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ABSTRACT

We present JASCO, a temporally controlled text-to-music

generation model utilizing both symbolic and audio-based

conditions. JASCO can generate high-quality music sam-

ples conditioned on global text descriptions along with

fine-grained local controls. JASCO is based on the Flow

Matching modeling paradigm together with a novel condi-

tioning method that allows for both locally (e.g., chords)

and globally (text description) controlled music genera-

tion. Specifically, we apply information bottleneck lay-

ers in conjunction with temporal blurring to extract rele-

vant information with respect to specific controls. This al-

lows the incorporation of both symbolic and audio-based

conditions in the same text-to-music model. We experi-

ment with various symbolic control signals (e.g., chords,

melody), as well as with audio representations (e.g., sepa-

rated drum tracks, full-mix). We evaluate JASCO consider-

ing both generation quality and condition adherence using

objective metrics and human studies. Results suggest that

JASCO is comparable to the evaluated baselines consider-

ing generation quality while allowing significantly better

and more versatile controls over the generated music. Sam-

ples are available on our demo page https://pages.

cs.huji.ac.il/adiyoss-lab/JASCO

1. INTRODUCTION

Conditional music generation has shown a great improve-

ment in recent years, specifically in the task of text-to-

music generation [1–6]. Such advancements in music gen-

eration hold great potential to empower content creators,

advertisers, and video game designers. Though present-

ing highly realistic music samples, most of the prior work

is focused on global conditioning only. Such methods

mainly consider textual descriptions or melody in the form
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Figure 1. Top figure presents the temporal blurring pro-

cess, showcasing source separation, pooling and broad-

casting. Bottom figure presents a high level presentation of

JASCO. Conditions are first being projected to low dimen-

sional representation and are concatenated over the chan-

nel dimensions. Green blocks have learnable parameters

while blue block are frozen.

of spectral features [3]. However, when considering music

production, global controls may not be enough. During the

creative process, professional musicians often use chords,

melodies, or audio prompts, at the local level, rather than

global descriptions. As a result, current models may be

limited in their relevancy for music creators.

More recently, several works study text-to-music gener-

ation using temporally aligned controls. The authors in [7]

suggest adding symbolic beat and dynamics conditions on

top of the previously explored melody conditioning. The

authors in [8] further explore musical structure condition-

ing, such as A-part and B-part. Unlike these works, the

proposed method provides local controls considering both
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symbolic representation and raw audio together with a

global textual description. When considering music edit-

ing, the authors in [9] propose leveraging chord progres-

sion to guide the generation process towards the harmony

of the inputs signal. For that, the authors extract an inter-

nal representation from stemmed data using a pre-trained

chord classification model. The proposed method is dif-

ferent as we focus on generating full musical pieces rather

than editing a given one. Specifically, we allow symbolic

chord progression conditioning during inference time.

In this work, we present JASCO, a locally controlled

Joint Audio and Symbolic COnditioning text-to-music

model. JASCO uses time-aligned controls, namely audio

prompts, melodies and chord progressions, comprised of

either symbolic signals or raw waveforms. We relieve the

need for either studio quality stemmed data or supervised

datasets by using off-the-shelf pre-trained models to auto-

matically extract the relevant information. JASCO is based

on the Flow-Matching [10] modeling paradigm. Figure 1

provides a high level description of the proposed method.

Results suggest that JASCO achieves comparable perfor-

mance in terms of generation quality w.r.t the evaluated

baselines while allowing significantly richer set of con-

trols. The main contributions of this work are as follows:

(i) We introduce a simple yet effective approach for au-

dio conditioning with high temporal-adherence. (ii) We

offer specific evaluation metrics to measure the alignment

and accuracy of our suggested controls. (iii) We provide

a thorough analysis on the components composing JASCO

and compare to several baselines.

2. BACKGROUND

Audio Representation. Modern audio generative mod-

els mostly operate on a latent representation of the audio,

commonly obtained from a compression model [11–13].

Compression models such as [14] employ Residual Vec-

tor Quantization (RVQ) which results in several parallel

streams. Each stream is comprised of discrete tokens orig-

inating from different learned codebooks.

Specifically, the authors in [14] introduced EnCodec, a

convolutional auto-encoder with a latent space quantized

using RVQ [15], and an adversarial reconstruction loss.

