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ABSTRACT

Autoregressive generative transformers are key in mu-

sic generation, producing coherent compositions but facing

challenges in human-machine collaboration. We propose

RefinPaint, an iterative technique that improves the sam-

pling process. It does this by identifying the weaker music

elements using a feedback model, which then informs the

choices for resampling by an inpainting model. This dual-

focus methodology not only facilitates the machine’s abil-

ity to improve its automatic inpainting generation through

repeated cycles but also offers a valuable tool for humans

seeking to refine their compositions with automatic proof-

reading. Experimental results suggest RefinPaint’s effec-

tiveness in inpainting and proofreading tasks, demonstrat-

ing its value for refining music created by both machines

and humans. This approach not only facilitates creativity

but also aids amateur composers in improving their work.

1. INTRODUCTION

Advanced autoregressive models [1, 2] have enabled

the automatic generation of complex musical perfor-

mances [3–7]. However, while autoregressive models gen-

erate music in a strictly forward-moving manner, human

composers often follow a more iterative approach, fre-

quently revisiting and refining earlier sections of a piece

before proceeding [8–10]. Although there are some it-

erative methods for music generation [11–13], there are

still areas for improvement in terms of controllability and

human-in-the-loop aspects, such as inferring where to

modify composition and inpainting capability to enable

partial modification.

Iterative refinement proved effective for image genera-

tion; in particular, Lezama’s Token-Critic [14] shows how

feedback mechanisms can enhance image synthesis. Sim-

ilarly, such feedback could benefit music composition for

iteratively refining generated music. Within the spectrum

of music composition tools, the Piano Inpainting Applica-

tion (PIA) [15] stands out for its capabilities for automatic
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Figure 1: A user selects a MIDI section for enhancement

(gray rectangle). Our methodology uses token-level feed-

back (blue) to highlight critical notes or sequences (red)

for regeneration (green). This cycle repeats iteratively.

music generation that addresses the missing parts of mu-

sical performances, a technique referred to as inpainting.

We highlight their handling of the musical context both be-

fore and after the selected gaps, enabling precise note-level

inpainting. On account of that, inspired by image genera-

tion’s success with iterative feedback and how PIA handles

music context, our research explores applying these con-

cepts to enhance controllability, human-in-the-loop func-

tionality, and iterative refinement capability in automatic

music generation.

In this work, drawing from Token-Critic and PIA, we

propose RefinPaint, which aims to boost automatic in-

painting and proofreading in music generation. Our ap-

proach includes an iterative process of identifying areas in

a composition needing modification and applying inpaint-

ing techniques to these areas. In this context, proofreading

refers to automatically identifying and correcting errors or

inconsistencies in a music composition. This dual-focus

methodology facilitates the machine’s ability to improve

its automatic inpainting generation through repeated cy-

cles, and offers a valuable tool for humans seeking to refine
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Figure 2: Encoder-decoder architecture for in-

painting, given a user-provided mask Mu with a

subset mask Ms.

Figure 3: The Feedback algorithm identifies the

most realistic tokens by training it to discern be-

tween real and synthetic music tokens.

Figure 4: RefinPaint uses inpainting and feedback models to iteratively suggest changes, based on specific

note feedback. It reduces the selected tokens in each iteration.

their compositions with automatic proofreading.

Our RefinPaint method is grounded in an autoregres-

sive inpainting model to generate synthetic music tokens

and a feedback model trained to distinguish between orig-

inal and synthetic tokens. This differentiation is key dur-

ing the sampling stage when deciding on token retention

or revision. RefinPaint takes an iterative approach, inte-

grating feedback into the inpainting model for selectively

regenerating parts in each iteration, as Figure 1 shows. In

contrast to Token-Critic, RefinPaint focuses on modifying

a specific part of a composition using a contextual model

and exposes the intermediate outputs of the autoregressive

inpainting model to human inspection in each iteration.

The human-in-the-loop approach we propose allows for

selecting the number of tokens to modify and revise the

analysis heatmap at each iteration, as described in the

following section. Through experimentation, we confirm

RefinPaint’s effectiveness in inpainting and proofreading

tasks, demonstrating its utility for enhancing music cre-

ated by both machines and humans. Finally, we provide a

companion page featuring examples 1 and the code along

with the trained models of RefinPaint for reproducibility 2 .

