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ABSTRACT

Recent advancements in deep generative models present

new opportunities for music production but also pose chal-

lenges, such as high computational demands and limited

audio quality. Moreover, current systems frequently rely

solely on text input and typically focus on producing com-

plete musical pieces, which is incompatible with existing

workflows in music production. To address these issues,

we introduce Diff-A-Riff, a Latent Diffusion Model de-

signed to generate high-quality instrumental accompani-

ments adaptable to any musical context. This model of-

fers control through either audio references, text prompts,

or both, and produces 48kHz pseudo-stereo audio while

significantly reducing inference time and memory usage.

We demonstrate the model’s capabilities through objective

metrics and subjective listening tests, with extensive exam-

ples available on the accompanying website. 1

1. INTRODUCTION

Deep generative modeling has recently made significant

strides, greatly expanding the toolbox for synthesizing vi-

sual and auditory art [1–6] and signaling a new era of en-

hanced creative expression. These technologies promise

more intuitive, high-level control over digital creations, yet

their deployment in music production comes with inher-

ent challenges. Generative music systems frequently rely

solely on text inputs for control and typically focus on

generating complete musical pieces rather than individual

sounds or instruments. This approach can limit their in-

tegration into existing musical workflows and may com-

promise the artist’s control over the final product. Further-

more, the computational demands of these advanced mod-

els often necessitate access to specialized hardware or on-

line services. Additionally, they often fail to meet profes-

sional audio standards, such as true stereo output at 48 kHz.

1 sonycslparis.github.io/diffariff-companion/
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In this paper, we introduce Diff-A-Riff, a novel Latent

Diffusion Model designed for generating single-instrument

accompaniments. A distinct feature of our approach is the

ability to condition on musical audio contexts. This specific

form of control crucially allows the music to dynamically

adapt to the artist’s style, enabling a more personalized cre-

ation process. Additionally, the model supports condition-

ing using joint text-and-audio embeddings from CLAP [7],

which can be derived from either textual descriptions or

audio references, providing versatile input options for di-

recting the music generation.

At the core of Diff-A-Riff are two pivotal technological

elements. First, the efficiency of a Consistency Autoen-

coder with a high compression rate enhances the system’s

performance in terms of inference time and memory us-

age [8]. Second, the model employs the expressiveness of

Elucidated Diffusion Models (EDMs), known for their ro-

bust handling of complex data distributions and improved

efficiency in model parameterization and inference [9].

We validate Diff-A-Riff through comprehensive evalu-

ations, assessing its performance in ablation studies using

objective metrics, and we compare it to other models and

estimate context adherence using subjective listening tests.

The results, detailed in Sections 5 and 6, demonstrate that

our model not only achieves state-of-the-art audio quality

(statistically not distinguishable from real audio) but also

effectively adapts to various conditional settings confirm-

ing its potential for practical applications in music produc-

tion.

The paper is organized as follows: after a review of re-

lated work in Section 2 and background in Section 3, we

describe our methodology in Section 4. We then present

our results in Section 5 and conclude with a discussion and

potential future research directions in Section 6.

2. RELATED WORK

End-to-end models. The landscape of generative models

for music has undergone transformative advancements in

recent years. End-to-end Autoregressive Models (AMs)

have traditionally been at the forefront of sound fidelity,

diversity, and long-term coherence [10, 11]. Nonetheless,

their high computational demands render AMs unsuitable

for music production settings (i.e., sample rate ≥ 44.1 kHz,

stereo). In contrast, Generative Adversarial Networks [12]
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and Variational Autoencoders [13] exhibit exceptional gen-

eration speed at high sampling rates [14–16], positioning

them as valuable assets for commercial music production

technologies [14, 17]. However, these strategies typically

require simple datasets with reduced diversity [14,15], and

often restrict generation to fixed lengths [16,17]. Recently,

diffusion models showed a balanced equilibrium between

generation quality, diversity, and efficiency [18–21]. Nev-

ertheless, these rely on an iterative denoising process that,

while faster than AMs, still demands long and heavy com-

putations.

Latent models. To address the challenges inherent in end-

to-end modeling, generative models have recently pivoted

towards operating on compressed representation spaces

learned via autoencoders [3–6,22]. By doing so, generative

systems can allocate representational capacity separately

for learning immediate auditory characteristics of sound

and longer-term music structure. Additionally, they facili-

tate the interpretation and integration of multi-modal con-

trol data, such as text [3,5,6], audio [23,24], or melody [4].

