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ABSTRACT

Recent advancements in audio processing provide a new

opportunity to study musical trends using quantitative

methods. While past work has investigated trends in music

over time, there has been no large-scale study on the evolu-

tion of vocal lines. In this work, we conduct an exploratory

study of 145,912 vocal tracks of popular songs spanning

55 years, from 1955 to 2010. We use source separation to

extract the vocal stem and fundamental frequency (f0) es-

timation to analyze pitch tracks. Additionally, we extract

pitch characteristics including mean pitch, total variation,

and pitch class entropy of each song. We conduct statis-

tical analysis of vocal pitch across years and genres, and

report significant trends in our metrics over time, as well

as significant differences in trends between genres. Our

study demonstrates the utility of this method for studying

vocals, contributes to the understanding of vocal trends,

and showcases the potential of quantitative approaches in

musicology.

1. INTRODUCTION

Current technologies for audio processing provide new op-

portunities to study musical trends using quantitative meth-

ods. While researchers have analyzed music for gener-

ations, studying the evolution of music at a large scale

has only been possible recently, due to the availability of

large datasets [1–3]. Additionally, recent improvements

in source separation technology have allowed researchers

to study individual instruments [4, 5]. However, the vocal

lines of songs have been understudied, even though they

are often the most salient part of a song [6, 7], and many

popular songs are built around the vocal line.

In this study, we examine trends in the vocal lines of

145,912 songs over 55 years (from 1955 to 2010). We use

modern source separation methods to isolate vocal lines of
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songs (30–60 second-long excerpts) from their respective

accompaniments. Altogether, our dataset makes up over

59 days of continuous listening. This work is exploratory:

we examine what trends and patterns can be observed from

such a large corpus of vocal data. We have made our list

of track IDs publicly available, along with our implemen-

tations. 1

2. RELATED WORK

The transformation of music over time has received a lot of

focus in recent years. This is partially thanks to the release

of open-source resources such as The Million Song Dataset

(MSD) [1]. The MSD is a free collection of audio features

and metadata for one million contemporary music tracks.

Datasets such as MSD allow researchers to quantitatively

analyze patterns in music at a large scale.

Serrà et al. used musical ‘codewords’ based on MSD

clips to identify changes in pitch, timbre, and loudness

over time [2]. They found that newer songs have less va-

riety in pitch transitions, more homogenized timbres, and

increased loudness. Parmer et al. did similar work using

the MSD to study musical complexity from 1960–2010.

They found that pitch complexity has been generally stable

over that time period, while loudness and rhythm complex-

ity has decreased and timbral complexity has increased [8].

Parmer also studied the complexity of popular songs from

the Billboard chart, 2 and found that the complexity of

popular songs is concentrated around the mean complex-

ity level of all songs. This supports the inverted U-shaped

model for music complexity and likeability: that listeners

prefer intermediate levels of complexity [9, 10].

Another team of researchers used the MSD songs along

with quantitative modeling to study musical influence: the

impact that a particular artist has on the music by other mu-

sicians [3]. They identified clusters of songs that were in-

dicative of a genre, and studied how those clusters evolved

over time. A different study used a corpus of 17,000 songs

from Billboard to study the “Evolution of Popular Music”

between 1960 and 2010 in the United States [11]. They

used timbral and harmonic features derived from Billboard

songs, and identified three musical stylistic revolutions in

1 https://github.com/elenatheodora/ismir2024-changing-sound-of-music
2 https://www.billboard.com/charts/hot-100
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Figure 1: Top: Chronological distribution of the dataset

organized in 5-year demi-decades. Bottom: Relative dis-

tribution of genres in the dataset by demi-decade.

Figure 2: Number of tracks per musical genre. Blues,

World, and New Age music (labeled ‘*’), were excluded

from the by-genre analyses due to lower track count.

1964, 1983, and 1991. Other researchers have studied a

more niche topic in detail over decades, including the evo-

lution of a single band’s performances [12], changes in dy-

namics/compression in mainstream music [13], or spectral

characteristics of recordings over time [14].

