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ABSTRACT

The majority of Western popular music contains lyrics.

Previous studies have shown that lyrics are a rich source of

information and are complementary to other information

sources, such as audio. One factor that hinders the research

and application of lyrics on a large scale is their availabil-

ity. To mitigate this, we propose the use of transcription-

based lyrics embeddings (TLE). These estimate ‘ground-

truth’ lyrics embeddings given only audio as input. Cen-

tral to this approach is the use of transcripts derived from

an automatic lyrics transcription (ALT) system instead

of human-transcribed, ‘ground-truth’ lyrics, making them

substantially more accessible. We conduct an experiment

to assess the effectiveness of TLEs across various music

information retrieval (MIR) tasks. Our results indicate that

TLEs can improve the performance of audio embeddings

alone, especially when combined, closing the gap with

cases where ground-truth lyrics information is available.

1. INTRODUCTION

Lyrics play an important role in music consumption [1–3],

often providing additional context to the perceived audio,

such as lyrical themes and semantic meaning. As such,

lyrics also have a wide range of applications in MIR, in-

cluding mood/sentiment prediction [4–8], recommenda-

tion [2, 9], genre [2, 10–12] and music tag prediction [11].

However, the absence of lyrics on a large scale poses

a significant challenge. While they are often available for

popular music, this might not be the case for the majority

of songs in a music catalog, either because they are non-

existent, i.e., not yet transcribed by a human, or due to

missing copyrights. Automatic lyrics transcription (ALT)

systems are an important step towards alleviating this prob-

lem by directly transcribing the lyrical content from a piece

of audio [13–17]. Still, these systems are not infallible and

some efforts have been made to further refine the result-

ing (potentially faulty) transcriptions, e.g., by using large

language models (LLMs) [15].

© J. Kim, F. Henkel, C. Landau, S. E. Sandberg, and A. F.

Ehmann. Licensed under a Creative Commons Attribution 4.0 Interna-

tional License (CC BY 4.0). Attribution: J. Kim, F. Henkel, C. Landau,

S. E. Sandberg, and A. F. Ehmann, “Transcription-based lyrics embed-

dings: simple extraction of effective lyrics embeddings from audio”, in

Proc. of the 25th Int. Society for Music Information Retrieval Conf., San

Francisco, United States, 2024.

In this work, we investigate the use of lyrics em-

beddings on a variety of MIR downstream tasks, rang-

ing from music tagging to recommendation. We fo-

cus on a comparison between embeddings stemming

from human-transcribed or ‘ground-truth’ lyrics and their

machine-transcribed counterparts, which we refer to as

transcription-based lyrics embeddings (TLE) throughout

this work. In particular, we are interested in the effective-

ness of two TLE variants compared to audio embeddings

and ‘ground-truth’ lyrics embeddings, where we assume

the performance of the latter as an upper bound to TLE. To

that end, we answer the following research questions:

• RQ1 Do TLE provide useful additional information

compared to audio embeddings alone?

• RQ2 Can TLE be efficiently refined to close the gap

to ‘ground-truth’ lyrics embeddings?

The remainder of the paper is structured as follows.

Section 2 discusses related work on lyrics embeddings and

automatic lyrics transcription. In Section 3 we introduce

the concept and types of TLEs we evaluate in this work.

Section 4 covers our experimental setup including choices

of audio/lyrics embeddings as well as datasets and tasks.

In Section 5 we investigate and discuss the aforementioned

research questions. Finally, we conclude this work in Sec-

tion 6 and highlight potential future work directions.

2. RELATED WORK

Extracting information from lyrics has long been studied in

the MIR community. In particular, representing such infor-

mation quantitatively, e.g., with feature or latent vectors,

has been a strong focus. For instance, linguistic features

(e.g., rhyme and stylistic features) are shown to be useful

in various tasks [6,8,18], as well as approaches using psy-

chologically validated dictionaries [2, 19].