Given a reference audio signal x ∈ R
D·fs with D the au-

dio duration and fs the sample rate, EnCodec first encodes

it into a continuous latent tensor z ∈ R
D·fr×Nenc with a

frame rate fr ≪ fs and Nenc = 128. Then, z is quantized

into q ∈ {1, . . . , N}D·fr×K , with K being the number of

codebooks used in RVQ and N being the codebook size.

After quantization, we are left with K discrete token se-

quences, each of length T = D · fr, representing the audio

signal. In RVQ, each quantizer encodes the quantization

error left by the previous quantizer, thus quantized values

for different codebooks are in general dependent, where

the first codebook holds most of the information. Finally,

the quantized representation is decoded back to a time do-

main signal using the decoder network applied to the sum

of the representations learned by the different codebooks.

In JASCO, we use the continuous tensor z as the latent rep-

resentation, while leveraging the discrete representation q

for audio conditioning.

Flow Matching. The Flow Matching modeling paradigm

[10] was recently found to provide impressive results on

image [10], speech [16] and environmental sound genera-

tion [17]. More specifically, Conditional Flow Matching

(CFM) is a novel training technique for Continuous Nor-

malizing Flow models [18], that captures the continuous

transformation paths of samples from a basic prior distri-

bution, usually standard normal N (0, 1), to their counter-

parts in a target data distribution, S . The position on this

path is denoted by a time parameter t, starting from the

prior state at t = 0 and ending at the data state at t = 1.

In this work, we focus on Optimal Transport (OT) paths

as defined in [10]. The model is trained to predict the vec-

tor field of the continuous latent audio variable z, given t
and a set of conditions Y . Formally, the model minimizes

the regression loss

LCFM(θ; z0, z1, t|Y ) = ∥vθ(z, t|Y )−(z1−(1−σmin)·z0)∥
2,

(1)

where z0 ∼ N (0, I) is a sampled noise, z1 ∼ S is the

latent representation of a data sample, and

z = (1− (1− σmin) · t) · z0 + t · z1, (2)

is an interpolation between the noise and the data sample.

For numerical stability, we use a small value σmin = 10−5

in both terms. During inference we follow an iterative pro-

cess, starting with the prior noise z ← z0 ∼ N (0, 1) and

with t = 0. In each step, we translate the estimated vec-

tor field vθ(z, t|Y ) into an updated latent sequence z, and

gradually converge toward the data distribution.

3. METHOD

Given a textual description, and a set of temporal condi-

tions - such as melody, chord progression or drum record-

ing, our goal is to produce high-quality samples that are

musically aligned with the given controls, while comply-

ing to the arrangement description provided in the text.

JASCO tackles the aforementioned problem by a CFM

model, operating on the continuous latent space of En-

Codec. JASCO is conditioned on low-dimensional embed-

dings of melody, chords and audio signals, together with a

T5 embedding of the textual description. All local controls

are concatenated to the model’s input across the feature

dimension, while text is being passed via cross attention.

To diminish timbre-related information, JASCO further ap-

plies temporal blurring to the audio-based controls, as well

as band-pass filtering. See Figure 1 for a visual descrip-

tion, and Section 3.1 for detailed information.

3.1 Temporal Controls

Symbolic. We use Chordino 1 chord progression model to

extract an integer categorical chord label sequence, and a

1 https://github.com/ohollo/chord-extractor
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pretrained multi-F0 classifier [19] to obtain melody scores

per time step. We resample all features to match En-

Codec’s frame rate using nearest-interpolation for chords

and linear-interpolation for melody. For Chords, we use a

learned embedding table to map the raw integer sequence,

denoted as ccrd, to its corresponding condition matrix in

shape T × dcrd. For Melody, we zero out values with a

score lower than a pre-defined threshold (0.5). Then, we

select the maximal non-zero score per time step from the

remaining values, and set it to 1 while setting the rest to

0. This yields a binary matrix cmld ∈ {0, 1}
D·fmld

r
×Nmld .

Finally, we linearly project the binary matrix and obtain

the melody condition representation in shape T × dmld.

We use Nmld = 53 (corresponding to G2-B7 notes), and

dcrd = dmld = 16.

