarity in our terminology, we define "loud-

ness" as the aggregated MIDI velocities within a desig-

nated timeframe, as gauged by an electronic piano device.

In contrast, "intensity" refers to the peak value of the fre-

quency sum for a note frame, as delineated in [5]. It is

imperative to recognize that MIDI velocity does not di-

rectly correspond to the loudness as perceived by the hu-

man auditory system. Previous research has probed the re-

lationship between MIDI velocity and perceived loudness

in decibels (dB) [6,7]. These investigations consistently re-

veal a non-linear relationship, where an increase in MIDI

velocity corresponds to a rise in perceived loudness.

Furthermore, studies such as those by [8, 9] have ex-

plored the mapping from perceptual loudness values in dB

scale to dynamic symbols in piano performance, includ-

ing symbols like forte, mezzoforte, piano, pianissimo,

crescendo, and so forth. The dynamics and expressiveness

of a musical composition are shaped by the loudness val-

ues attributed to each note in the score [1]. Notably, MIDI

velocity offers a more nuanced prediction of loudness com-

pared to traditional dynamic markings found in most music

scores. These markings provide relative directives on the

loudness with which a piece should be played. The loud-

ness of individual notes in a piano performance can fluctu-

ate based on the texture of the music [2,3]. Given the poly-

phonic characteristics of piano performances, note-level

loudness is of paramount importance.

Recognizing the significance of delving into note-level

loudness granularity, this study primarily centers on MIDI

velocity estimation, particularly within an educational con-

text where score information is presumed available.

2. RELATED WORK

In this section, we delve into pertinent works within the do-

main of Machine Learning methods and their applications

for the task.

Note Level Intensity Estimation: The task of note-

level loudness estimation has been the focus of multi-

ple studies [5, 10–13]. These investigations have utilized

both Non-Negative Matrix Factorization (NMF) and DNN

methodologies to segregate piano performance audio into

88 distinct keys, subsequently estimating MIDI velocity

or intensity for each note. This research domain can be
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viewed as an extension of Automatic Music Transcrip-

tion (AMT) and Music Performance Assessment, with po-

tential applications in modeling performance expressive-

ness. The task of piano note-level MIDI velocity estima-

tion is multifaceted, encompassing both a regression prob-

lem, where MIDI velocity values within the 0-127 range

are estimated, and an audio classification challenge, which

categorizes audio into one of the typical 88 piano keys.

A limited number of studies have tackled the note-level

MIDI velocity estimation task for an actual piano perfor-

mance data, employing techniques like NMF [5] and DNN

methods [13, 14]. The study by [5] integrated with score

information to estimate note-level intensity, subsequently

developing a linear regression model for note-level MIDI

velocity estimation. The DNN methods [13] have sought

to address the estimation challenge by incorporating AMT

techniques and score conditioning. These DNN architec-

tures amalgamate convolution blocks and GRU blocks, in-

troducing FiLM conditioning generated by a fully con-

nected linear layer. A diffusion model together with FiLM

conditioning [14] inserts a score and performance audio

information for its generative task to express note frames

with MIDI velocity information. While the DNN approach

did not outperform the NMF method, it marked a pioneer-

ing effort to estimate MIDI velocity using DNNs, aiming

to create a model that could generalize to unseen classi-

cal music inputs, in contrast to the NMF method that opti-

mizes parameters for individual test data. In our research,

we juxtapose our findings with these preceding studies.

U-Net: The U-Net architecture incorporates layered

residual connections. The concept of a residual network

emerged as a solution to counteract the vanishing or ex-

ploding gradient issues encountered during the DNN train-

ing phase. U-Net has been employed for piano perfor-

mance transcription, specifically for reconstructing spec-

trograms [15]. Its efficacy in music source separation tasks

within the field of music information retrieval is well-

documented. Notably, research has been conducted on a

FiLM-conditioned U-Net for music source separation [16].

In our study, we leverage a U-Net structure with con-

volutional layers to process the mel spectrogram, a two-

dimensional representation of audio. We anticipate that the

U-Net will enhance classification accuracy, converting au-

dio to the 88 piano keys.