Within this evolved framework, AMs leverage discrete rep-

resentation spaces crafted through vector-quantized varia-

tional autoencoders [25,26], resulting in faster models with

better long-term structure [3,4]. Recent developments have

equipped AMs with parallel decoding using masked token

modeling techniques [23, 27, 28], enabling sample rates as

high as 44.1 kHz with acceptable inference speed.

Latent Diffusion Models (LDMs) also operate on com-

pressed representation spaces, which are typically continu-

ous [5,6,29]. This evolution has catalyzed the development

of various LDMs capable of generating high-resolution

musical audio with long-term structure [5, 6, 29, 30]. No-

tably, some works can generate audio at sampling rates as

high as 48 kHz [6] and stereo [29, 30]. Other works like

Stable Audio [5] improve inference efficiency, enabling the

generation of 44.1 kHz sampling rate and stereo audio at an

unprecedented speed. 2 Following this spirit, our system

leverages a pre-trained Consistency Autoencoder [8] which

enables Diff-A-Riff to function within a highly compressed

representation space, allowing faster generation than previ-

ous systems. Further, our LDM employs the framework of

Elucidated Diffusion Models (EDMs) [9, 20], a departure

from the Denoising Diffusion Implicit Models (DDIMs)

[31] used in previous approaches [5, 6, 29].

Control mechanisms. As evidenced by the state-of-the-

art, text prompts currently serve as the most common in-

terface for users to guide audio generative models [3–6].

To facilitate finer control, Jukedrummer [32] and Music

ControlNet [33] utilize time-varying controls such as rhyth-

mic and dynamic envelopes and melodic lines. By exploit-

ing the semantic properties of multi-modal text-and-audio

spaces, recent works propose zero-shot solutions to music

editing via latent space manipulations [34] and inversion

methods [35]. Alternative approaches to control pretrained

models include inference-time optimization [36] or guid-

ance [37]. Another method for influencing audio output

involves conditioning on audio signals, a technique pri-

2 95 seconds of audio in 8 seconds on an A100 GPU

marily used in style transfer and accompaniment tasks. In

style transfer, the objective is to emulate specific aspects

of the source audio, e.g., melody [4], timbre [24]. For

accompaniment, the focus is on generating musical con-

tent that complements or enhances the conditioning au-

dio [23, 24, 38–40]. Recent works attempting joint mu-

sic generation and source separation also exhibit composi-

tional capabilities such as accompaniment generation with-

out requiring paired data [41,42]. Inspired by these control

mechanisms, our system introduces conditioning on audio

and textual features derived from CLAP [7] alongside au-

dio signals that serve as music context, widening the scope

of generative capabilities, e.g., accompaniment generation,

text-driven generation, and style transfer.

3. BACKGROUND

In this section, we provide a brief overview of Consistency

Models and Denoising Diffusion Models. For an in-depth

explanation, we encourage the reader to review the corre-

sponding references.

Consistency Models (CMs) [43, 44] are a novel class

of generative models that can produce high-quality sam-

ples in a single forward pass without adversarial training.

CMs learn a mapping between noisy and clean data sam-

ples via a probability flow Ordinary Differential Equation

(ODE) [31]. Given a noise level t, the consistency func-

tion f transforms a noisy sample xt ∼ pt(x) to a clean

sample x ∼ pdata(x) by mapping f(xt, t) 7→ x. This

consistency function is approximated by a neural network

fθ(xt, t) with parameters θ. It must satisfy the boundary

condition fθ(x, tmin) = x and is trained by minimizing the

discrepancy between its output and a teacher CM at adja-

cent noise levels ti and ti+1.

Denoising Diffusion Models (DDMs) [45] are generative

models originally inspired by the concept of thermody-

namic diffusion [46]. DDMs first add noise to data in a

forward diffusion process and then use a neural network

to reverse this process by removing the noise iteratively.

The forward diffusion process is detailed by a Stochastic

Differential Equation (SDE), introducing noise to the orig-

inal data x0 over T steps, resulting in a noisy version xT .

This process is defined by dxt = f(xt, t)dt + g(t)dBt.