Audio. We consider general audio and separated drum

stems. We use a pretrained source separation model [20],

to extract the drum stem from a source audio. We pass

the waveform through EnCodec to obtain the correspond-

ing quantized discrete representation q. We then convert

the first token stream back to its continuous latent repre-

sentation, using EnCodec’s first codebook while discard-

ing all other streams, yielding caud, cdrm ∈ R
T×Nenc . We

chose to use only the first codebook stream to further dis-

card timbre information, stressing the forced information-

bottleneck further. Following that, we apply temporal blur-

ring to the reconstructed latent. First, we apply average

pooling using non-overlapping windows along the tempo-

ral axis. Then, we broadcast the signal to its original tem-

poral dimension. Finally, we linearly project the blurred

condition to a low dimensional feature space and obtain

the condition matrix. For general audio, we use a window

size of 5 and output dimension of 1, while for drums we

use a window size of 3 and output dimension of 2.

Inpainting and Outpainting. In/Out-painting is the task

of filling in a masked region, where in/out refers to the

masked segment position in the sequence, be it at the mid-

dle (in) or at the end (out). Following prior work [5], we

add in/out-painting as an additional condition to the model.

We randomly choose between inpainting/outpainting, and

mask a random segment of 40-90% from the reference

waveform. Then, we use the raw EnCodec latent repre-

sentation of the masked waveform ciop ∈ R
T×Nenc as the

condition, with no learned projection.

3.2 Model and Optimization

Similarly to prior work [17], our CFM model consists of a

Transformer, with U-Net-like residual connections. We re-

place the standard residual addition with channel-wise con-

catenation followed by a linear projection. We use learned

convolutional positional encoding [21] as well as symmet-

ric bi-directional ALiBi self-attention biases [22]. We use

a model scale of 330M parameters, with 24 Transformer

layers, 16 attention heads, embedding dimensionality of

1024 and a feed-forward dimension of 4096.

We train our model using the LCFM objective as defined

in Section 2. We further experiment with non-uniform loss

weighting as function of t, and find the following formula-

tion to produce the best overall sample quality:

LWeightedCFM =
∑

t∼U(0,1)
z0∼N (0,1)

z1∼S

(1 + t) · LCFM(θ; z0, z1, t|Y ),

(3)

where Y = {ccrd, cmld, caud, cdrm, ciop}. We provide an

ablation study for this scheme in Section 5.

3.3 Inference

During inference, as in [10], we use dopri5 [23], an off-the-

shelf numerical ODE solver, to iteratively solve for z given

the estimated vector field vθ. Specifically, at each iteration

the solver determines the increment to the time parame-

ter t, resulting in a dynamic scheduling for the inference

process. The process halts when an acceptance criterion is

met, defined by an error approximation of the solver and a

tolerance parameter provided by the user.

Multi-Source Classifier Free Guidance. We employ

classifier-free guidance (CFG) [24] for the conditional vec-

tor field estimation vθ(z, t|Y). Since our set of condition-

ing signals combines both global and local concepts, we

further experiment with multi source CFG. While prior

work [25] suggest a separate evaluation for each con-

dition, we evaluate the model considering all and par-

tial conditions. During each inference step, we obtain

an estimated vector field for each set of conditions Y ∈
{{local}, {text}, {local, text}}. The resulting CFG formu-

lation then follows:

CFG(vθ, z, t)=(1−
∑

c∈Y

αc)vθ(z, t) +
∑

c∈Y

αcvθ(z, t|c).

(4)

When following the standard CFG setup (αtext =
αlocal = 0), we observe that the model adheres to the tem-

poral condition while ignoring instrumentation informa-

tion provided in the text prompt. To increase text influence

on guidance, we set a positive weight to the text-only term

αtext > 0. We found that αtext = 0.5, αlocal = 0, αlocal,text =
1.5 offer a good trade-off between audio quality, text align-

ment and temporal controls adherence.

4. EXPERIMENTAL SETUP

Implementation Details. We follow the same experimen-

tal setup as in [3,6], and use a training dataset consisting of

20K hours of licensed music from the Shutterstock 2 and

Pond5 3 data collections with 25K and 365K instrument-

only music tracks, respectively. We additionally include

a set of proprietary data consisting of 10K high-quality

tracks. All datasets are sampled at 32kHz, paired with tex-

tual descriptions. We present results on the MusicCaps

benchmark [1], comprising 5.5K 10-second samples to-

gether with an in-domain test set of 528 tracks.