Feature-wise Linear Modulation (FiLM): Our study

employs FiLM conditioning to integrate score informa-

tion, aiming to estimate note-level MIDI velocity for pi-

ano performances [17]. Historically, FiLM conditioning

has found applications in image processing, yielding en-

hanced results when conditioned with natural language for

tasks like object detection [17]. This concept has been

extended to audio source separation tasks, where audio is

conditioned with supplementary information such as video

and scores [18]. Structurally, FiLM encompasses neural

network layers that produce an affine transformation for a

specified input layer. It integrates a base DNN, trained in a

supervised manner, with a condition generator. This gen-

erator processes conditions, such as scores, to produce the

parameters β and γ for an element-wise affine transforma-

tion in the latent space of the base DNN. Mathematically,

this is represented as: FiLM(x) = γ(z) ·x+β(z). Here,

the vector z serves as the conditional vector. Figure 1 vi-

sually represents the FiLM conditioning architecture, illus-

trating how the condition embedding model generates the

parameters β and γ for the affine transformation on the la-

tent vector x derived from the base DNN.

Figure 1. Visualization of FiLM operation

The Scaled Dot-Product Attention (Attention): The

Attention, introduced by [19], has been instrumental in

advancing the field of deep learning. This mechanism

computes attention weights by scaling the dot products of

queries and keys, which facilitates a dynamic focusing of

the model on relevant parts of the input data. Its efficiency

and simplicity allow for significant improvements in model

performance by enabling the capture of long-range depen-

dencies within the data, without the constraints imposed by

previous sequence processing models. The architecture is

utilised in an image processing area [20] and a speech pro-

cessing area [21] together with U-Nets. This mechanism

has also been applied to music information retrieval such

as source separation [22] and showed its performance to-

gether with computational efficiency for the task. These

researches show that the Attention mechanism works for

capturing its target information from complex input data.

Our model incorporates this Attention within the U-Net

architecture to leverage its proven benefits, thereby en-

hancing our model’s ability to understand and generate nu-

anced responses based on the context provided by the input

sequence in a musical sense.

3. METHOD

Figure 2 illustrates the comprehensive architecture of our

proposed model. Initially, the model processes audio in-

put, transforming it into a Log Mel-frequency Spectro-

gram. This transformation facilitates the conversion of the

waveform into an image-like format. The audio process-

ing parameters include a window length of two seconds,

a hop size of one second, and a sampling rate of 16k Hz,

resulting in a model output resolution of 100 frames per

second. The overarching model architecture can be cate-
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Figure 2. The entire architecture of the proposed model.

gorized into three distinct convolutional blocks, as show-

cased in Figure 3.

Figure 3. Schematic of the three convolutional blocks uti-

lized in the model.

Convolutional blocks of type 1 and 2 collectively form

the U-Net structure. Type 1 blocks also play a pivotal

role in encoding note frame information. In this study,

note frames are derived from a MIDI roll. Corresponding

blocks in the encoding phase generate FiLM conditioning

parameters, denoted as β and γ, for each affine transforma-

tion. Several methods for inserting FiLM parameters are

described in [16]. In our model, through empirical study,

we generate parameters to ensure element-wise correspon-

dence for each latent space vector, as depicted in Figure 1.

Consequently, each output from the score encoders gener-

ates twice as many parameters for the output of each block

in the encoder of the U-Net.

To ensure uniformity in the processed latent features,

we employ convolutional layers of the same hierarchical

level to produce FiLM parameters for each layer within the

U-Net. For the skip connections, non-conditioned latent

vectors from each block are relayed to the corresponding

type 2 block, while FiLM-conditioned latent vectors are

channeled to the subsequent layer of the type 1 block.

In the decoder section of the U-Net architecture, Atten-

tion modules are incorporated before each convolutional

block type 2. This configuration enhances the network’s

ability to focus on relevant features by dynamically ad-

justing the importance of different areas of the input im-

age. The Attention mechanism, which calculates attention

scores by scaling the dot-product of queries and keys, en-

ables the model to prioritize specific features over others,

improving the precision of MIDI velocity estimation.

The construction block consists of convolutional block

type 3 followed by the block containing bi-directional

GRU. It processes inputs through a sequence of layers in-

cluding linear transformations for dimensionality reduc-

tion based on the input feature type, batch normalization,

and a bidirectional GRU for capturing temporal dynam-

ics. The network concludes with a fully connected layer

applying a sigmoid function to output note frames with ve-

locity information. Dropout and ReLU activations are uti-

lized throughout to enhance performance and prevent over-

fitting.