1 At: https://refinpaint.github.io/
2 At: https://github.com/ta603/RefinPaint

2. METHODOLOGY

Our proposed methodology employs two models: an in-

painting model I, and a feedback model F , alongside our

iterative algorithm RefinPaint. Initially, F identifies areas

within a MIDI file that need improvement based on the spe-

cific criteria described in Section 2.2. It uses a heatmap for

detailed MIDI token-level feedback, allowing one to as-

sess the context and relevance of each note in the selected

region. Then, model I can regenerate the selected tokens

considering the feedback, as described in Section 2.1. The

methodology involves using both models iteratively with

RefinPaint and encompasses three main stages: training

the inpainting model (Section 2.1.1), training the feedback

model (Section 2.2.1), and finally executing the iterative

process for MIDI sequence generation (Section 2.3).

2.1 Inpainting model (I)

The inpainting model aims to predict, or fill in, missing

parts of a MIDI sequence based on a given mask. We adopt

an encoder-decoder architecture for sequence-to-sequence

tasks, as shown in Figure 2, inspired by the PIA study for

music generation [15]. This model involves an encoder

converting input data into a latent representation and a de-

coder predicting the final output.
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With an anti-causal mask, self-attention within the en-

coder prevents future data access, while with a causal

mask, self-attention within the decoder limits access only

to previous data. With an identity mask, cross-attention

enforces positional alignment between the encoder and de-

coder outputs, which is helpful for aligned sequence tasks.

The attention mechanisms are defined as follows, where

Mtype is the mask type (anti-causal, causal, or identity):

Attention(Q,K, V ) = softmax

(

QK⊤

√
dk
⊙Mtype

)

V.

(1)

This structure enhances the capability of the model to

handle bidirectional input-output relationships, essential

for inpainting, where future context influences the genera-

tion process. Furthermore, we add an extra binary embed-

ding to the encoder input with information about the mask

Ms–the tokens to regenerate–for the inpainting model.

2.1.1 Training the Inpainting Model (I)

The training process is outlined in Algorithm 1. A batch x

is sampled from the MIDI dataset D, and a random frag-

ment Mu is chosen for each sample in x with a length de-

termined by t1. It is important to note that t1 refers to

the length in terms of the token sequence, rather than the

MIDI duration. Consequently, a random mask Ms, with

the masking ratio controlled by γ(t2), is then applied to

Mu. The forward pass of the model calculates the loss

using the batch x, the mask Ms, and the Cross Entropy

(CE) loss function to evaluate the difference between the

predicted outputs and the actual labels. The model is sub-

sequently updated via gradient descent. The function γ,

a cosine scheduler, dynamically adjusts the masking ratio.

It operates on a domain defined by a random variable t2
within the interval [0, 1]. Specifically, for any chosen value

t2 drawn uniformly from the interval [0, 1], the value un-

dergoes a cosine transformation γ to determine the mask-

ing ratio, where γ(t2) = cos
(

πt2

2

)

.

Algorithm 1 Training the Inpainting model (I)

Require: MIDI dataset D, Inpainting model I
1: while convergence do

2: x ∼ D ▷ Sample batch

3: t1 ∼ U(0.1, 0.6), t2 ∼ U(0, 1)
4: Mu ← Fragment(x, t1)
5: Ms ← Random Masking(Mu, γ(t2))
6: L← ForwardInpaintingModel(I, x,Ms)

▷ model forward and compute loss

7: GradientDescent(L)

8: end while

2.2 Feedback model (F)

We employ an encoder-only transformer architecture for

the feedback phase that classifies music tokens as fake

or real. We use this output distribution to select the k

most realistic tokens to retain while the others are regen-

erated. Unlike the encoder-decoder inpainting model, I,

this model processes the input through a parallel and bidi-

rectional attention mechanism without employing any at-

tention masks, thus facilitating an unrestricted analysis of

the musical context. Additionally, we add an extra binary

embedding to the encoder input with information about the

mask Mu–the selected fragment–for the feedback model.

2.2.1 Training the Feedback model (F)

Algorithm 2 Training the Feedback model (F)

Require: MIDI dataset D, Inpainting model I, Feedback

model F
1: while convergence do

2: x ∼ D ▷ Sample batch

3: t1 ∼ U(0.1, 0.6), t2 ∼ U(0, 1)
4: Mu ← Fragment(x, t1)
5: Ms ← Random Masking(Ms, γ(t2))
6: x̂← I(x,Mu)
7: L← ForwardFeedbackModel(F , x̂,Mu)

▷ model forward and compute loss

8: GradientDescent(L)

9: end while

After training the inpainting model I, we train an

encoder-only feedback model F . This model aims to eval-

uate the output from I, offering feedback on the composi-

tion quality of each music fragment denoted by Mu.

