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ABSTRACT

This paper describes a deep learning method for music

structure analysis (MSA) that aims to split a music signal

into temporal segments and assign a function label (e.g.,

intro, verse, or chorus) to each segment. The computa-

tional base for MSA is a spectro-temporal representation

of input audio such as the spectrogram, where the com-

positional relationships of the spectral components pro-

vide valuable clues (e.g., chords) to the identification of

structural units. However, such implicit features might

be vulnerable to local operations such as convolution and

pooling operations. In this paper, we hypothesize that the

self-attention over the spectral domain as well as the tem-

poral domain plays a key role in tackling MSA. Based

on this hypothesis, we propose a novel MSA model built

on the Transformer-in-Transformer architecture that al-

ternately stacks spectral and temporal self-attention lay-

ers. Experiments with the Beatles, RWC, and SALAMI

datasets showed the superiority of the dual-aspect self-

attention. In particular, the differentiation between spectral

and temporal self-attentions can provide extra performance

gain. By analyzing the attention maps, we also demon-

strate that self-attention can unfold tonal relationships and

the internal structure of music.

1. INTRODUCTION

Music structure refers to the sequential arrangement of mu-

sically coherent units that form a musical work. Music

structure analysis (MSA) calls for a comprehensive un-

derstanding of various musical elements such as rhythm,

melody, and harmony, and has still been an open problem

in the field of music information retrieval (MIR), partly due

to its multifaceted and ill-defined nature [1].

There are two major ways of representing music struc-

ture. The semiotic representation [2] uses a set of arbitrary

symbols (e.g., A-B-C-B-C) for revealing the relationships

between segments within a musical piece. The functional
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(a) Chromagram representing a chorus section

(b) Multifaceted spectral self-attention maps over time

(c) Multi-scale temporal self-attention maps

Figure 1: Non-local dependencies of music such as chord

tones and repeated patterns can be captured with spectral

and temporal self-attention mechanisms. (a) The chroma-

gram shows that this musical excerpt is dominated by the

C major chord. (b) The spectral attention maps show that

pitch classes C, E, and G persistently draw attention while

the chroma features vary over time. (c) The temporal atten-

tion maps delineate the internal structures of this excerpt.

representation uses a set of semantic labels (e.g., intro-

verse-chorus-verse-chorus) for indicating the roles of in-

dividual units. The functional representation can be con-

verted into the semiotic one, but not vice versa.

A common deep learning approach to MSA involves

using a convolutional neural network (CNN) to extract

latent features from a spectro-temporal representation of

input audio, such as a mel spectrogram or chromagram

[3–5]. The assumption underlying this approach is the

time-frequency locality of musical features, which should

be treated with caution when characterizing the global

structure of music. Actually, musical elements have non-

local dependencies. Chords consist of musical sounds that

are widely distributed over frequency. Musical patterns

such as chord progressions or musical phrases are com-

monly repeated over time. Such non-local time-frequency

dependencies can hardly be captured by a CNN that ag-
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gregates local features while reducing the time-frequency

dimensions with pooling operations [6, 7].

One promising architecture for learning non-local de-

pendencies in a music recording is the SpecTNT [8], a

variant of the Transformer-in-Transformer (TNT) [9] for

modeling spectrogram-like representations. The SpecTNT

iterates feature transforms of the multi-head self-attention

(MHSA) mechanism [10] alternately along the spectral and

temporal axes while keeping the time-frequency dimen-

sions of input features. This method, however, suffers from

a potential performance limitation because the individual

characteristics of spectral and temporal dimensions are in-

distinguishable to the MHSA.

To overcome this limitation, we propose to integrate

specialized MHSA mechanisms into the SpecTNT archi-

tecture for the MSA task regarding the functional represen-

tation. As outlined in Figure 1, our method involves gath-

ering spectral and temporal information alternately from

an input spectro-temporal representation with two types of

MHSA mechanisms. The spectral self-attention extracts

compositional relationships among two types of spectral

features at each time step. The temporal self-attention ag-

gregates spectral information at multiple time scales. The

proposed method is systematically evaluated with three

corpora consisting of popular music. In addition, the at-

tention maps are analyzed to advocate paying attention to

the non-locality of musical features.

The main contribution of this work is to emphasize the

non-local dependencies of music over frequency as well as

that over time. While non-local temporal correlations have

been extensively studied, spectral non-locality remains un-

derrepresented. In this concern, we adapt MHSA mecha-

nisms to both aspects and analyze the self-attention maps

to elaborate on the non-locality of musical features. This

work may draw attention to such delicate characteristics

that could be crucial for various tasks in MIR.