For representation modelling, bag-of-words (BoW) [20]

and term frequency inverse document frequency (TF-IDF)

have been common and effective choices for lyrics [6,12],

which is further extended to latent document or topic mod-

eling that has been successful in lyrics similarity estima-

tion and exploration [21, 22], as well as genre and mood

classification [6, 11, 12]. Another successful method is to

employ word2vec [4, 18, 23], where lyrics documents are

typically represented as the average of word vectors.

Lately, deep learning (DL) has been a popular choice

for lyrics representation learning. In supervised learning,
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it typically is accomplished implicitly within hidden layers

via end-to-end learning, which proves to be effective on

a range of downstream tasks [10, 11, 18]. More recently,

LLMs have introduced self-supervised learning based la-

tent text representations, which are shown to be effective

on several MIR tasks [24, 25].

Regardless, ALT remains a challenging problem to-

day [15, 16, 26, 27]. Along with efforts in building lyrics-

specific transcription systems [16, 17], Automatic Speech

Recognition (ASR) applied to the ALT task has also been

shown to be effective [27–29].

3. TRANSCRIPTION-BASED LYRICS

EMBEDDINGS

Figure 1. The diagram of proposed lyrics embedding esti-

mation. The models in the green-colored boxes ({t, h, f})

are assumed to be pre-trained, whereas lyrics enhancement

model g is trained employing embeddings obtained from

those pre-trained models.

In this work, we propose a system that estimates lyrics

embeddings (LE) independent of ‘ground-truth’ lyrics data

y ∈ Y by only relying on audio data x ∈ X , which

we generally refer to as transcription-based lyrics embed-

dings (TLE) in the following. To achieve this, we consider

several off-the-shelf pre-trained models, including an ALT

model t : X → Ŷ , an audio embedding model h : X → A,

and finally a lyrics embedding model f : Y → Z .

Given the availability of a pre-trained ALT as well as

word or sentence embedding models, it is straight-forward

to devise a sequential system that allows one to directly

input audio data and obtain high-quality lyrics embeddings

that are ready to be used for a variety of downstream music

tasks. We propose such an ALT based embedding as the

first type of TLE, which is further referred to as TLET and

denoted as ẑ in Figure 1.

Despite remarkable recent improvements, ALT models

are not yet completely error-free, due to the challenging

nature of this task [15]. As a result the transcription ŷ ∈ Ŷ ,

and hence an embedding computed from it may contain a

certain degree of error when compared to ‘ground-truth’

lyrics embeddings. We aim to improve the fidelity of

TLET by introducing an ‘enhancement’ model which re-

gresses to the ground-truth lyrics embeddings from noisy

transcription-based embeddings by using audio embed-

dings as an additional input. In the following we refer to

this approach as TLER (denoted as ź in Figure 1).

Given pre-configured audio a ∈ A ⊂ R
da and lyrics

embedding z ∈ Z ⊂ R
dz spaces, the main goal of ‘en-

hancement’ is to find a function g : Φ → Z which maps

the concatenated audio-lyrics embedding ϕ = [a; ẑ] ∈
Φ ⊂ R

(da+dz) to the lyrics embedding space z′ ∈ R
dz .

Specifically, we minimize the sum of squared error be-

tween the estimated and ground-truth lyrics embedding as

the main learning objective:

min
Θ

∑

(z,x)∼Dtrain

||z − g(ϕ; Θ)||2 + αR(Θ) (1)

where Θ are the parameters of the regressor g and Dtrain

denotes the training dataset where we have access to both

the audio x and lyrics y as well as their corresponding em-

beddings a and z. Finally, R is the regularizer for the pa-

rameters Θ which is controlled by coefficient α.

4. EXPERIMENTAL SETUP

The main hypotheses correspond to each RQ: 1) TLET ef-

fectively provides lyrics information that is complemen-

tary to audio 2) TLER improves the effect of TLET . Con-

cretely, we design an experiment comparing the perfor-

mance of three treatments, LE, TLET , and TLER, on rele-

vant downstream tasks, with respect to a range of lyrics and

audio embeddings. In the experiment, we define a treat-

ment as a scenario where a single type of (transcription-

based) lyrics embeddings is employed to represent text in-

formation, both in the training and testing phase of the ma-

chine learning (ML) experiment. 1 The rest of this section

describes each component of the experimental design.