Here, dBt is the increment of a Wiener process (the ran-

dom noise), f(xt, t) is the drift term, g(t) is the diffusion

term, and t represents the diffusion time step. The reverse

process aims to reconstruct the original data from its noisy

version by removing the noise. This is achieved by model-

ing the score of the data distribution, i.e., the gradient of the

log probability density function of the noisy data with re-

spect to the data itself, ∇x log p(x|t). The reverse process

is described by another SDE, which guides the denoising

dxt = [f(xt, t)−g(t)2∇x log p(xt|t)]dt+g(t)dBt, where

a neural network gθ, with parameters θ, is trained to esti-

mate this score function, i.e., gθ(xt, t) ≈ ∇x log p(xt|t).
During inference, by performing this process iteratively,

we can progressively transform pure noise inputs into data

points following the training data distribution.
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Figure 1. Overview of Diff-A-Riff. Left: The CAE Encoder transforms the music context into a compressed representation,

concatenated with a noisy sample, and further processed through a multi-scale U-Net. At each scale, conditional CLAP and

time-step embeddings are integrated through a feature-wise linear transformation. The generated latent sequence is decoded

via the CAE Decoder. We highlight frozen components in blue and trainable elements in orange. Text prompting is only

used at inference. Right: The encoder architecture comprises four down-sampling blocks with four convolutional and group

norm layers with skip connections. The decoder mirrors this architecture.

4. METHODOLOGY

4.1 Dataset

We train our model on a proprietary dataset comprising

12,000 multi-track recordings of diverse music genres (e.g.,

pop/rock, R&B, rap, country). Each multi-track has vari-

ous instrument tracks, including bass, guitars, pianos, vo-

cals, and more. We resample each track to 48 kHz, convert

it to mono and segment it into overlapping windows of ap-

proximately 10 seconds with a 3-second hop size. In train-

ing, we randomly select a target accompaniment track (ex-

cluding vocals) and construct the music context by mixing

a random subset of the remaining tracks for each segment.

We apply this data segmentation and sampling strategy of-

fline to obtain 1M training pairs of audio segments. Fol-

lowing the same methodology, we derive a validation set

from 1,200 multi-tracks.

4.2 Diff-A-Riff

4.2.1 Consistency Autoencoder

In this work, we employ a consistency model-based Au-

toencoder (CAE). We use it pre-trained and freeze its pa-

rameters to train a generative model on its latent embed-

dings (see Fig. 1). The CAE encodes audio samples into

a continuous representation space with a 64× compression

ratio. It operates on complex Short-Time Fourier Trans-

form (STFT) spectrograms, with real and imaginary com-

ponents as separate channels. The architecture uses convo-

lutional residual blocks interleaved with down/up-sampling

layers. The CAE Encoder produces 64-dimensional encod-

ings in the range (−1, 1) with a sample rate of 12 Hz for

48 kHz input audio. The model has ∼ 58 million parame-

ters and is trained following the consistency training frame-

work [44]. For a detailed description of the architecture and

training procedure, we refer the reader to the original ref-

erence [8].

4.2.2 Latent Diffusion Model

We train a Latent Diffusion Model (LDM) on the latent

space learned by the CAE. The proposed LDM follows

the framework of Elucidated Diffusion Models (EDMs)

[9], a departure from DDIMs [31] for improved model

parametrization and inference. The architecture follows

DDPM++ [47], an upgraded version of the originally pro-

posed Diffusion Probabilistic Model [45]. We only adapt

the network’s input dimensionality to that of the CAE’s la-

tent space (64 channels, see Sec. 4.2.1). Also, we increase

the dimensionality of the conditional embedding input with

that of CLAP [7] (i.e., 512 dimensions). Our UNet is com-

posed of four down/up-sampling blocks with convolutional

layers and skip connections, both for the encoder and the

decoder (see Fig. 1 Right). Self-attention is employed in

the penultimate resolution layer. We use 512 base channels

and double their number at each resolution block. Addi-

tionally, the model relies on two dense layers to project the

concatenation of CLAP embeddings and the sinusoidal de-

noising step embeddings into a joint representation. The re-

sulting embedding is used in all down/up-sampling blocks

to condition the denoising process as illustrated in Fig 1.