In an early vocal corpus study, in 1959, Alan Lomax’s

Cantometrics project analyzed over 4,000 traditional vocal

music songs from 400 cultures [15]. Researchers listened

to songs and labeled them with 37 “style-factors,” for ex-

ample group cohesion in singing, and tense or relaxed vo-

cal quality. The Cantometrics project suggested a correla-

tion between song style and social norms of cultures.

In a more recent study, researchers developed a set of

features to capture pitch and melodic embellishments of

world vocal performances [16]. Using these features, they

trained a classifier to distinguish vocal from non-vocal seg-

ments and learn a dictionary of singing style elements.

Results showed that clusters were distinguished by char-

acteristic uses of singing techniques such as vibrato and

melisma. A different study categorized a collection of 360

Dutch folk songs, and found that the aspects of melody

that are important for establishing similarity are contour,

rhythm, and motifs [17]. Despite these previous works on

vocal datasets, there has been no large-scale study on the

evolution of the vocal lines of popular music over the years.

3. DATASET

We used a subset of the MSD [1] that has genre labels

(the Tagtraum MSD annotations [18]). 278,619 tracks had

genre labels available. Next, a group of songs was dropped

due to a low presence of vocals in the excerpt, indicated

by a low ratio of RMS (root mean square) energy of the

separated vocal stem to RMS energy of the full audio file

(see 4.1). Songs that did not have the release year available

were also dropped. In a final filtering step, we chose to

conduct analyses only starting in the year 1955, as data was

sparse before 1955. The final dataset had 145,912 songs.

Figure 1 shows a chronological distribution of songs in

demi-decade bins (i.e., 1990-1994). We observe a strong

bias towards more recent songs. A relative distribution of

genres across years shows fewer genres in earlier years,

with a greater variety in more recent years. Figure 2 lists

the number of tracks in each musical genre in the dataset.

Blues, World, and New Age music (labeled with a ’*’),

were excluded from the by-genre analyses due to having a

lower number of tracks.

Our dataset inherits biases from the MSD. The tracks

in the MSD were selected based partly on their association

with ‘familiar’ artists, as determined by The Echo Nest,

followed by inclusion of tracks from similar artists. 3 The

creators of the MSD also included artists that fit the 200

most frequently-occurring Echo Nest descriptive terms, as

well as songs that were extreme in acoustic attributes. In

general, songs in the dataset are generally widely listened-

to, and the majority come from North America or Europe.

There are much more data in recent years (1990s onward)

than in earlier years. There is very little non-western and

classical music in the dataset. The Latin music genre does

contain non-western music, primarily performed in Span-

ish or Portuguese. Our findings apply to this dataset, not

necessarily to music as a whole, and our work will have bi-

ases if applied to other datasets. Importantly, these dataset

biases do not affect our methods.

4. METHOD

4.1 Source Separation

First, we used source separation to separate the vocal line

of each song from the mix. For this, we use Hybrid Trans-

former Demucs (HT Demucs), a hybrid temporal/spectral

bi-U-Net [5]. After computing the ratio of the vocal stem’s

RMS energy to the overall mix’s RMS energy, we excluded

any songs with a ratio below 0.08 (Figure 4). This ratio

was set using a preliminary sub-sample of the data. These

excerpts are either purely instrumental songs (non-vocal),

or the clip happens to capture a part of the audio file with

very few or no vocals (i.e., a guitar solo).

4.2 Pitch Characteristics

To study pitch characteristics, we did fundamental fre-

quency (f0) estimation on the estimated vocal stems us-

ing PYIN [19] as implemented in Librosa v0.8.1 [20].

3 http://millionsongdataset.com/faq/
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Figure 3: f0 extraction evaluation scores for 29 clean and

source-separated vocal stems from MedleyDB, when com-

pared with the MedleyDB f0 annotations.