For training our model, we employed the MAESTRO

dataset [23]. MAESTRO is a dataset composed of about

200 hours of virtuosic piano performances captured with

fine alignment (up to 3 ms) between note labels and audio

waveforms. Notably, other DNN models targeting MIDI

velocity estimation, such as [13] and [14], have also em-

ployed this dataset. This usage facilitates a more legitimate

comparison of model performance across different studies.

Our chosen loss function, represented by Eq. 1, amal-

gamates the l1 loss and the Binary Cross-Entropy (BCE)

loss. This design facilitates back-propagation of losses for

both classification and regression tasks.

Loss = θ · l1 loss + (1− θ) · BCE loss (1)

Here, θ ∈ [0, 1] signifies the weight for the l1 and the BCE

loss. For our empirical setup, we set θ to 0.5. The l1 loss

function, as defined in Eq. 2, is articulated as:

l1 loss =

∑
i
|V (i)ground truth − V (i)model output|

N
(2)
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In this equation, V (i) represents MIDI velocity with the

index i of corresponding notes between the ground truth

and the model output within a specified window, while N

denotes the total number of notes present in that window.

Each input data point spans two seconds, with each frame

encompassing 100 segments per second to depict the MIDI

roll. The velocities used to compute the loss are normal-

ized to the range [0, 1] to match the scale of the BCE.

For the evaluation phase, we employed the Saarland

Music Data (SMD) dataset [24]. SMD provides audio

recordings along with perfectly synchronized MIDI files

for various piano pieces. The pieces were performed by

students of the Hochschule für Musik Saar on a hybrid

acoustic/digital piano (Yamaha Disklavier). We selected

49 excerpts from this dataset, consistent with the test sets

used in prior studies [5,13,14], ensuring a fair and compa-

rable assessment. The model’s error is quantified using the

formula presented in Eq. 3:

Error =

∑
i
|V (i)ground truth − V (i)inference|

N
(3)

In this equation, i represents individual notes, and N

denotes the total number of notes accurately identified in

the score. The inferred MIDI velocity is determined by the

peak value within the interval of each detected and cate-

gorized velocity frame, juxtaposed with the ground truth

velocity frame for the respective note. This approach is

adopted because the detected velocity typically exhibits a

peak followed by a decline in the estimated MIDI velocity

within a note frame, mirroring the attack and decay pat-

terns of each note’s loudness. Differently from loss func-

tion, the output values are not normalised but are scaled to

the range [0, 127]. The recall score serves as our primary

evaluation metric for classification accuracy, given that the

model’s output is constrained by the provided score infor-

mation.

4. RESULTS AND DISCUSSION

Result and Comparison: Table 1 presents the compara-

tive outcomes of our model against previous works in the

field. The proposed model consistently outperforms other

DNN-based methods across all metrics, demonstrating no-

table improvements. The enhancements are particularly

evident when comparing the best and worst outcomes of

our model with those of other models. The results high-

light that the U-Net designed with Attention and FiLM

conditioning with score information significantly boosts

performance.

Among the test set, the most favorable outcome is ob-

served for "Bach BWV875-01 002," which recorded mean

error, standard deviation, and recall values of 4.6, 3.3,

and 95.6%, respectively. Conversely, "Chopin Op028-17"

exhibited the least favorable results for mean error and

standard deviation, with values of 16.0 and 11.9 respec-

tively, and a recall of 87.5%. Additionally, "Ravel Jeux

d’eau" demonstrated the lowest recall score in the dataset

Model Mean SD Recall

DNN Based Model

DiffVel [14] 19.7 13.1 53.0%

Convolutional Net [13] 15.1 12.3 85.8%

Proposed Model 9.9 7.8 89.7%

NMF Based Model

Score-Informed NMF [5] 4.1 5.0 N.A.

Table 1. Comparative results of models for note-level

MIDI velocity estimation with score information. SD:

Standard Deviation

Figure 4. Mean and SD of errors for misaligned score

information

at 80.7%, with corresponding mean error and standard de-

viation values of 12.1 and 10.2. These results illustrate the

varied performance of our model across different musical

pieces, underscoring its effectiveness as well as areas for

potential improvement.