4.2.3 Training

Fig. 1 provides a high-level overview of Diff-A-Riff’s

setup. Given a pair of input context and target accom-

paniment audio segments, the model is trained to recon-

struct the accompaniment given the context and a CLAP

embedding derived from a randomly selected sub-segment

of the target itself. This prevents the model from relying on

CLAP for temporal alignment. In order to use Classifier-

Free Guidance (see Sec. 4.3.1) and allow the model to op-

tionally operate unconditionally, we drop the audio context

and clap embeddings both with a 50% probability. We train

Diff-A-Riff over 1M iterations using a batch size of 256 (2

weeks on a single RTX 3090 GPU). We use AdamW [48]

as the optimizer and a base learning rate of 10−4. We use a

learning rate schedule with an initial warm-up phase and a

reduce-in-plateau process that decreases the learning rate

to a minimum value of 10−6. We keep an Exponential

Moving Average (EMA) on the weights with a momen-

tum of 0.9999. The resulting model has 500M parameters

(including the CAE and not CLAP) and occupies 3 GB of

memory.
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4.3 Evaluation

Objective comparison of Diff-A-Riff with existing state-of-

the-art models [4–6] is challenging as these are generally

trained to perform a substantially different task (generation

of fully mixed music with no accompaniment condition-

ing). Even though StemGen [23] and SingSong [39] are

trained to generate accompaniments, their implementation

and pretrained weights are not publicly available. There-

fore, we focus on subjective listening tests to compare with

available music generation models. Additionally, we per-

form objective evaluations to analyze different inference

parameters (e.g., number of diffusion steps, conditioning

information; see Section 4.3.1) to understand which con-

figurations of our proposed model perform the best on our

set of metrics. We then apply the gained insights in order

to generate the samples that are proposed in the user stud-

ies. In the following sections, we describe how we generate

the samples used for evaluation, the objective metrics, the

listening test methodology, and the baselines we compare

against.

4.3.1 Inference Configurations

In this section, we describe the inference configurations

that we use for the objective and subjective evaluations.

Conditioning Signals: Different conditioning signals are

evaluated. CLAPA refers to the audio-derived CLAP em-

beddings, which are obtained by using CLAP to encode

real audio from a track of the evaluation set. We can also

condition the model on text-derived CLAP embeddings,

despite them never being fed during training to the model,

since CLAP offers a joint embedding space for both modal-

ities. Because our dataset does not contain audio/text pairs,

we create CLAPT embeddings by asking ChatGPT to write

text descriptions of single-stem tracks. Finally, Context

refers to the conditioning signal obtained by solely encod-

ing the music context into the CAE Encoder.

Classifier-Free Guidance (CFG) [49] allows to improve

generation quality by increasing the influence of condi-

tioning signals in the sampling process. Given the guid-

ance strength CFG, we implement guidance as xt−1 =
fθ(xt)+CFG · (fθ(xt, c)− fθ(xt)). At inference time, we

can use different guidance strengths for Context and CLAP

embeddings, denoted as CFGContext and CFGCLAP, respec-

tively.

Number of Diffusion Steps: At inference time, the num-

ber of denoising steps T allows to trade between audio

quality and generation speed.

Pseudo-Stereo Generation: We generate pseudo-stereo

audio by denoising until a given diffusion time step, and

then by independently concluding a stochastic denoising

process twice, one for each audio channel. We define the

stereo width as the proportion of denoising steps used for

stereo generation over the total number of steps. In the user

study, we set this parameter to 0.4.

4.3.2 Objective Metrics

We evaluate Diff-A-Riff through objective metrics to as-

sess various aspects of the generated audio. These in-

clude the standard Squared Maximum Mean Discrepancy

(MMD2) [50] and Fréchet Audio Distance (FAD) [51] for

audio quality as well as Density and Coverage [52] for

evaluating fidelity and diversity. To study the system’s re-

sponsiveness to text prompts, we employ the Clap Score

(CS) [53], which calculates the cosine similarity between

text and audio embeddings. In order to evaluate the align-

ment of the generated accompaniment with the context, we

employ the Audio Prompt Adherence (APA) [54], a metric

based on FAD tailored to evaluate accompaniment systems.

All metrics are calculated by averaging five batches of 500

candidate samples. We use CLAP [7] as the embedding

space for metrics that compare distributions (like MMD2

and FAD) using a reference set of 5,000 real audio exam-

ples.

4.3.3 Listening Tests

Subjective Audio Quality (SAQ): We perform a Mean

Opinion Score (MOS) test to assess audio quality. Partic-

ipants were presented with 5-second audio segments from

real data as well as generations from the baselines and the

proposed system. Their task is to rate the audio quality of

these segments on a 5-level Likert scale ranging from poor

(1) to excellent quality (5). For all items (real data, Diff-

A-Riff, and baselines), we compare both complete music

pieces as well as solo instruments.