We set the lower frequency limit at 70Hz and the upper

limit at 900Hz, aligning with the human vocal range de-

scribed in other works, while also extending one musical

whole step in each extreme [21]. We chose PYIN over

CREPE, another f0-estimator, as it allows us to set a lower

and higher pitch bound for f0-estimation [22]. Other than

changing the sampling rate to 44.1 kHz, we used the Li-

brosa defaults: frame length 2048, hop length 512, num-

ber of thresholds for peak estimation 100, switch probabil-

ity 0.01, and no-trough probability 0.01. We collect an f0
estimate approximately every 12 milliseconds.

We evaluated the pitch tracking accuracy of the PYIN

algorithm on source-separated audio by running PYIN on

29 monophonic vocal stems from MedleyDB. We used

mir_eval to compute the standard evaluation metrics used

in MIREX: Voicing Recall (VR), Voicing False Alarm

(VFA), Raw Pitch Accuracy (RPA), Raw Chroma Accu-

racy (RCA) and Overall Accuracy (OA) [23]. First, we

compared several different PYIN settings: the number

of thresholds, switch probability, and no-trough probabil-

ity parameters, and found the Librosa defaults performed

among the best. Next, we compared the accuracy of PYIN

on clean stems and source-separated stems, each respec-

tively compared to the annotations included in MedleyDB,

and observed only a small decrease in accuracy. The me-

dian evaluation metrics of our method on the 29 clean vo-

cal stems were: for clean stems, OA 0.781, RPA 0.924,

RCA 0.928, VR 0.984, VFA 0.375, and for source sepa-

rated stems, OA 0.771, RPA 0.865, RCA 0.888, VR 0.964,

VFA 0.340 (see Figure 3). The source separation process

only slightly reduces the accuracy of our f0-estimation.

Some tracks in the dataset have vocal harmonies. PYIN

tends to track the pitch of the most prominent voice. We

ran a query on last.fm, 4 and found that tags for vocal har-

monies are present in less than 1% of songs in the dataset.

We assume that the presence of vocal harmonies is un-

correlated with the variables we study: time and genre.

Through informal listening, we found that Demucs and

PYIN were comparably effective for older and newer audio

recordings from the time period we study, 1955-2010.

PYIN also provides a voicing detection estimate, which

we used to identify contiguous regions of pitched sound in

the vocal stem. We converted f0 values in hertz to cents

4 https://www.last.fm/
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Figure 4: Distribution of the ratios of the vocal stem RMS

energy to the full mix RMS energy in the data. A threshold

of 0.08 was used to discard non-vocal clips.

Figure 5: Example f0 tracks. The top track, selected from

the Metal genre, has a low TV and high PCE. The bottom

track, from the Rap genre, has a high TV and low PCE.

using Eqn (1), where 16.35Hz is the frequency of C0:

f0[¢] = 1200 · log2
f0[Hz]

16.35
. (1)

For example, "middle C" on a piano is 4800 cents, and

C#/Db is 4900 cents. Using this information we ex-

tracted pitch features, dropping unvoiced frames. We cal-

culated mean pitch (in cents) of each song, defined as the

mean of each f0 array.

We also calculated total variation (TV) [16]. TV sum-

marizes the rate of pitch change and is defined in Eqn (2):

TV(x) =
1

N

N−1∑

i=1

|xi+1 − xi| (2)

for a given f0 contour x = (x1, . . . , xN ). TV is calculated

independently for each voiced region within a song and

then aggregated to a single total. Our TV calculations do

not change the time interval between f0 values.

4.3 Pitch Class Entropy

We calculated pitch class entropy (PCE) to measure the

degree of unpredictability for the set of vocal pitches. En-

tropy was calculated over the probability of occurrence

of each pitch class (independent of octave) in the vocal

line [24]. Higher values of PCE indicate a greater spread in

the pitch distribution, while lower values indicate a smaller

and more predictable set of pitches. There is a theoretical

maximum PCE of log2(12) ≈ 3.59, achieved by a uniform

distribution of the 12 pitch classes.

Figure 5 illustrates two example f0 tracks with some-

what extreme TV and PCE values.