One ideal way of training F would involve a vast

dataset of computer- or human-generated music compo-

sitions and human experts’ revisions for inpainting and

proofreading applications. Instead, we propose a more fea-

sible synthetic training strategy, described in Algorithm 2.

The inpainting model I generates tokens within the se-

lected fragment of a music piece, Mu, which we label as

‘Fake’, while we label as ‘Real’ the original unchanged to-

kens. We utilize these labels to instruct F , following the

process illustrated in Figure 3.

The training of F is based on the output of I. We be-

gin by sampling a batch x from the dataset D, then apply

masking Ms and Mu. Model I regenerates specific tokens

within x, yielding a modified output x̂. Model F then as-

sesses each token of x̂ against Ms, categorizing them as

‘Real’ or ‘Fake’. The loss L for F is computed using the

Binary Cross Entropy (BCE) loss function, and is mini-

mized through gradient descent. The outcome is a heatmap

for Mu, which indicates the probability of each token be-

ing ‘Real’ or ‘Fake’, determined by the sigmoid activation

of the model output.

2.3 Generation of MIDI sequences (RefinPaint)

We capitalize on the strengths of the inpainting and feed-

back models for the iterative MIDI sequence generation.

The process shown in Figure 4 begins with a MIDI se-

quence x introduced by the user, setting the stage for a

loop that spans a predetermined number of iterations T .

Initially, the user selects the fragment to be modified

x
(0)
m and sets the initial selection rate k = 0 for complete

inpainting. Alternatively, different values for k allow the
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user to control how much of the content to keep in the se-

lected fragment when proofreading.

In the proposed Algorithm 3, at each iteration t, the in-

painting model I generates a new version of the sequence

x̂, based on the current masked input x
(t)
m . In the human-

in-the-loop scenario, the user can then adjust this generated

sequence. The feedback model F evaluates x̂ and provides

a new mask M (t+1), which the user may also modify. This

mask highlights the tokens that are deemed most realis-

tic. The number of selected realistic tokens k follows a

decreasing function γ of the iteration t, which models the

increasing confidence in the tokens produced over time.

Moreover, we add an extra binary embedding to the en-

coder input with information about the mask M–the given

context–where M changes over iterations.

Refining the music sequence through each iteration

aims to achieve a compositional process that closely aligns

with that of a human composer so that the user interven-

tion becomes interpretable and natural. It fosters a collab-

orative environment between the user and the machine and

tailors the generation process to the user’s specific direc-

tives and preferences.

Algorithm 3 Generation Algorithm (RefinPaint)

Require: Inpainting model I, Feedback model F ,

masked MIDI x
(0)
m , No. masked tokens N , No. it-

erations T

1: for i = 0 to T − 1 do

2: k =
⌈

γ
(

i

T

)

·N
⌉

3: x̂← I(x(i)
m )

4: if i ̸= T − 1 then

5: M (i+1) ← F(x̂)
6: x

(i+1)
m ← k-realistic tokens(x̂,M (i+1), k)

7: end if

8: end for

3. RELATED WORK

Automatic music generation has rapidly advanced recently.

Significant progress has been made [4–6], especially in

solo piano compositions [3, 7, 15], through the capabili-

ties of autoregressive models in producing coherent musi-

cal outputs. However, several challenges remain for creat-

ing successful interactions with humans [3, 11, 15–22].

Previous work has explored various approaches to

generate music iteratively and allowed for partial

modification—often referred to as inpainting—, which en-

hances controllability. Among them, sequential handling

of musical elements has been a common strategy, as in

models like DeepBach [11] and Coconet [12]. Although

these models allow for inpainting and iterative generation,

they often rely on random iterations without a mechanism

for discriminative feedback to guide improvements. This

lack of directed refinement contrasts with the human com-

positional process, which typically involves iterative im-

provements based on evaluative feedback. Our proposed

approach addresses this limitation by incorporating a feed-

back model that identifies areas for improvement for both

humans and machines to refine the composition.

Although it is not designed as an inpainting model, ES-

Net’s approach to music generation integrates generative

and discriminative capabilities in one model [13], with a

feature for correcting past errors for iterative refinement.