We generate solo instruments with Diff-A-Riff by con-

ditioning the model on text or audio-derived CLAP embed-

dings (CLAPA or T ) and without an input context (for a fair

comparison with the baselines, which do not rely on con-

textual audio inputs). Despite the model not being trained

for this task, we can also generate complete music pieces

using CLAP and Context embeddings, following an itera-

tive approach: First, we create sets of CLAPA or T embed-

dings as described in 4.3.1. Then, from an initially empty

context, we generate new tracks from those CLAP embed-

dings, iteratively summing the resulting generation into the

input context from which we derive the next Context em-

beddings.

We compare Diff-A-Riff against three state-of-the-art

text-to-music baselines: AudioLDM2 [6], MusicGen [4],

and Stable Audio [5]. 3 For each baseline, we generate 20

5-second excerpts of complete music and solo instruments

using text prompts generated by ChatGPT.

Subjective Audio Prompt Adherence (SAPA): We also

conduct a subjective assessment of audio-prompt adher-

ence. Participants are provided with a reference 10-second

music segment and are asked to rate the compatibility of

five distinct accompaniments on a scale from 0 (indicating

no adherence) to 100 (perfect adherence), according to har-

monic, rhythmic, and overall music style compatibility.

3 We use the open-source AudioLDM2 model ‘AudioLDM2-48kHz’
operating at 48 kHz. For MusicGen, we use the open-source model
‘MusicGen-large’ operating at 32 kHz, and for Stable Audio, we use their
public API.
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Cond. Signal ↓ MMD2a ↓ FAD ↑ Coverage ↑ Density ↑ APA ↑ CS

Real Original acc. 0.00 0.02 0.18 1.03 0.93 1.00

Lower bound - 64.32b 1.67b 0.00b 0.00b 0.11c -0.07c

Diff-A-Riff CFG=1.25

T=30

CLAPA + Context 0.22 0.03 0.17 1.00 0.92 -
CLAPT + Context 3.96 0.17 0.05 0.32 0.20 0.25

Context only 4.87 0.24 0.05 0.37 0.23 -
CLAPA only 0.36 0.03 0.14 0.84 - -
CLAPT only 4.38 0.20 0.05 0.41 - 0.24

No Conditioning 6.70 0.27 0.03 0.25 - -

Diff-A-Riff CFG=1

T=10

CLAPA + Context 1.50 0.06 0.09 0.54 0.54 -
CLAPT + Context 6.23 0.19 0.03 0.17 0.00 0.23

Context only 6.59 0.25 0.03 0.24 0.00 -
CLAPA only 1.57 0.06 0.09 0.52 - -
CLAPT only 6.26 0.22 0.03 0.20 - 0.22

No Conditioning 7.67 0.28 0.03 0.20 - -
a×10

−4, b obtained from white noise, c obtained by using a random accompaniment from the dataset

Table 1. Objective metrics using two configurations, Diff-A-Riff CFG=1.25
T=30

and Diff-A-Riff CFG=1
T=10

, and different conditional

settings (see Sec. 4.3.1). We compare against higher bounds obtained from the real validation set, and lower bounds obtained

from random noise or random pairs (Real, Random acc.). Some cells are empty for APA and CS in the case of context and

text-free generation respectively.

The reference segments are derived from music pieces

within the evaluation set by summing all tracks in a mul-

titrack, excluding one track, which is reserved to serve as

the original accompaniment. Each accompaniment is pre-

sented mixed with the reference segment, with slight pan-

ning applied to the right to aid in distinguishing between

them. The five accompaniments include the original ac-

companiment, a randomly selected one from the evalua-

tion set, and three generated by our model under different

conditional setups: (CLAPA + Context), (CLAPT + Con-

text) and (Context only). To remove a potential bias toward

better-quality audio, the original and random segments are

encoded and decoded through the CAE.

For both studies, we used the GoListen platform [55].

All audio segments are normalized to a loudness of -20 dB

LUFS and not cherry-picked. Sample questions are avail-

able on the accompanying website.