4.4 Statistical Analyses

We used R (4.2.2) and RStudio (2022.12.0+353) to imple-

ment linear regression with the lm function. Post-hoc tests
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were implemented using the emmeans package with Tukey

correction for multiple comparisons.

5. EXPERIMENT AND RESULTS

For each of our variables of interest (mean pitch, TV, PCE),

we followed the same procedure. We first ran a linear re-

gression to examine the relationship between the variable

of interest (e.g., TV) and the year of track release (e.g.,

TVỹear). We then calculated a linear regression between

the variable of interest and musical genre (e.g., TVg̃enre).

Finally, we calculated independent linear regressions be-

tween the variable of interest and year of track release

for the twelve most frequently-occurring genres. We cal-

culated independent regressions because each of the gen-

res becomes prevalent in the dataset during different years

(i.e., Rap music starting in 1984).

When looking at musical genres, we chose to study the

twelve genres with the most song entries in the dataset.

We began analyzing each genre at the first year of a five-

year period where at least ten songs were released in that

genre annually. The twelve genres with corresponding start

years were as follows: Country (1956), Electronic (1979),

Folk (1963), Jazz (1955), Latin (1986), Metal (1980), Pop

(1961), Punk (1977) Rap (1984), Reggae (1972), RnB

(1957), and Rock (1956).

5.1 Mean Pitch

We found a significant positive relationship between mean

pitch for a track and the year it was released (β = 0.957, t =

7.23, p < .001). For every one-year increase in the release

year, the mean pitch of the track increased by a little less

than one cent, on average (see Figure 6).

Next, we assessed mean pitch and musical genres. We

found a significant main effect of genre (F(1, 140982) =

1378.6 , p < 0.001). All genres were significantly distinct

(all p values <0.001) except for: electronic and pop music

(t=1.891, p=0.765), jazz and Latin (t = 0.276, p=1.000),

jazz and rock (t=-2.854, p = 0.158), and Latin and rock (t

= -3.005, p = 0.107). Data for the mean pitch per song in

each of these genres is illustrated in Figure 7.

We found a significant main effect of year for nine of the

twelve musical genres, though the direction of the trends

varied (see Figure 8). Specifically, country music (β =

3.991, t = 7.970, p <0.001), folk music (β = 1.374, t =

2.395, p <0.001), jazz (β = 2.901, t = 4.482, p =0.017),

metal (β = 7.269, t = 4.612, p <0.001), punk (β = 3.301, t

= 3.815, p <0.001), reggae (β = 2.053, t = 3.301, p <0.001)

and rock (β = 1.097, t = 5.529, p <0.001) showed a sig-

nificant positive relationship between year and mean pitch.

Conversely, rap (β=-6.653, t=-7.757, p<0.001) and RnB

(β=-3.800, t=-11.75, p<0.001) showed a significant nega-

tive relationship between year and mean pitch. No signifi-

cant effect was found for electronic, Latin, or pop music.

5.2 Total Variation

The results for the TV and year regression between TV

and year showed a significant negative relationship (β = -

Figure 6: Mean pitch in cents as a function of year glob-

ally. Each dot represents a song. The red line represents

the predicted slope with 95% confidence intervals. The

green diamond and ribbon represent the mean per year and

the standard error. This relationship was significant, with

mean pitch increasing by approximately one cent per year.

Figure 7: Mean pitch per song in each of the twelve genres

across the dataset. Means are shown with boxes represent-

ing the interquartile range, error bars indicating the 95%

confidence interval, and outliers as circles. There were

significant differences between all genres except electronic

and pop, jazz and Latin, jazz and rock, and Latin and rock

Figure 8: Relationship between mean pitch (in cents) and

year for each genre. “*” denotes a significant effect of year.

The red line represents the predicted slope with 95% con-

fidence intervals. The green diamond and ribbon represent

the mean per year and the standard error.
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Figure 9: Total Variation as a function of year. Each dot

represents a song. The red line represents the predicted

slope with 95% confidence intervals. The green diamond

and ribbon represent the mean TV per year and the stan-

dard error. There was a significant negative correlation be-

tween TV and year.