4.1 Machine Transcription

Similar to [15], we rely on a Whisper-based model [28]

to transcribe the lyrics of a song from its audio record-

ing. In contrast to [15], we do not perform a correction

step in the form of ChatGPT 2 , as this would be too costly

on a large scale. Instead we directly create embeddings

from the potentially faulty transcriptions (TLET ) and sub-

sequently try to improve the embeddings using a learned

correction function (TLER).

Considering that we aim to transcribe a large set of au-

dio recordings (see Table 1), we employ Distil-Whisper for

an efficient transcription process without significant per-

formance losses [32, 33]. As suggested in [15] we use

“lyrics:” as a prefix prompt.

4.2 Embeddings

In the following, we introduce the different embeddings for

each modality used in our experiments. While each em-

bedding is tested separately, we also test combined cases,

where both audio and lyrics embeddings are provided in

the downstream task as a concatenated embedding vector.

1 We do not consider the scenarios where different treatments are used
in training and testing phase to control for a possible data drift [30, 31]
and to simplify the experimental design.

2 https://openai.com/blog/chatgpt
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4.2.1 Lyrics Embeddings

We consider three text embeddings, ranging from conven-

tional to more modern transformer-based embeddings to

ensure the generality of the study.

Bag-of-Words embeddings (BE): BE embeddings

serve as the baseline lyrics embedding approach within

the experimental design. Unless the lyrics data is pre-

tokenized by words such as the MSD-MusiXmatch (MSD-

MXM) dataset [34], we employ the Byte-Pair Encoding

(BPE) tokenization [35] instead of actual words. The re-

sulting representation is a sparse song-token count matrix

on which we apply TF-IDF [36] and randomized singular

value decomposition (rSVD) [37] with a dimensionality of

d = 300 to subsequently obtain a dense, low-rank vector

representation of each lyrics.

Wasserstein embeddings (WE): WE embeddings are

learned by applying linear optimal transport which min-

imizes the Wasserstein distance between distributions of

the learned embeddings and given reference vectors [38].

For the reference vectors, we train token embeddings using

their co-occurrence matrix. This provides token-to-token

transition frequency information on top of the document-

token frequency which is the only information source to

BE. We choose an embedding dimensionality of d = 300.

Sentence BERT embeddings (sBERT): We use a pre-

trained sentence BERT model [39], which is fine-tuned us-

ing a general language model called MPNet [40, 41]. In

particular, the fine-tuning training involved a large scale

text corpora to effectively estimate the semantic similarity

between paraphrased sentences. Such a property can be

crucial for lyrics data, which often is highly abstract and

irregular compared to conversational language. The em-

bedding has a dimensionality of d = 768.

4.2.2 Audio Embeddings

We employ two open-source and one proprietary music au-

dio embedding models.

OpenL3: is a video-audio multimodal representation

trained using self-supervised learning. Specifically, the

model encodes video and audio features in respective em-

beddings, and minimizes the matching error between them,

assuming the best matches happen when they are extracted

from the same video clip [42,43]. We employ the audio en-

coding sub-network from the ‘music’ variant of OpenL3 as

the embedding encoder with a dimensionality of d = 6144
and 128-band mel spectrograms as input.

MULE: is an open-source music audio embedding

model trained in a self-supervised way by using contrastive

learning on MusicSet, a large-scale proprietary music au-

dio dataset [44]. We choose this for representing a modern,

generic music audio embedding which is effective on wide

range of downstream tasks.

MSLE: is the supervised counterpart to MULE where

the music labels of MusicSet are used for its supervised

learning [44]. We employ it for the proprietary datasets

(i.e., InternalLT, InternalRec, see following section). Both

embeddings have the same dimensionality d = 1728.

4.3 Tasks and Datasets

4.3.1 Automatic Music Tagging (AMT)

AMT has been a popular downstream task in MIR [45].