Our model differs significantly: it takes into account the

context of the selected fragment, could improve any ex-

isting inpainting model, and can handle general MIDI for-

mats. In [23], the authors propose a GAN model for piano

music composition with a discriminator model that dis-

cerns real and fake compositions in the training process.

However, it does not give feedback on which generated

parts are good or bad and does not create compositions it-

eratively. Yet, the application of discriminative feedback

in music generation, particularly in a manner that mimics

human iterative refinement, remains largely unexplored.

Finally, inpainting models in music have seen various

approaches but remain less studied compared to their coun-

terparts in image generation [24]. They typically focus on

quantized scores, with significant contributions like Gibbs

sampling for Bach chorales [11] and RNN-based melodies

inpainting [25]. Studies on transformers for multitrack

inpainting have advanced the field, such as MMM [26],

which utilizes a decoder architecture akin to GPT2 [2],

and PIA [15], which uses a specialized transformer de-

sign. We chose PIA over MMM as a ground element in

this work, given it is capable of working in the token level

or larger contexts and inpainting multiple little fragments

at the same time, similar to Token-Critic’s generator [14].

4. EXPERIMENTAL SETUP

4.1 Data preparation

Our study utilizes the Lakh MIDI dataset (LMD), an ex-

tensive collection of approximately 170k unique multi-

track MIDI files, compiled by Colin Raffel for music re-

search [27]. The dataset offers a wide variety of music,

albeit with varying quality due to its internet-sourced na-

ture. Despite this, the volume and diversity of the LMD

dataset make it a valuable asset for our proofreading task.

We extracted only the piano parts, totaling 120,000 tracks.

We tokenize the piano tracks using REMI (REvamped

MIDI-derived events) [16], a music representation method

that converts MIDI events into a structured format opti-

mized for Transformer-based models that significantly en-

hances their ability to comprehend and produce music.

REMI categorizes music elements into distinct event types,

including timing for rhythm and note events for melody,

but we exclude velocity events for simplicity. Specifically,

we use a modified version of REMI tailored for handling

single-track piano performances, as implemented in [28].

The dataset was split into training (hashes 0–d), validation

(hash e), and testing (hash f) segments, based on each file’s

MD5 hash’s leading digit, akin to previous methods [5, 6]

4.2 Model development

We train the inpainting and feedback models with the

AdamW optimizer, using eighty per cent of the dataset for

training and the remainder for validation. Each epoch con-

sists of a randomly selected fragment from the training set,

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

243



512 tokens in length. We also employ an augmentation

procedure that transposes the pitch tokens of a sequence

by adding or subtracting up to 6 semitones. For the in-

painting model, we apply a cross-entropy loss and use the

maximum batch size that our system can handle; a sin-

gle V100 GPU with 16GB allows for 48 samples. The

encoder-decoder inpainting model comprises 12 layers: 4

encoder layers and 8 decoder layers, similar to the original

PIA, with 8 heads and an embedding dimension of 512.

We employ a cosine scheduler for training, with 16,000

warmup steps, reaching up to a 0.0006 learning rate. The

feedback model consists of 6 layers, with an embedding

dimension of 512, a dropout rate of 0.1, 8 heads, and the

same cosine scheduler. Finally, we acknowledge that opti-

mizing these models was not the main focus of this paper,

so there might be better hyperparameter values.

In the particular case of proofreading without human

intervention, i.e. for evaluation purposes, the final output

is the iteration that maximizes the feedback model prob-

ability distribution. Using a sigmoid function, the model

determines whether each token in a sequence is fake or

real. By averaging the output probabilities, we calculate

a global feedback score (GFS) for the sequence’s overall

realism and select the best regeneration output based on it.

5. INPAINTING RESULTS

5.1 Divide and conquer with the inpainting model

We conducted an experiment to explore how the model’s

inpainting performance is affected by the percentage of to-

kens to inpaint in a selected fragment. We hypothesize that

the more tokens to inpaint, the harder the problem is, so

the model performance is lower. The experiment uses the

inpainting model trained as detailed in section 2.1.1, and

we report its Negative Log-Likelihood (NLL) loss and per-

plexity of the next predicted token. The evaluation cov-

ered the entire test set, with masking ratios ranging from

1 (fully masked) to 0 (no tokens to inpaint) and a fixed

30% fragment size rate of the 512 tokens sequence. Re-

sults shown in Table 1 indicate better performance with

reduced masking, confirming our hypothesis. Notably, the

average Perplexity value is less than half at 0.05 compared

to the 1.0 masking ratio. This finding is crucial for Refin-

Paint’s effectiveness as it reduces the number of tokens to

be inpainted in subsequent iterations, considering the iter-

ative process as a top-to-bottom strategy.