0.027, t = -10.47, p < .001; see Figure 9). When assess-

ing the relationship between TV and musical genre, we

found a significant main effect of genre (F(11, 140,980)

= 1247.9, p < 0.001). Post-hoc tests showed that all genres

were significantly different from one another (all p values

<0.05) except for country and Latin (t=0.661, p = 1.000),

country and punk (t = -3.214, p = 0.059), electronic and

punk (t = 0.877, p = 0.999), electronic and reggae (t=0.269,

p=1.000), folk and pop (t = -2.407, p = 0.4013), folk and

rock (t = 0.185, p = 1.000), Latin and pop (t = 3.006, p

= -.107), and punk and reggae (t = -0.569, p = 1.000; see

Figure 10). Importantly, TV was significantly higher for

rap music than for all other genres.

We found a significant main effect of year on TV for

eleven of the twelve musical genres, though the direction

of the trends varied (see Figure 11). Specifically, metal

music (β = 0.066, t = 3.338, p <0.001), reggae music (β =

0.058, t = 6.512, p <0.001), and RnB (β = 0.013, t = 3.44, p

<0.001) showed a significant positive relationship between

year and TV. Conversely, electronic music (β=-0.126, t=-

4.803, p<0.001), folk (β=-0.065, t=-7.852, p<0.001), jazz

(β=-0.079, t=-6.418, p<0.001), Latin music (β=-0.041, t=-

2.349, p=0.019), pop (β=-0.033, t=-8.698, p<0.001), punk

(β=-0.045, t=-3.259, p=0.001), rap (β=-0.158, t=-11.06,

p<0.001) and rock (β=-0.062, t=-13.79, p<0.001) showed

a significant negative relationship between year and TV.

No significant effect was found for country music.

5.3 Pitch Class Entropy

A linear regression showed a statistically significant neg-

ative relationship between PCE and year (β = -0.004, t =

-50.02, p-value < 0.001; see Figure 12). There was a ceil-

ing effect for PCE, with some of the tracks hitting close to

the theoretical maximum of 3.59.

We ran a linear model with genre as the only main effect

and found a significant main effect of genre on PCE (F(11,

140,982) = 759.64, p < 0.001). Post-hoc tests showed

that all genres were significantly different than one another

(all p-values <0.05) except for folk and Latin (t=-0.936,

p=0.999), folk and pop (t=2.484, p=0.350), folk and reggae

(t=1.255, p=0.984), jazz and RnB (t=3.123, p=0.077; ap-

proaching significance), Latin and rap (t=-2.952, p=0.123),

Latin and reggae (t=2.218, p=0.536), and pop and reggae

(t=-1.054, p=0.996; see Figure 13).

Figure 10: Total variation in each of the twelve genres

across the whole dataset. Means are shown with interquar-

tile range, 95% confidence interval error bars, and outliers.

There were significant differences in TV between all gen-

res except between country and Latin, country and punk,

electronic and punk, electronic and reggae, folk and pop,

folk and rock, Latin and pop, and punk and reggae.

Figure 11: Relationship between TV and year for each

genre. “*” denotes a significant effect of year. The red line

represents the predicted slope with 95% confidence inter-

vals. The green diamond and ribbon represent the mean

per year and the standard error.

Figure 12: Pitch Class Entropy as a function of year. Each

dot represents a song. The red line represents the predicted

slope with 95% confidence intervals. The green diamond

and ribbon represent the mean PCE per year and the stan-

dard error. There was a significant negative correlation be-

tween PCE and year
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Figure 13: Pitch class entropy in each of the genres.

Means are shown with interquartile ranges, 95% confi-

dence interval error bars, and outliers. There were signifi-

cant differences in PCE between all genres except between

folk and Latin, folk and pop, folk and reggae, jazz and

RnB, Latin and rap, Latin and reggae, and pop and reggae.