While there are several datasets [34, 46–48], few of them

focus on lyrics specifically. To measure the effect of

lyrics more clearly, we devise a subset of the Million Song

Dataset (MSD) for tagging [34] that is more relevant for

lyrics data, which we refer to as MSDSnippetLT.

It is composed as the subset of social tags that MSD pro-

vides and that are specifically relevant to the lyrics’ subject

matter and language. It involves a machine-assisted tag se-

lection process, where we first identify lyric-relevant tags

by ranking MSD tags using the correlation with approxi-

mately a dozen privately-curated lyric-related tags and lan-

guage metadata, with songs matched to an annotated pro-

prietary music catalog. Among the top 200 MSD tags per

each proprietary lyrics tag, three researchers voted 3 for

a final subset based on the following selection rules: 1)

the MSD tag has to be clearly related to the targeted pro-

prietary lyrics tag, 2) the MSD tag is not a music genre,

3) the MSD tag is not an artist. After filtering songs that

map to the MSD-MXM subset which provides lyrics data

for a subset of MSD songs, the resulting dataset contains

74, 545 MSD songs and 87 unique tags in total, where ap-

proximately half of them center around the lyrical subject

(i.e., “melancholy”, “political”), while the other half are

related to the lyrics’ language (i.e., “british”, “Espanol”).

We also experiment with a proprietary subset that we refer

to as MSDFullLT where we have access to the full lyrics.

The dataset consists of 35, 264 songs and is a complete

subset of MSDSnippetLT. We hypothesize that the dataset

can provide useful insights on the effect of incompleteness

of the snippet/preview lyrics.

Additionally, we experiment with two popular tagging

datasets and one proprietary lyrics subject tagging dataset:

MSDSnippetMT is a subset of the popular MSD tag-

ging dataset, [34] where we select the commonly used 50
tags [45] to compare to the MSDSnippetLT dataset. As we

have to consider the availability of lyrics within MSD, the

resulting subset includes a total of 68, 363 songs. We fur-

ther test with JamendoMood dataset which is a subset of

the MTG-Jamendo datset [47] specifically focused on mu-

sic mood. The main purpose of this dataset is to show how

effective TLEs are for general music mood tagging when

‘ground-truth’ lyrics are not available. It contains 17, 982
songs annotated with 56 music mood tags. Finally, Inter-

nalLT is the subset of a proprietary lyrics-subject dataset

providing a set of high-quality lyrics-subject tags as well

as full ‘ground-truth’ lyrics.

We apply 5-fold cross validation for all datasets except

JamendoMood, where we use the provided pre-defined

split. The model performance is evaluated by the sample-

weighted mean average precision (wmAP) averaged across

all tags. The main motivation of applying sample weights

3 A weighted majority voting is conducted where one of three re-
searchers has three times larger weight than the other two, considering
the substantial musical experience and training. For further details on the
dataset creation, we kindly refer readers to the supplementary material.
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Dataset task #songs #tags text audio

MSDSnippetMT music tagging 68, 363 50 BoW5k preview
MSDSnippetLT lyrics tagging 75, 545 87 BoW5k preview
MSDFullLT lyrics tagging 35, 264 87 full-text preview
JamendoMood mood tagging 17, 982 56 N/A full-audio
InternalLT lyrics tagging 51, 240 15 full-text full-audio

MSDSnippetRec RecSys 112, 769 N/A BoW5k preview
InternalRec RecSys 138, 984 N/A full-text full-audio

Table 1. Details on the datasets.

is that the majority of the datasets, except JamendoMood,

provide the tagging confidence values, which is useful to

both training and evaluating the task. The sample weight

wi,j ∈ [0, 1] is defined as the normalized confidence value

for the observed annotation of tag j on song i. For all other

pairs of i and j (unannotated tags on songs) we set it to 1.

4.3.2 Music Recommendation

We further explore the effectiveness of lyrics embeddings

within a music recommendation system (RecSys) problem.

To maximize the effect of music content in a RecSys task,

we experiment with the ‘item cold-start’ scenario; a subset

of songs lack user interactions (e.g., new releases) hence a

content-based recommendation is more effective than col-

laborative filtering [49, 50].