5. RESULTS & DISCUSSION

5.1 Objective Evaluation

Fig. 2 shows the MMD2 score of our model as a function of

the number of denoising steps, with each line correspond-

ing to a different conditional setting (see Sec. 4.3.1), all

without classifier-free guidance (CFG). Note that MMD2

compares the distributions of embeddings of generated and

real audio in CLAP’s latent space. This means it indicates

not only audio quality but also how well the distributions

of generated instrument types and timbres match the test

data distribution. For this reason, when using audio CLAP

conditioning (CLAPA), the results are considerably better,

as we force the timbre distribution to be equal to the test

data distribution (by using embeddings of that distribution

as conditioning). However, the improvement of the results

when increasing the number of denoising steps can be con-

20 40 60 80

0

2

4

6

8

·10
−4

MMD2(T )

CLAPA + Context

CLAPT + Context

Context only

CLAPA only

No Cond.

CLAPT only

Figure 2. MMD2 as a function of the number of denoising

steps T for various conditional settings (see Sec. 5.1).

sidered independent of the timbre distribution.

Based on the results described above we perform a grid

search over diffusion steps (T ) and multi-source classifier-

free guidance strength (CFG<source>). T = 30 steps and

CFGContext = CFGCLAP = 1.25 yields the best results. We

denote this configuration as Diff-A-RiffCFG=1.25
T=30 in Tab. 1.

In addition, we compare to a specific configuration that

achieves real-time performance 4 on a CPU with accept-

able quality using T = 10 steps and CFG = 1, denoted

as Diff-A-RiffCFG=1
T=10 . For reference, we also include met-

rics computed on real data and a lower bound, calculated

from white noise in the case of quality metrics or random

real pairs for input adherence metrics (APA and CS). The

overall trend suggests that dense conditioning information

helps the model in all metrics: audio quality, coverage and

density, as well as APA. Also, the results could suggest

a slight dependency of the model on CLAPA embeddings,

with metrics close to real data, even in the absence of music

context. Only density exhibits a minor drop without con-

4 95 seconds of audio in 73 seconds on an AMD EPYC 7502P
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text conditioning, suggesting that generating from a silent

context leads to samples that sometimes fall in low-density

regions of the CLAP space.

The impact of Classifier-free Guidance (CFG) on

MMD2 can be estimated by comparing Fig. 2, that dis-

plays results without CFG, with Tab. 1, where CFG was

used. In Fig. 2, the metrics for both (CLAPA + Context)

and (CLAPA only) converge towards an MMD2 of 0.5,

while the corresponding values in Tab. 1 show a reduc-

tion to about half this figure. For (CLAPT + Context) and

(CLAPT only), the MMD2 drops from approximately 5 to

about 4 with CFG, and for Context only, it decreases from

around 6 to approximately 5.

Finally, we calculate the Clap Score (CS) for text-

conditioned generation (CLAPT + Context, CLAPT only).

We compare Diff-A-RiffCFG=1.25
T=30 against random pairs of

text and real audio (CS=-0.07), suggesting that the model

is only somewhat responsive to text prompts (CS=0.25).

5.2 Subjective Evaluation

Table 2 presents the outcomes of the Subjective Audio

Quality (SAQ) test based on 74 users who each rated 32
audio segments, resulting in 2368 ratings. In this test, we

compare results against leading baselines (see Sec. 4.3.3)

and real audio data. Our analysis includes a compari-

son between these benchmarks and the audio generated by

Diff-A-Riff in both mono (ch=1) and pseudo-stereo (ch=2)

formats (see Sec. 4.3.1). Results show that the pseudo-

stereo samples generated by Diff-A-Riff received ratings

that are statistically indifferent from real audio ratings (p-

value=0.79), indicating that participants found the audio

quality of the generations indistinguishable from real data.

This outcome is particularly remarkable given that Diff-A-

Riff was not explicitly trained on complete musical pieces

nor stereo music generation, but is still competitive to other

models. Further, it highlights the influence of stereo imag-

ing on the perceived audio quality.

Tab. 3 shows the results for the Subjective Audio Prompt

Adherence (SAPA) listening test based on 35 users, each

rating 25 accompaniments. The results include ratings

scored by real accompaniments , random accompani-

ments , and the various conditional settings described in

Sec. 4.3.1. Following the trend of previous results, the de-

fault setting (CLAPA + Context) scores the closest to real

accompaniments, suggesting that the model can effectively

adapt to the context under this setting. When conditioned

on (Context only) , Diff-A-Riff is rated worse but still sig-

nificantly better than random accompaniments. Further, for

(CLAPT +Context), the accompaniments are rated the low-

est. A reason could be that the overall quality is worse

because CLAP embeddings of text prompts have not been

shown during training. Another problem could be that the

randomly chosen text prompt is incompatible with the pro-

vided music context (e.g., "A drum machine with electronic

textures" with an acoustic blues context), which reduces

perceived adherence due to conflicting styles.