The analysis also highlights the strengths and weak-

nesses of both DNN and NMF-based methods. DNNs

are capable of capturing complex relationships within the

training data due to their nonlinear nature, but they are

computationally demanding and require extensive data to

optimize parameters effectively. In contrast, NMF-based

methods, such as the one described by [5], optimize pa-

rameters for individual excerpts using score information in

the test set, offering a more tailored approach. This speci-

ficity, however, can limit their generalizability compared to

DNNs, which aim to develop a more generic model suit-

able for diverse musical excerpts. Notably, the proposed

model is trained on a distinct domain, specifically a piano

performance dataset different from the test set, to ensure a

fair comparison and robust assessment of its performance.

This strategy helps in evaluating the model’s ability to gen-

eralize across different musical contexts effectively.

Misaligned Condition Insertion: In real-world ap-

plications, alignment discrepancies frequently occur be-

tween scores and their corresponding audio, affecting the

accurate feeding of note frames. Figure 4 elucidates the

model’s sensitivity to temporal misalignments, exhibiting

a correlation between the degree of time shift and the

model’s performance metrics.

These shifts are synthetically generated by inserting the
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conditions a specified number of seconds ahead or behind

each input frame, with a two-second duration per input. It

is clear that misaligned data affects to the model accuracy

proportionally. Addressing this misalignment, data aug-

mentation can be employed during the training phase to

acclimate the model to varying degrees of data condition

misalignments, thereby enhancing its flexibility.

Nonetheless, this alignment challenge may become

negligible with the integration of a dedicated note frame

detection model, as delineated by models like the one

in [25]. Utilizing such models for precise note frame

detection allows for a subsequent, more accurate analy-

sis of MIDI velocity estimation by the proposed model,

streamlining the workflow and potentially increasing per-

formance accuracy.

Figure 5. Error distributions based on various ground truth

aspects: pitch, sustain pedal activation, and MIDI velocity

intervals together with the ratio of notes appeared in the

training set.

Error Analysis: Further analysis was conducted to

evaluate the error distribution across different pitch groups,

ground truth MIDI velocities, and sustain pedal activation

states, as depicted in Figure 5. The analysis indicates that

error is inversely correlated with the volume of data in the

training set: the greater the quantity of data processed by

the model, the more accurate the MIDI velocity estimates,

highlighting the benefits of extensive data representation.

The results further reveal that enhanced training data

volumes lead to improved estimation outcomes across var-

ious data dimensions. This suggests that applying data

augmentation to achieve a balanced distribution in pitch

and velocity bins can result in higher estimation accuracy.

However, such augmentation must maintain the musico-

logical context, including harmony and expressiveness,

making this a complex yet critical task for effective model

training.

Ablation Study: In our ablation study, we evaluate the

individual and combined contributions of FiLM condition-

ing and the Attention modules to our model’s performance,

based on the U-Net architecture. These components were

chosen for their theoretical abilities to enhance feature rep-

resentation and focusing mechanisms, respectively. The

study aims to clarify their roles within our proposed deep

neural network architecture. We examine four configura-

tions of our model: (i) with both FiLM and Attention (pro-

posed model), (ii) with FiLM but without Attention, (iii)

with Attention but without FiLM, and (iv) without either

FiLM or Attention, as shown in Table 2.

Model Configuration Mean SD Recall

With FiLM:

With Attention 9.9 7.8 89.7%

Without Attention 10.0 7.8 89.4%

Without FiLM:

With Attention 12.1 10.5 73.0%

Without Attention 13.0 10.5 68.5%

Table 2. Ablation Study: Detailed Performance Compar-

ison Highlighting the Impact of FiLM Conditioning and

Attention.

The ablation study highlights the significant impact of

FiLM Conditioning and a relatively lesser contribution

from the Attention in enhancing the performance of the

proposed model. The observed synergy when integrating

these modules indicates a promising avenue for future re-

search and development in deep neural network architec-

tures. While the Attention module improves model per-

formance, its effectiveness is not as pronounced as that of

FiLM Conditioning. This suggests that the model’s ability

to concentrate on relevant features, and thereby its predic-

tive performance, is significantly enhanced by FiLM Con-

ditioning. Notably, we could see universal improvement

on the recall score on all the excepts on the test set in any

comparison among combination of (i) to (iv).