The dataset consists of triplets of {user, song, listening

count} which is translated into a user-song matrix. The

interaction data is split into five sets of train, validation

and test set by songs in approximately 3:1:1 ratio via 5-

fold cross-validation. The user-song interactions within

the training (song) set is assumed as ‘observed’ and thus

can be used as the training data, while those within the

test (song) set are treated as ‘future’ interactions which the

recommendation system is expected to rank higher. An ef-

fective measure commonly used is the binary normalized

discounted cumulative gain (nDCG) [51] applied on a trun-

cated list of the top 500 recommended songs. 4

We employ two datasets for the RecSys task: MSD-

Echonest subset 5 is a popular recommendation dataset

which contains {user, song, listening count} triplets. We

derived a subset by including songs overlapping with the

MSD-MXM subset only, which we refer to as MSDSnip-

petRec. We apply 5-core filtering, i.e., we filter out users

who interacted with less than or equal to five unique songs,

and vice versa. Similarly, we derived a subset of propri-

etary streaming listening data in the aforementioned for-

mat and apply the same pre-processing steps. We refer to

this dataset as InternalRec.

4.3.3 Pre-processing on Text Representation

The subset of datasets involving MSD-MXM data only

provide a pre-tokenized BoW representation, while for

the rest we have access to a natural text representation of

lyrics, except for JamendoMood where we do not have

access to any ‘ground-truth’ lyrics. We refer to the pre-

tokenized BoW representation as BoW5K as it specifically

4 For efficient evaluation, we compute estimates per fold by averaging
nDCG over 5 randomly sampled subsets of 3000 users. It is shown that
the estimation error is marginal, not impacting the overall conclusion.

5 http://millionsongdataset.com/tasteprofile/

is limited to the 5000 most frequent words. This applies to

MSDSnippetLT, MSDSnippetMT, MSDSnippetRec.

Furthermore, as the transcription of music previews

tend to be substantially shorter, the BoW5K representation

of those has less counts compared to the one provided by

MSD-MXM, which is extracted from the full-text lyrics.

To correct this bias, we apply the following adjustment to

the transcription based word count a:

ãi,b = Ñi

(

γpai,b + (1− γ)pprior

i,b

)

(2)

where pai,b denotes the normalized frequency of a word b

on the ith lyrics based on the transcription, while p
prior

i,b

represents the global probability of a word b based on the

MSD-MXM corpus. Ñi = riNi denotes the estimated

word count of the full text based on the length ratio ri be-

tween full audio and snippet audio, and the observed word

count from the transcription Ni. Based on a preliminary

study, we choose the mixing coefficient γ = 0.8 which

yielded the best adjustment quality. 6

Given that MSDFullLT, InternalLT, InternalRec, and Ja-

mendoMood (via transcription) directly provide full text

lyrics for the embedding encoding, they do not require any

of the aforementioned pre-processing steps. An overview

of the datasets can be found in Table 1.

4.4 Experimental Setup Details

4.4.1 Lyrics Embedding Models

Unlike sBERT, for which we use a pre-trained model,

we train BE and WE models either with the MSD-MXM

dataset or a proprietary lyrics corpus. 7 As discussed in

section 4.3.3, downstream task datasets based on MSD-

MXM are pre-processed with the BoW5K representation,

which lacks the token sequential dependency information.

As WE requires the reference embeddings where typically

pre-trained token/word embeddings are used, we employ

glove-840B [52] word embeddings. For training BE and

WE embeddings, we only use half of the songs uniformly

sampled from MSD-MXM (118, 831/237, 662) to consider

the scenario where lyrics are only available for a subset of

songs. For datasets with the full texts available, we employ

BE and WE pre-trained on a subset of a proprietary lyrics

corpus containing 3 million unique lyrics.

6 The BoW5K matrix becomes dense after this adjustment, which still
is tractable for computing BE and WE, due to the word truncation at
5000. However, for a large scale dataset, we suggest to set γ = 1, which
disregards the prior but significantly improves computational efficiency.