2. RELATED WORK

Segmentation and labeling are two subtasks of MSA [11].

The former detects the boundaries of structural units, and

the latter categorizes musical segments either by the rela-

tionships with the semiotic representation or by the struc-

tural roles with the functional representation.

For the segmentation task, a spectro-temporal represen-

tation or a sequence of higher-level features extracted by a

CNN is typically used to compute a novelty curve [12–16],

from which musical boundaries are retrieved with a peak-

picking algorithm [17, 18]. A key feature of our method

is that we employ CNNs without any pooling layers for

feature extraction. Since adjacent spectral beams are ir-

relevant in the sense of music, naive local pooling would

hinder the learning of spectral patterns.

For the labeling task, the similarity-based approach is

commonly taken in support of the semiotic representation

of music structure [19–24], yet deep learning classifica-

tion frameworks have recently been introduced for the es-

timation of structural functions [25, 26]. For both scenar-

ios, the segmentation of an input piece will be a byprod-

uct of the labeling task. However, a smoothing method

is typically required to refine the fragmented segmenta-

tion results caused by unusual label changes. Our method

performs joint estimation of functional labels and musical

boundaries to alleviate the fragmentation issue.

MHSA-based methods have recently been proposed

for MSA owing to the excellent representation capabil-

ity. The SpecTNT for MSA [27] uses Transformer en-

coders to capture the dependencies between the two axes

of an input spectro-temporal representation. For training

the SpecTNT with an increased amount of data, structure

annotations from multiple datasets are mapped to the same

semantic space with a 7-class taxonomy (‘intro’, ‘verse’,

‘chorus’, ‘bridge’, ‘inst’, ‘outro’, and ‘silence’). While the

spectral components are often used for temporal modeling

or collapsed before temporal modeling, this is the first at-

tempt in the MSA task to retain the spectral dimension. In

contrast, the convolution-augmented MHSA (CAMHSA)

mechanism [28] captures temporal self-similarities on the

self-attention maps derived from multiple types of acoustic

features for capturing the repetitive nature of music. These

network designs impose inductive biases that can enhance

the representation learning.

Given the complementary aspects of these techniques,

we integrate specialized MHSA mechanisms into the

SpecTNT architecture for better modeling non-local fea-

tures in spectral and temporal dimensions. Compared with

the original CAMHSA [28], we retain the spectral dimen-

sion of the input data and aim to estimate the functional

structure instead of the semiotic one, because the func-

tional description conveys generic attributes of structural

units that are comprehensible to the public. Compared with

the original SpecTNT [27], we deal with spectro-temporal

characteristics of music and processes input data at the

track level rather than at the chunk (or segment) level, be-

cause the functional role of a structural unit might depend

on the global organization of a musical piece.

3. PROPOSED METHOD

We tackle the functional MSA task with the 7-class taxon-

omy [27]. The estimation of the functional structure is for-

mulated as a sequence labeling problem. Given a spectro-

temporal representation, X ∈ R
T×S , with S spectral com-

ponents and T time steps, the goal of the estimation task

is to output a sequence of categorical labels, C ∈ R
T , in-

dicating the structural function of each time step t ∈ T .

In practice, an extra binary sequence, B ∈ {0, 1}T , which

specifies whether t is a boundary, is generated for smooth-

ing the estimated labels within a segment surrounded by

two boundaries. As depicted in Figure 2a, our model con-

sists of three parts: a CNN-based frontend, L stacks of

spectral and temporal encoders, and output layers in charge

of the predictions of B and C respectively (in this paper,

we use L=2 stacks for experiments). 1

1 The source code is available at https://github.com/

Tsung-Ping/music-structure-analysis.
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(a) (b)

Figure 2: (a) Model architecture. Extra spectral compo-

nents E
∗ are stacked on the frontend output E before the

encoder blocks. (b) Schematic diagram of the spectral and

temporal encodings, where the initial input H
(0) = E,

H
∗(0) = E

∗, and the final output H
∗(L) = H

∗. The

spectral encoder represents the time slices ([H∗

t ;Ht]) sep-

arately, and then the temporal encoder aggregates the extra

components (Z∗

t ) and outputs a representation.