According to Table 1, the study also demonstrates that

incorporating a U-Net mechanism, particularly its skip

connections, can enhance accuracy for the task at hand,

outperforming previous models.

Robustness of the Model: We conducted a com-

parative analysis against the state-of-the-art transcription

model that additionally estimates the MIDI velocity [26].

The results, detailed in Table 3, indicate that our proposed
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model achieves comparable performance in MIDI velocity

estimation. Notably, our model demonstrates enhanced ro-

bustness across various test datasets, as evidenced by the

recall scores, in comparison to the model proposed by [26]

which is also trained on the MAESTRO dataset.

Model Mean SD Recall

Proposed Model 9.9 7.8 89.7%

The hFT Model [26] 9.9 7.3 78.0%

Table 3. Comparison to the SOTA Transcription Model

This comparison highlights the efficacy of our model,

particularly in its ability to generalize across different

datasets, which is crucial for practical applications. The

fact that both models yield identical mean scores for MIDI

velocity estimation but our model exhibits a higher recall

rate suggests our model’s capability in accurately capturing

the nuances of musical expression. Furthermore, despite

the slightly higher standard deviation in our model’s per-

formance, the significantly higher recall rate underscores

its robustness and reliability in diverse testing scenarios.

This finding is particularly relevant for applications requir-

ing high fidelity in musical transcription and velocity esti-

mation, indicating a promising direction for future research

and development in music transcription technologies. Also

the ablation study indicates that adding FiLM conditioning

can improve the model accuracy for the task, after experi-

mental process of designing the parameter generators and

methods to insert the parameters, which yields another re-

search topic.

5. CONCLUSION AND FUTURE WORKS

In this study, we explored the complexities of MIDI veloc-

ity estimation, leveraging an U-Net architecture enriched

with the Attention and FiLM conditioning to integrate

score information. Our results underscore the superiority

of this approach among DNN methodologies. Our empir-

ical evaluations further attest to the pivotal role of FiLM

conditioning in bolstering result accuracy. This enhance-

ment transcends specific model architectures, with FiLM

conditioning amplifying precision across various models,

ranging from feed-forward designs with convolution and

GRU blocks to diffusion models, combining the previous

researches [13, 14]. The Attention also contributes to im-

prove on both MIDI velocity estimation and recall score.

The model also showed that comparable results towards

SoTA transcription model and the robustness across the

sources of test set compared to other state of the art tran-

scription models which also estimates MIDI velocity.

Generally, FiLM conditioning has proven effective for

MIDI velocity estimation tasks. Enhanced transcription

of note onset, offset, and frames could further refine per-

formance, positioning this model as a robust solution for

MIDI velocity estimation across diverse datasets. This

suggests that utilizing DNN models, such as the onsets

and frames model proposed by [25], which demonstrates

superior accuracy in note frame detection without FiLM

conditioning, could be advantageous. In situations where

score data are not available, a cascaded approach can be

employed: first, use a DNN for accurate note frame detec-

tion, and then leverage the detected MIDI for FiLM con-

ditioning, circumventing the need for score-to-audio align-

ment.

As we look to the future, our objective is to expand the

range of score information, transitioning from MIDI note

frame to more comprehensive formats, MusicXML to be

encoded. Such a shift is anticipated to offer increased re-

silience, especially in situations where achieving precise

alignments poses challenges. Data augmentation on train-

ing data is also considered as crucial task for obtaining

more robust estimation, as mentioned. Additionally, ad-

dressing issues such as omitted notes and extraneous notes

is essential to tailor the model more effectively for edu-

cational applications, catering to both novice learners and

seasoned professionals, considering currently the set up

only considers the student is god enough to follow the

score for performance visualization purposes.

The potential applications of this research are manifold,

extending from the development of visualization tools that

bolster musical communication to advanced transcription

techniques. Such annotations, especially those denoting

expressiveness, carry significant implications, particularly

in pedagogical contexts where teacher-student interactions

are crucial.

The code and model developed for this study are avail-

able upon request.
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