7 We use implementations from the vectorizers package.
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4.4.2 Regression Model for TLER

For the enhancement model for TLER, we apply multivari-

ate linear ridge regression where the regularizer R(Θ) =
||Θ|| and the optimal α is selected from the range {10p :
p = [−6,−5, ... 5, 6]} via cross-validation.

4.4.3 Downstream Task Pre-processing & Models

We apply standardization followed by Principal Compo-

nent Analysis (PCA) to embeddings at 99.9% explained

variance ratio with whitening. This is especially useful for

combined audio-lyrics embeddings in order to balance the

contribution of each modality.

For Tagging tasks, we apply ridge logistic regression,

populated per tag to handle the multi-label classification

problem. The regularization coefficient is found by cross-

validation, from the same range used for the regressor de-

scribed in Section 4.4.2.

For the RecSys task, we employ item K-Nearest Neigh-

bor (itemKNN) [53]. For each song, it computes and

caches the K most similar songs by measuring cosine

distances between song embedding vectors, which results

in a sparse song-song similarity matrix. Later, it serves

songs that are most similar to the users previously lis-

tened songs by employing this similarity matrix. Fi-

nally, the optimal K is found by cross validation per

fold in each feature/dataset combination from the range of

[20, 50, 100, 200, 500, 1000, 2000].

5. RESULTS & DISCUSSION

5.1 Are LE in general useful for MIR tasks?

Although our main focus is the effectiveness of TLEs on

MIR tasks, we briefly discuss its ideal counterpart, LE. Our

main interest is whether LE outperforms the baseline sce-

nario where only the audio embedding is used, compared

to scenarios where LE is either used alone or in combi-

nation with audio embeddings for downstream tasks. As

Figure 2 suggests, LE (round points in pink) outperforms

the baseline (dashed horizonatal line) particularly when the

task is lyrics focused (i.e., MSDSnippetLT, MSDFullLT,

InternalLT), or when the combined lyrics and audio em-

bedding is given to downstream task models (i.e., the three

“+Audio” columns to the right of each grouping). It is no-

table that a performance improvement is observed on most

of the tagging datasets and one RecSys scenario (i.e., In-

ternalRec using MSLE) when LE is combined with audio

embeddings. However, overall we observe a smaller effect

for RecSys tasks. We assume that this is due to the smaller

relative effect of LE against the baseline in those cases.

Comparing audio baselines, OpenL3 performs worse

than MULE and MSLE on most tagging tasks (except MS-

DFullLT), while performing better in RecSys tasks. De-

spite these differences, we observe similar trends regarding

the performance of LEs compared to those baselines.
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Figure 2. Each sub-figure corresponds to one dataset (row)

and audio embedding (column). x and y axes represent

embedding combinations and performance measures per

task, respectively. Dashed horizontal lines and the shaded

gray area in each figure represents the average performance

and confidence interval when only the audio embedding is

used. Each other point and vertical bar indicates the aver-

age performance and confidence interval of an embedding

(combination). We set confidence intervals at 95%.

5.2 Does TLET provide complementary information

to audio embeddings?

In practice, the confirmed effectiveness of LE is unlikely

to be helpful due to limited access to ‘ground-truth’ lyrics.

Regardless, our results indicate that TLET can also achieve

better testing performance compared to audio-only base-
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lines, similar to LE.

We observe degradation of performance compared to

LE in most of the cases, which is expected due to the tran-

scription error of the ALT process. The error can be seen

in Figure 3, where we measure the cosine similarity be-

tween corresponding pairs of LE and TLEs. This suggests

that the transcription error can be severe such that the co-

sine similarity of a large number of pairs approaches 0 (i.e.,

MSDSnippetLT, MSDFullLT).
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0 0.5 1
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Figure 3. Distribution of cosine similarities measured be-

tween pairs of TLET – LE and TLER – LE, respectively.

Each sub-figure represents the result per dataset and lyrics

embeddings tested. Vertical bars denote the median.