Figure 14: Pitch class entropy in each of the genres. “*”

denotes a significant main effect of year. The red line rep-

resents the predicted slope with 95% confidence intervals.

The green diamond and ribbon represent the mean per year

and the standard error.

Finally, we found a significant negative relationship

between PCE and year for eleven musical genres (coun-

try: β=-0.002, t=-7.847, p<0.001; electronic: β=-0.005,

t=-5.126, p<0.001; folk: β=-0.001, t=-3.650, p<0.001;

jazz: β=-0.001, t=-4.382, p<0.001; Latin: β=-0.004, t=-

5.047, p<0.001; pop: β=-0.003, t=-18.61, p<0.001; punk:

β=-0.003, t=-4.938, p<0.001; rap: β=-0.007, t=-11.61,

p<0.001; reggae β=-0.001, t=-2.849, p=0.004; RnB: β=-

0.002, t=-12.64, p<0.001; rock: β=-0.003, t=-28.75,

p<0.001; see Figure 14). The effect of year for metal music

(β=-0.002, t=-1.717, p=0.086) approached significance.

6. DISCUSSION

In this study, we analyzed vocal pitch characteristics across

years and genres. We found musical genres are often sig-

nificantly different from one another in mean pitch, total

variation, and pitch class entropy. The data generally ex-

hibited a significant negative relationship between year and

total variation and year and pitch class entropy, respec-

tively. This was the case both overall and for 8 and 11

musical genres, respectively (see Figure 10 and Figure 13).

If TV and PCE are taken to be measures of musi-

cal complexity, these findings could mean vocals, in this

dataset at least, are getting less complex over time. This

is somewhat in line with previous studies using the MSD.

Serrà et al. found that newer songs have less variety

in pitch transitions and more homogenized timbres, and

Parmer et al. found that pitch complexity has been gen-

erally stable, but loudness and rhythm complexity have

decreased [2] [8]. Our findings also parallel those of re-

cent publications looking generally at Western popular mu-

sic. In a recent study, authors found over five decades,

lyrics have become simpler in their vocabulary richness,

readability, complexity, and repetitiveness [25]. In an-

other study analyzing popular melodies from 1950 to 2023,

Hamilton and Pearce identified melodic revolutions that

correspond to decreases in melodic complexity [26].

In our study, we observed that the rap genre had a higher

TV than the other genres (see Figure 10), showing that rap

songs feature more pitch variation than other musical gen-

res, on average. This could be because rap vocals tend to

have less sustained pitch than other genres. Previous work

showed that pitch variance in rap music is a complex and

significant feature of the genre [27, 28]. Rap music, only

coming into prevalence in this dataset in 1984, may have

influenced the genres that exhibit a significant positive re-

lationship between year and total variation, counter to the

all-genre-pooled negative trend: metal, reggae, and RnB.

We found mean pitch increased over time (see

Figure 6). Gender and vocal range are key factors when

considering pitch, and genre-specific gender prevalence

may exist. However, we did not find a sufficiently reliable

gender or vocal range classifier to support further analysis.

Interestingly, mean pitch was the highest for the metal

genre, which has a low presence of female vocalists com-

pared to other genres [29]. Therefore, the higher mean

pitch of the metal genre cannot be fully explained by a

higher prevalence of high-voiced singers. The average

mean pitch of metal vocals sits quite high in a typical tenor

range [21]. We hypothesize this is because screaming in

metal music tends to have a higher f0 than singing, but

more investigation into metal vocals is needed [30].

7. CONCLUSION

In this exploratory research, we examined trends in the vo-

cal lines of 143,152 songs spanning 55 years. Our work

has identified relationships between vocal pitch and pop-

ular musical genres over time, providing valuable insights

into the changing sound of music. We have demonstrated

the utility of the methods presented here for studying vo-

cals, and believe they have the potential to be applied to the

study of other musical instruments as well as general mu-

sical phenomena including historical and cultural trends,

changes in musical forms and structures, and stylistic dif-

ferences across genres and periods.
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