2 shutterstock.com/music
3 pond5.com
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We use the official EnCodec model provided by [3,12],

with a frame rate of 50 Hz, and 4 codebooks, each with a

size of 2048. For text representation we use a pretrained T5

model [26]. For melody extraction we use the pretrained

deep salience multi-F0 detector 4 , for chords extraction

we use Chordino, while for drum track extraction we use

the Hybrid Demucs model [27].

All single condition models were trained with 40% con-

dition dropout, and in the multi-condition experiments we

train the models with 20% condition dropout for all con-

ditions. In the remaining 80% we set 50% dropout for

each of the conditions independently excluding the in/out-

painting, for which we set 70% dropout.

We experiment with multi-source CFG coefficients

in (αtext, αlocal, αtext,local) ∈ {0.0, 0.5} × {0.0,−0.5} ×
{1.5, 2.0} and report the best overall configuration. All

models were trained for 500k steps over audio segments of

10 seconds, with a batch size of 336. We use Adam [28]

optimizer with linear learning rate warm-up up to a peak of

10−4 during the first 5k steps, followed by a linear decay,

and a gradient clipping with a norm threshold of 0.2.

4.1 Evaluation Metrics

We perform a thorough empirical evaluation, using both

objective metrics and human studies. We evaluate JASCO

on several temporal alignment aspects, namely harmonic

matching, rhythmic alignment and melody preservation.

Additionally, we measure audio quality and text adherence.

Objective Evaluations. We evaluate our method with

widely used metrics, namely Fréchet Audio Distance

(FAD), Kullback-Leiber Divergence (KL) and CLAP score

(CLAP), as well as more specific metrics designed to

quantify the adherence of our suggested controls. We re-

port FAD [29] using the official tensorflow implementation

where a low FAD score indicates that the generated audio

is associated with higher quality. Following [3, 12], we

use an audio classifier [30] to compute the KL-divergence

over the probabilities of the labels between the original and

the generated music. The generated music is expected to

share similar concepts with the reference music when the

KL is low. Last, CLAP score [31, 32] is computed be-

tween the track description and the generated audio, mea-

suring audio-text alignment. We use the official pretrained

CLAP model 5 . To evaluate melody compatibility, sim-

ilar to [3] we use a cosine similarity metric on either a

simple quantized chroma representation, or multi-octave

melody representation obtained from a pretrained multi-

F0 classifier [19]. For beat adherence, as in [7] we evalu-

ate the onset F1 score using mir eval 6 considering a 50ms

tolerance margin around classified onsets in the reference

signal. Lastly, to evaluate chord progression, we use the

Chordino model to extract the chord progression from both

the reference and the generated signals and compute the in-

tersection over union (IOU) score between the two.

4 github.com/rabitt/ismir2017-deepsalience
5 github.com/LAION-AI/CLAP
6 github.com/craffel/mir_evaluators

Model FAD↓ CLAP↑ Mel Sim.↑ Mel Acc.↑

MusicGen 5.90 0.29 0.61 44.0

MusicControlNet 10.81 0.22 - 47.1

JASCO 6.05 0.26 0.67 49.1

Table 1. Melody conditioning evaluation over MusicCaps.

We evaluated MusicGen with 300M parameters.

Human Study. We request raters to evaluate three aspects

of given audio samples: (i) overall quality; (ii) similarity

to text description; and (iii) adherence to either melody

or rhythmic pattern from a reference recording. Raters

were instructed to rate the recordings on a scale between

0-100 where higher is better. Raters were recruited us-

ing the Amazon Mechanical Turk platform. We evaluate

randomly sampled files, where each sample was evaluated

by at least 5 raters. We use the CrowdMOS package [33]

to filter noisy annotations and outliers. We remove an-

notators who did not listen to the full recordings, anno-

tators who rate the reference recordings less than 90, and

the rest of the recommended recipes from [33]. Similarly

to [3], for a fair comparison, all samples are normalized

at -14dB LUFS [34]. Overall, we 179 raters evaluated the

generation quality, 121 raters evaluated the text relevancy,

159 raters evaluated the adherence to rhythm patterns us-

ing drum conditioning, and 142 raters evaluated melody

conditioning.

5. RESULTS

Melody Conditioning. We start by evaluating the pro-

posed method considering melody conditioning. We com-

pare JASCO to MusicGen [3] and MusicControlNet [7].