However, TLET , even with such transcription errors

and hence a loss of fidelity in the resulting embeddings,

still provides meaningful performance gains when com-

pared to an audio-embedding-only scenario. This is espe-

cially true on lyrics focused tasks or when combining the

audio and (noisy) lyrics embeddings. In JamendoMood

and MSDSnippetMT, where the lyrics data is not available

upfront or the task is not focused on lyrics, we still observe

that TLET combined with audio features outperforms au-

dio embeddings alone.

This implies that one can build lyrics-based ML systems

that can be applied to all the songs in the catalog of inter-

est, with an expectation of a performance gain compared

to models solely dependent on audio embeddings.

Comparing the performance of TLET between MSD-

SnippetLT and MSDFullLT, it is notable that the trunca-

tion of transcribed lyrics influences the effectiveness of the

resulting embeddings. This suggests that providing full-

length lyrics transcripts where possible is important.

5.3 Does TLER further improve TLET ?

Next, we focus on TLER which applies regression on top

of TLET . Ideally, we would expect that the regression im-

proves the fidelity of TLET , which likely results in an im-

proved downstream task performance. First, we can con-

firm that the regression indeed improves the fidelity, as

suggested by Figure 3. Measured on the testing samples of

matching pairs of LE and TLER, the average cosine simi-

larity is improved in all the cases. The effect is more ob-

vious when the initial TLET has lower fidelity (i.e., BE,

MSDSnippetLT). This indicates that the regression does

increase the fidelity to some degree.

However, on the downstream tasks, the effect is not as

consistent as in the cosine similarity (fidelity) result. In

the case where the audio embedding is not included as

input, the result indicates that TLER improves the down-

stream performance over TLET , sometimes even outper-

forming corresponding LEs (i.e., MSDSnippetMT, Inter-

nalLT). However, once combined with audio embeddings,

the effect is not as distinct. While overall a small positive

effect is observed in the RecSys datasets, the effect in the

tagging datasets seems to be less clear, with TLER gener-

ally performing on par with TLET .

One explanation could be that the concatenation of au-

dio embeddings for downstream tasks would eventually

provide the same degree of audio information for TLET

as already provided for TLER. The regression of TLER

is conditioned both by TLET and the audio embedding,

and thus would likely inherit the audio information. This

is a possible explanation for the cases where TLER out-

performs both LE and TLET . Similarly, TLET combined

with the audio embedding explicitly fusing the two modal-

ities via concatenation, shows performance that is on par

with TLER in most of the cases.

6. CONCLUSION & FUTURE WORK

In this work, we introduce and assess transcription-based

lyrics embeddings which tackles the problem of lyrics

availability. An experiment is conducted to evaluate the

effectiveness of TLEs in popular MIR downstream tasks,

assessed against two comparisons, namely ‘ground-truth’

lyrics embeddings and audio embeddings. The result in-

dicates that TLEs perform generally in between these two

contenders, especially when combined with audio embed-

ding and on the lyrics-focused tasks. This implies that

TLEs can be an effective approach to be applied in lyrics-

relevant MIR tasks where lyrics are often unavailable.

In particular, our results suggest that TLET is a simple,

yet effective method for various downstream tasks when

combined with audio embeddings. It is shown to comple-

ment audio embeddings by improving performance when

combined with them. These gains can be achieved by using

only off-the-shelf pre-trained models, while not requiring

any access to ‘ground-truth’ lyrics whatsoever. Addition-

ally, this approach does not require any subsequent refine-

ment processes as is the case with TLER.

Furthermore, we identify some areas of exploration by

which TLE could be improved: 1) end-to-end learning

that directly associates the audio and LE to potentially im-

prove the quality of TLER and avoids the transcription pro-

cess, 2) instead of a simple linear regression model, more

advanced methods such as semi-supervised learning [54]

could further improve the fidelity of TLER. Additionally,

3) using context vectors from DL-based ALT models could

be a viable alternative TLE, which bypasses the lyrics text

embedding models. Finally, 4) while not the main fo-

cus due to the prevalence of English language in the data,

multi-lingual transcription and embedding models could

further improve the results in a more general setup.
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