5.2 Objective evaluation of proofreading inpainting

This section conducts a comparative analysis between the

reference inpainting output, as described in [15] (PIA), and

our enhanced method. Our method applies the RefinPaint

proofreading process to the initial PIA’s inpainting output

over ten iterations and is referred to as ‘Ours’. For frag-

ment sizes of 50%, 30%, and 10% of the 512-token test

sequences, we computed 1,000 instances each. It is impor-

tant to note that the PIA method discussed is our reimple-

mentation, since the original code was not available.

Table 2 shows the average global feedback score (GFS),

computed as explained in Section 4.2, and the number of

masking ratio NLL AVG PPL

0.05 0.56 0.31

0.10 0.58 0.33

0.15 0.58 0.34

0.20 0.58 0.33

0.40 0.64 0.41

0.60 0.70 0.49

0.80 0.77 0.59

1.00 0.86 0.73

Table 1: Summary of the inpainting experiment with dif-

ferent masking ratios. A masking ratio of 1.0 corresponds

to being fully masked, and 0 indicates no masking. The

standard deviation is less than 0.01 in all the experiments.

evaluations in which each algorithm outperforms the other

(Wins) and in which their scores are the same (Ties). Ta-

ble 3, on the other hand, focuses on the comparison be-

tween PIA and Ours, employing the NLL loss, a metric of

the next token prediction in generated music. This metric,

derived from an autoregressive model we trained explicitly

from scratch to assess the inpainting results, is a bench-

mark metric in our evaluation. Similar evaluations have

been employed in previous studies in natural language pro-

cessing [29] and music generation [30]. Consequently, our

study employs a 12-layer Transformer-based autoregres-

sive model with REMI representation. Our goal is to assess

the similarity between the distribution of musical elements

in inpainted sections and those in the original dataset, in-

cluding aspects such as rhythms, harmony, or melodies.

A lower NLL loss indicates a more accurate prediction

of the next token, reflecting a closer approximation to the

dataset’s inherent musicality. Note we assess this metric

over the entire output sequence.

GFS (↑) Wins Ties

PIA Ours PIA Ours

50% 0.458 0.696 0 870 130

30% 0.515 0.730 0 886 114

10% 0.650 0.803 0 891 209

Table 2: Comparison of global feedback scores (GFS)

between PIA and the proposed RefinPaint methodology,

Ours. Higher values indicate better performance.

NLL (↓) Wins Ties

PIA Ours PIA Ours

50% 2.01 1.97 330 541 129

30% 1.68 1.66 347 533 120

10% 1.63 1.62 321 457 222

Table 3: Comparison of Negative Log Likelihood (NLL)

between PIA and the proposed RefinPaint methodology,

Ours. Lower values indicate better performance.

Results in Table 2 indicate that our model’s GFS score is

generally better than the baseline, suggesting that the op-

timization goal of the RefinPaint iterative process is met.
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The PIA model never wins because this experiment selects

the best GFS of all the iterations, as mentioned in Sec-

tion 4.2. Although dynamic programming or genetic algo-

rithms could enhance the process, this study uses a simpler

method, focusing on the iteration with the highest GFS.

In Table 3, RefinPaint consistently achieves a slightly

lower average NLL loss than PIA, suggesting that the in-

painted content by RefinPaint is more consistent with the

original dataset used for training. Furthermore, Refin-

Paint wins more evaluations than PIA across all the per-

centages of fragment size evaluated. This further under-

scores the enhanced performance of RefinPaint in produc-

ing sequences more akin to human compositions. How-

ever, comparing both tables, we acknowledge that higher

GFS does not always imply a better NLL loss, calling for

other types of evaluation, as addressed in the next section.

5.3 Listening test of proofreading inpainting

While computational metrics provide valuable insights into

the quality of our inpainted music sections, human percep-

tion adds another perspective for evaluating musical qual-

ity and appeal. A user-based evaluation was conducted to

capture a holistic view of the inpainted outputs’ musicality.