For a fair comparison, we train MusicGen (300M) on 10
second music segments using Audiocraft 7 repository, con-

sidering text and melody conditions. For comparison com-

patibility with [7] we compute melody accuracy score on

both JASCO and MusicGen. We experiment with melody

conditioning using the commonly used 12-bins chroma

representation which is octave invariant. Results are pre-

sented in Table 1.

Results suggest that JASCO surpasses the evaluated

baselines w.r.t melody adherence. When considering

melody accuracy, JASCO provides better alignment to the

conditioning melody. Notice, we hypothesize this is due

to the conditioning method: both MusicGen and Mus-

icControlNet inject conditions as an additive bias (i.e.,

cross-attention and zero-convolutions), this is in contrary

to JASCO which follows the concatenation approach for

melody conditioning (see Section 6 for more experiments).

Local Controls. We train a single-condition variant

for each observed condition-type as well as two multi-

condition models. Under the multi-condition setup, we

train models with Drums tracks passed through a Band-

Pass-Filter (BPF) over 200-800 Hz frequency range, and

7 https://github.com/facebookresearch/

audiocraft/blob/main/docs/MUSICGEN.md
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Local Controls Objective metrics (MusicCaps / Internal dataset)

Aud Drm Crd Mld Mld (clf) sim. ↑ Mld sim. ↑ Onset F1 ↑ Crd IOU ↑ FAD ↓ KL ↓ CLAP ↑

- - - - 0.13 / 0.13 0.09 / 0.09 0.34 / 0.41 0.09 / 0.07 6.04 / 0.90 1.46 / 0.70 0.27 / 0.36

✓ - - - 0.33 / 0.34 0.38 / 0.47 0.62 / 0.81 0.23 / 0.27 4.47 / 0.86 0.92 / 0.81 0.30 / 0.31

no drm - - - 0.21 / 0.22 0.38 / 0.31 0.62 / 0.58 0.23 / 0.18 5.68 / 0.92 1.79 / 0.75 0.19 / 0.33

- ✓ - - 0.13 / 0.13 0.09 / 0.10 0.62 / 0.73 0.09 / 0.08 5.85 / 0.94 1.68 / 0.78 0.23 / 0.35

- BPF - - 0.13 / 0.13 0.10 / 0.10 0.45 / 0.74 0.10 / 0.07 6.31 / 1.61 1.52 / 0.65 0.26 / 0.37

- - ✓ - 0.21 / 0.25 0.22 / 0.29 0.24 / 0.13 0.59 / 0.61 7.23 / 0.95 1.16 / 0.68 0.28 / 0.36

- - - ✓ 0.67 / 0.64 0.41 / 0.35 0.37 / 0.57 0.31 / 0.27 6.96 / 1.05 1.32 / 0.63 0.27 / 0.35

- BPF ✓ ✓ 0.68 / 0.69 0.44 / 0.46 0.63 / 0.66 0.50 / 0.53 6.42 / 1.15 1.22 / 0.50 0.28 / 0.37

no drm BPF ✓ ✓ 0.71 / 0.68 0.50 / 0.55 0.54 / 0.75 0.51 / 0.55 4.78 / 0.80 0.93 / 0.41 0.30 / 0.37

Table 2. Objective local controls experiment, observing all suggested controls w.r.t a zero hypothesis (no local controls).

Model Cond. Q T M D

Reference - 92.7±0.66 93.7±0.8 96.3±0.6 97.1±0.6

MusicGen T 84.4±0.8 84.5±0.9 81.5±1.3 82.1±1.0

JASCO T 83.3±0.7 80.3±1.3 79.7±1.5 81.5±1.1

MusicGen T & M 84.7±0.7 82.5±1.1 83.6±1.1 82.7±0.9

JASCO T & M 84.1±0.7 81.2±1.2 89.3±0.7 80.6±1.2

JASCO T & D 85.5±0.8 84.1±1.1 81.9±1.4 89.5±0.7

Table 3. Human evaluation results. Observing general

quality (Q), text match (T) melody match (M) and drums

match (D). Evaluated on a 0-100 scale (higher is better).

Audio condition excluding drums. This was found to bet-

ter disentangle Drums and Audio conditions in preliminary

experiments, and allows users to provide different drum

beats than the one presented in the Audio. When applying

Audio/Drums conditions, we evaluate Melody, Onset F1,

and Chord IoU using the reference audio as a condition,

while for the computation FAD, KL, and CLAP scores we

use a randomly selected audio from the test set.