3.1 CNN Frontend

The frontend is composed of an initial stem with two 2-D

convolutional layers followed by a residual block [29]. Let

fc denote a convolutional layer with d filters parameter-

ized by θ. The outputs of the stem and the residual block,

denoted by {X′,E} ∈ R
T×S×d, are computed as follows:

E = fc(fc(X
′, θ3), θ4) +X

′, (1)

X
′ = fc(fc(X, θ1), θ2). (2)

In effect, two frontends are employed to leverage different

types of acoustic features. The two networks take as input

the mel spectrogram (X1 ∈ R
T×S1 ) and the chromagram

(X2 ∈ R
T×S2 ) respectively, and output E1 ∈ R

T×S1×d

and E2 ∈ R
T×S2×d. A unified representation is then ob-

tained by concatenating the two outputs along the spectral

dimension, i.e., E ∈ R
T×(S1+S2)×d. We set S1 = 80,

S2 = 12, and d = 80 for this work.

Note that adjacent pitch classes are irrelevant in the tra-

ditional sense of musical harmony, and we thus design the

frontend for the chromagram carefully. Specifically, we

concatenate X2 and the first 11 columns of X2 along the

pitch-class axis, i.e., X̂2 = concat(X2,X2[:, 1 : 11]), and

use convolutional layers with kernels that enclose the 12

pitch classes at once. This manipulation enables the CNN

to capture key (or tonic)-independent patterns.

3.2 Spectral and Temporal Encoders

The spectral and temporal encoders are both built upon the

Transformer encoder [10] that comprises stacks of MHSA

(a) (b)

Figure 3: Attention masks for (a) the spectral MHSA and

(b) the temporal MHSA. The rows (resp. columns) indicate

queries (resp. keys) of the MHSA mechanism. Attention

scores outside the colored regions will be filtered out.

blocks and feed-forward networks. Motivated by [28], we

replace the standard MHSA of the temporal encoder with

the CAMHSA mechanism. Moreover, we leverage relative

position encodings [30] for enabling the model to process

audio tracks of variable length.

As illustrated in Figure 2b, the two encoders in a stack

are sequentially applied to the output of the previous stack.

Let Et ∈ R
S×d denote a time slice of E at t, and E

∗

t ∈
R

1×d a learnable vector that behaves as an extra spectral

component. The spectral encoder (SE) jointly extracts la-

tent features Z∗

t ∈ R
1×d and Ht ∈ R

S×d from E
∗

t and Et.

Then, the temporal encoder (TE) exchanges information of

Z
∗

t across time as follows:

H
∗ = [H

∗(L)
1 ; . . . ;H

∗(L)
T ], (3)

[H
∗(l)
1 ; . . . ;H

∗(l)
T ] = TE([Z

∗(l)
1 ; . . . ;Z

∗(l)
T ]), (4)

[Z
∗(l)
t ;H

(l)
t ] = SE([H

∗(l−1)
t ;H

(l−1)
t ]), (5)

where H
∗ ∈ R

T×d is the final output of the tempo-

ral encoder, [·; ·] denotes concatenation along the first di-

mension, l is the index of the stack, H
∗(0)
t = E

∗

t , and

H
(0)
t = Et. The extra spectral component H∗

t in each

stack mimics the initial CLS token introduced in the BERT

model [31] and is used to encapsulate spectral information

at each time step. For a detailed description of the inter-

twined architecture, we refer the readers to [8].

To use the SE and TE for modeling spectral and tempo-

ral dependencies, we impose constraints on the attention

maps of the MHSA block, as shown in Figure 3. For the

SE, the attention between the two types of spectra (i.e.,

mel spectrum and the chroma features) and the attention

on the extra component are masked out because such at-

tentions would likely result in diluted representations [32].

While the between-type attentions are prohibited, their re-

lations can be extracted via the extra component. For the

TE, contextual information is aggregated simultaneously at

four time scales (i.e., T , T/2, T/3, and T/4) in a structure-

aware manner. Take the scale T/2 as an example, a time

step t < T/2 can only attend the first half of the time axis.

Considering that binary and ternary forms are common

structures in Western music, such location-related informa-

tion is expected to enhance the learning of music structure.
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We leverage the multi-head nature of the MHSA block for

simultaneous multi-scale attention.