Overall, SAPA results are interesting given that APA

(see Tab. 1) suggested rather pessimistic results for

SR/Ch Params RTFa Solo Songs

Real data 44.1/2 - - 3.5 ± 0.2 3.8 ± 0.2

MusicGen 32/1 3.3B 0.4 3.1 ± 0.2 3.2 ± 0.2
StableAudio 44.1/2 1B 11.8 2.5 ± 0.2 3.0 ± 0.2
AudioLDM2 48/1 712M 0.4 2.6 ± 0.2 2.0 ± 0.2

Diff-A-Riff
48/2

500M
13.5 (0.57) 3.4 ± 0.1 3.8 ± 0.1

48/1 19 (1.3) 2.8 ± 0.1 3.2 ± 0.1
a

NVIDIA A100 (CPU : AMD EPYC 7502P)

Table 2. Comparison of Diff-A-Riff to baselines. We

include sampling rate in kHz and number of channels

(SR/Ch), the total number of parameters Params (without

CLAP ), the Real Time Factor (RTF, the ratio of gener-

ated time over inference time, for 95 second-long audios)

on GPU (and CPU for our model), as well as the SAQ32

values and 95% confidence intervals for the subjective au-

dio quality assessment of Solo instruments and complete

Songs.

Cond. Signal SAPA

Real - 70.1 ± 4.5
Random - 12.3 ± 3.0

Diff-A-Riff

CLAPA + Context 62.4 ± 4.4

CLAPT + Context 37.6 ± 4.2
Context only 42.3 ± 4.3

Table 3. Results for SAPA (see Sec. 4.3.3). The table

includes results of Diff-A-Riff using different conditional

settings, with 95% confidence intervals.

(CLAPT + Context) and (Context only). This could poten-

tially be attributed to APA’s sensitivity to audio quality and

timbre differences between reference and candidate sets.

5.3 Control Mechanisms

In the accompanying website, we show examples of Diff-

A-Riff generations for different inference settings (see

Sec. 4.3.1). We also showcase other controls that naturally

emerge from the denoising process, such as in/out-painting

or the generation of variations and loops, as well as con-

trols derived from the manipulation of CLAP embeddings,

e.g., text-audio Interpolations.

6. CONCLUSION

This work introduced Diff-A-Riff, a Latent Diffusion

Model capable of generating instrumental accompaniments

adapted to a user-provided musical audio context. It can be

controlled based on style audio references, text prompts,

or both. We also proposed a simple method for produc-

ing pseudo-stereo audio. By exploiting the efficiency of a

Consistency Autoencoder, Diff-A-Riff can generate 48 kHz

sample rate pseudo-stereo audio with unprecedented speed

and quality. Through extensive objective and subjective

evaluation, we showed that our model achieves state-of-

the-art audio quality, adapts to various conditional settings,

and generates content that adheres to pre-existing musi-

cal audio contexts. We believe this work represents a sig-

nificant step towards AI-assisted music production tools

that prioritize artist-centric interactions, enriching the land-

scape of human-machine music co-creation.
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7. ETHICS STATEMENT

Sony Computer Science Laboratories is committed to ex-

ploring the positive applications of AI in music creation.

We collaborate with artists to develop innovative technolo-

gies that enhance creativity. We uphold strong ethical stan-

dards and actively engage with the music community and

industry to align our practices with societal values. Our

team is mindful of the extensive work that songwriters and

recording artists dedicate to their craft. Our technology

must respect, protect, and honour this commitment.

Diff-A-Riff supports and enhances human creativity and

emphasises the artist’s agency by providing various con-

trols for generating and manipulating musical material. By

generating a stem at a time, the artist remains responsible

for the entire musical arrangement.

Diff-A-Riff has been trained on a dataset that was

legally acquired for internal research and development;

therefore, neither the data nor the model can be made pub-

licly available. We are doing our best to ensure full legal

compliance and address all ethical concerns.
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