As there are no open-source relevant baselines avail-

able, we compare the proposed method against a text-only

condition model. We perform experiments using both the

open source MusicCaps dataset, and an internal proprietary

dataset, highlighting our model performance on diverse,

high quality recordings. Table 2 summarizes the results.

Results depict a systematic improvement considering

local control adherence. For instance, chords condition-

ing shows apparent improvement in Chords IOU metric,

improving from 0.09/0.07 to 0.59/0.61. In addition, in

spite of being evaluated with randomly selected audio con-

ditions, FAD, KL, CLAP scores mostly remain comparable

w.r.t to the baseline. This highlight JASCO’s disentangling

property as local controls metrics improve while text ad-

herence and audio quality metrics stay roughly the same.

The lower section of the table presents multi-control

setup results. This section draws a similar trend to the

single control setups, allowing for multiple controls while

preserving FAD, KL, CLAP. This highlights JASCO’s abil-

ity to incorporate multiple controls simultaneously with no

significant penalty to quality and text alignment.

Human Study. Lastly, we perform a human study in or-

der to validate both quality and text alignment as well as

local control adherence. We evaluate JASCO vs MusicGen

considering: (i) text only; and (ii) both text and melody.

We additionally, provide results of the proposed method

with text and drums conditions. Results seen on Table 3,

indicate that JASCO achieve similar generation quality as

MusicGen across all setups. As of text relevancy, Music-

Gen reaches superior performance to the proposed method,

however, when considering melody conditioning, JASCO

reaches significantly better scores. Lastly, when condi-

tioned on drums, JASCO provides the best rhythmic pat-

tern similarity scores. This highlights JASCO’s ability to

provide better controls over the generated music without

sacrificing quality and text alignment. Interestingly, after

including melody or drums conditions, as expected, the

relevant metrics are improving (i.e., melodic and rhyth-

mic similarity) while the quality and text adherence remain

comparable to the unconditioned model.

6. ANALYSIS

Condition Injection Method. We compare the proposed

method to two widely used condition injection methods

proposed in prior work. Specifically, we perform a con-

trolled experiment in which we evaluate cross-attention as

used in MusicGen, and zero-convolution as used in Music-

ControlNet, considering the same training configuration.

Results shown in Table 4 suggest that the temporal ad-

herence using the concatenation method performs the best

overall. This can be seen in both higher Chord IoU, as

well as better FAD and KL, where CLAP was 0.36 for all

methods. Additionally, the concatenation method allows

training from scratch as opposed to zero-convolutions, in

which we start from a pretrained model) without a signifi-

cant increase in the number of trainable parameters.

Flow vs. Diffusion. Most of prior work on music gen-

eration is mainly based on Diffusion models [2, 4, 5, 35].

In this experiment we evaluate, under controlled settings,

both Diffusion (v-Diffusion) and Flow Matching modeling

approaches for music generation. We report FAD, KL, and

CLAP scores. Results are depicted in Figure 2. As can

be seen, the Flow Matching approach is superior across all

metrics, with the biggest gap observed in FAD.
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Conditioning Chord IOU ↑ FAD ↓ KL ↓

Concat 0.6 1.19 0.71

Cross Attn. 0.59 1.61 0.73

Zero Conv 0.26 1.64 0.74

Table 4. Ablation for conditioning method. evaluated on

internal dataset. All models started from a text-to-music

pretrained checkpoint and trained for 500K steps.

VDiff Flow0

1

2

3
FAD

VDiff Flow0.0

0.2

0.4

0.6

KL

VDiff Flow0.0

0.1

0.2

0.3

CLAP

Figure 2. Comparison of v-Diffusion vs Flow Matching.

We report FAD, KL, and CLAP on the internal dataset.

The Effect of Weighted Loss. Finally, we evaluate the

effect of the proposed modification to the loss function as

presented in Equation (3). We compare the proposed ob-

jective function against the loss as describe in Equation (1),

considering FAD, KL, and CLAP scores in Table 5. Re-

sults suggest the new objective function modification im-

proves the generation quality. It provides significantly bet-

ter FAD while having comparable KL and CLAP scores.