For each experiment, which involved 50%, 30%, and

10% fragments of inpainted content, 15 different anno-

tators evaluated both the first iteration of inpainted con-

tent (PIA) and the complete iterative process of RefinPaint

(Ours) for ten iterations. Participants were exposed to two

scenarios, Experiment 1 and Experiment 2: one from the

PIA model and one from our RefinPaint model. The or-

der in which these pairs were presented was randomized to

avoid any bias. Additionally, we provided the original mu-

sic fragment without the inpainted content for reference.

Participants listened to both the PIA and RefinPaint ver-

sions before making their evaluations. They were asked to

assess the inpainted content’s quality by comparing it to the

original fragment, focusing specifically on coherence and

creativity. To make their choice, participants were given

four options to prevent bias: ‘Experiment 1,’ ‘Maybe Ex-

periment 1,’ ‘Maybe Experiment 2,’ and ‘Experiment 2’.

Figure 5 shows the listening test results. Firstly, PIA

got lower preference scores than RefinPaint for the differ-

ent fragment size conditions. In addition, RefinPaint’s per-

formance for different fragment sizes shows that the coher-

ence scores increase as the fragment size gets larger, even

if the creativity varies. This means that as there is more to

inpaint, RefinPaint gets better at being coherent. In con-

trast, PIA does not show such a strong trend.

The quantitative and qualitative evaluations point to-

wards a clear trend: Refinpaint tends to yield superior in-

painting results when proofreading machine inpainted sec-

tions compared to the baseline. Our methodology pro-

duces music sequences that are more consistent, percep-

tually closer to the original, and preferred by listeners.

6. CASE OF STUDY ON PROOFREADING

AMATEUR COMPOSITIONS

We conducted an additional study to explore the proposed

system’s capabilities for proofreading music compositions

Figure 5: Results of the participants’ votes for the listening

test comparing PIA and RefinPaint (Ours) along different

fragment sizes (50%, 30%, and 10%).

by humans. Given the intrinsic difficulties of such a study

and due to practical restrictions, we limited our experiment

to four amateur composers–two with classical music train-

ing and two with modern popular music training.

Participants used a straightforward proofreading inter-

face that enables bar selection for regeneration, allowing

them to choose how much of the content to keep in certain

sections of their work, as described in 2.3. Additionally,

we allowed the users to change the RefinPaint feedback in

the selected area and experiment with the tools by conduct-

ing as many trials as they wanted.

After testing our inpainting tool on a 30-second music

piece, participants responded to questions about their expe-

rience. They evaluated whether the tool (i) enhanced their

original draft, (ii) sparked new ideas, (iii) could save time

over manual proofreading, and (iv) was something they

would use in the future. All chose “yes” for (i), (iii) and

(iv) with three “yes” and one “maybe” for (ii), suggesting

time efficiency as a key advantage and providing an overall

positive view of the tool.

The positive feedback prompted us to showcase the

proofread compositions on our companion website. Par-

ticipants suggested the tool could be particularly effective

in overcoming creative blocks, noting that inspiring ideas

stemmed from all iterations, not just the last one. Addition-

ally, two participants especially valued the option to alter

tokens within the RefinPaint selection.

7. CONCLUSION

In conclusion, our novel approach, RefinPaint, signifi-

cantly enhances music generation by identifying and im-

proving weaker musical elements through iterative feed-

back. Its effectiveness in both inpainting and proofread-

ing tasks promises a new direction for creative assistance

and quality enhancement in compositions by humans and

machines alike. Future work could fruitfully extend the

research to multitrack compositions and explore control

mechanisms for this model, such as conditioning by har-

mony, rhythm, genre, or other musical factors.
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8. ETHICS STATEMENT

While RefinPaint can represent a significant leap forward

in music composition technology, ensuring ethical deploy-

ment and use is crucial. We advocate for a future where

such technologies support and enrich the creative pro-

cess, complementing rather than displacing human creativ-

ity. While RefinPaint aims to democratize music creation,

making it accessible and achievable for amateurs, there is a

risk that professional musicians and composers could feel

their roles and contributions are being undermined or re-

placed by machines. It is essential to strike a balance where

this technology serves as a tool for enhancement and learn-

ing rather than a substitute for human creativity. Further-

more, it will be vital to establish guidelines that protect

the intellectual property rights of original compositions,

whether entirely human-made or AI-assisted.
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