7. RELATED WORK

Flow Matching for Audio Generation. Flow Match-

ing [10] was recently studied for speech generation. A

notable work in this context presented VoiceBox [16], a

Flow Matching model, operating on spectrograms, for text-

guided multilingual speech generation. More recently, Au-

dioBox [17] was presented, in which self-supervised infill-

ing objectives were leveraged to improve the generaliza-

tion capabilities of VoiceBox. Similar to our model, Au-

dioBox operates on the continuous latent representations

of EnCodec [14]. Though the scope of audio modalities

was extended in AudioBox to both speech and environ-

mental sounds, applying a Flow Matching approach for

music generation remained less explored.

Temporally Controlled Music Generation. Recent work

offered several forms of temporally restrictive controls for

music generation. Melody conditioned text-to-music was

studied in MusicLM [1], in which a melody embedding

was trained using a dedicated dataset consists of multi-

ple cover versions of musical tracks paired with aligned

singing and humming performances. In MusicGen [3] and

Music ControlNet [7], the need for supervised data was

relieved, and instead an unsupervised melody extraction

was performed using the argmax note of the audio chroma-

gram. Audio-to-audio setups were studied for drum gener-

Weighted loss schedule FAD↓ KL↓ CLAP↑

w(t) = 1 1.73 0.71 0.38

w(t) = 1 + t 0.99 0.73 0.37

Table 5. Ablation for loss weighting method. Evaluated on

internal dataset. All models were trained for 500K steps.

ation conditioned on drumless track [36], accompaniment

generation given singing voice [37], and single instrument

generation given partial mix [25] [9]. Recently, genera-

tion conditioned on multiple symbolic controls was stud-

ied in Music ControlNet [7], a spectrogram diffusion text-

to-music model, fine-tuned using the ControlNet scheme

[38], to generation with melody, beat and dynamics con-

trols. In DITTO [8], inference time optimization was ex-

plored, for tiding a text-to-music diffusion model to per-

form several tasks including inpainting, outpainting, loop

generation, melody and dynamics conditioned generation,

as well as conditioning on musical structures. In [39],

classifier guidance was used to perform music inpainting,

outpainting and style transfer given a pretrained uncondi-

tional latent diffusion model. Inpainting was further ex-

plored in [5], [40], and [41]. Style transfer was explored

also in [42] and [9].

8. DISCUSSION

In this work we present JASCO, a temporally controlled

text-to-music generation model, supporting both audio

and symbolic conditioning. JASCO is based on the Flow

Matching modeling paradigm operating over a dense mu-

sic latent representation. Through extensive experimen-

tation we empirically show JASCO generates high-fidelity

samples that can be conditioned on global textual descrip-

tion together with harmony, melody, rhythmic patterns,

and overall musical style. Results suggest JASCO provides

comparable generation quality to the evaluated baselines

while allowing significantly better control over generation.

Limitations. The main limitations of the proposed ap-

proach are: (i) Similarly to previous diffusion-based text-

to-music models, the length of the generated samples is

relatively short (∼ 10 seconds) compared to the auto-

regressive alternative. Although this can be extrapolated

with overlaps, it may limit the capability of the model in

capturing global structure in the generated music; (ii) al-

though generating the whole sequence at once, generation

time is slower than auto-regressive alternatives, while not

supporting streaming capabilities.

Future work. For future work we intend to support addi-

tional controls, such as music dynamics, musical structure,

etc. together with editing options, e.g., add or replace spe-

cific instrument in a given recording. We believe such a

research direction, and specifically the proposed approach,

holds great potential in empowering musicians, creators,

and producers which require richer set of controls during

their creative process.
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9. ETHICAL STATEMENT

The use of large-scale generative models raises several eth-

ical concerns. To mitigate at some of them, we first made

sure all the data used for training our models was obtained

legally through an agreement with ShutterStock. Another

issue is the potential lack of diversity in the dataset, which

predominantly consists of western-style music. However,

we believe that the proposed method is not tied to any spe-

cific genera and can help expand the scope of applications

to new datasets.

Moreover, generative models could potentially create an

unbalanced competitive environment for artists, a problem

that is yet to be solved. We are firm believers in the power

of open research to provide all participants with equal op-

portunities to access these models. By introducing more

sophisticated controls, like chords and rhythmic patterns

as suggested in this work, we aspire to make these models

beneficial for both amateurs and professional musicians.
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