3.3 Output Layers and Inference

The output layers consist of a three-layer fully connected

neural network and take H∗ as input to estimate the bound-

ary likelihoods, PB ∈ [0, 1]T , and the probability distribu-

tions over the 7 classes, PC ∈ [0, 1]T×7, for all time steps:

P
B = sigmoid(((H∗

W
B
1 )W

B
2 )W

B
3 ), (6)

P
C = sigmoid(((H∗

W
C
1 )W

C
2 )W

C
3 ), (7)

where {WB
1 ,W

B
2 ,W

C
1 ,W

C
2 } ∈ R

d×d, WB
3 ∈ R

d×1, and

W
C
3 ∈ R

d×7 are learnable weight matrices. Note that we

use the sigmoid function instead of the softmax activation

in Eqn (7) for the function labeling is modeled as seven

individual binary sequences.

To detect the boundaries B from P
B, we use a com-

mon peak-picking method [17] implemented in the librosa

library [33]. To estimate the function labels C, we give

the segment between two adjacent boundaries (say t1 and

t2) a label taking the largest average probability, i.e., Ct =
argmax

∑
P

C
n ∀ t1 ≤ t, n < t2.

3.4 Loss Function

Given the ground-truth boundaries and labels (represented

by a sequence of one-hot vectors), Y
B ∈ {0, 1}T and

Y
C ∈ {0, 1}T×7 respectively, we compute the binary

cross-entropy (BCE) losses for the model output to com-

pute the overall loss (L) as follows:

L = LB + LC, (8)

LB = BCE(YB,PB), (9)

LC = BCE(YC,PC). (10)

4. EXPERIMENTS

We conducted comparative experiments using the Beat-

les [34], RWC [35], and SALAMI [36] datasets. For the

Beatles dataset, we used the refined Beatles-TUT annota-

tions for 174 Beatles songs. 2 For the RWC dataset, we

used the 100 songs from the Popular Music Database (de-

noted by RWC-POP). For the SALAMI dataset, we cre-

ated a subset consisting of only popular music (SALAMI-

POP), which amounted to 245 tracks. The maximum track

length for each corpus was around 468 sec, 368 sec, and

438 sec. Following [27], we carried out cross-dataset eval-

uations for all the experiments. Each of the three corpora

served as the test data in turn while the remainder was used

for training. We augmented the training set via pitch shift-

ing (within ±2 semitones) and pre-emphasis (with a coef-

ficient of {0.7, 0.97}).

4.1 Statistics of the Function Labels

Structural annotations of the three corpora were converted

to the 7-class label space with the mapping algorithm pro-

posed in [27]. As illustrated in Figure 4, all the corpora

2 https://pythonhosted.org/msaf/datasets.html.

Figure 4: Statistics of the 7 function labels in each of the

Beatles, RWC-POP, and SALAMI-POP corpora.

were with concentrated distribution, where Verse and

Chorus are the most common labels, since that verse-

chorus form is widely used in popular music. It is also

worth noting that Inst (i.e., ’instrumental’) is extremely

rare in the Beatles and RWC-POP datasets as a result of

their annotation criteria and the mapping algorithm.

4.2 Input Representation

For each audio track, we computed the mel spectrogram

with 80 mel bands and the chromagram with 12 chroma

bins. The initial time resolution for both representations

was 25 ms. We downsampled the two types of features by

a factor of 20 (hence 1 frame = 0.5 sec) with the median

filter so that the model could take as input a full-length

track under memory constraints.

4.3 Evaluation Metrics

The performance on the MSA task was evaluated with the

mir_eval library [37] in terms of segmentation and label-

ing. For segmentation, we computed the F1 score of the

Hit Rate [38] with a time tolerance of ±0.5 sec and ±3 sec

(denoted by HR.5F and HR3F respectively). For labeling,

we computed the F1 score of the pairwise agreement [39]

at the frame size of 0.1 sec (denoted by PWF).

In addition, the frame-wise labeling accuracy was mea-

sured in two ways. First, we converted the sequence of

probabilities (PC) into the labeling sequence (C) either by

taking the argmax function at each time step or by using the

proposed smoothing strategy (Section 3.3). The derived

labeling sequences were denoted by Ca and Cs, respec-

tively. Two types of labeling accuracy (ACCa and ACCs)

were then computed by comparing Ca and Cs with the
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Method ACCa/ ACCs HR.5F/ HR3F PWF

Beatles

Proposed 0.495/ 0.481 0.521/ 0.638 0.571

ST-MHSA 0.410/ 0.386 0.480/ 0.610 0.576

TE-Only 0.455/ 0.451 0.484/ 0.610 0.547

SE-Only 0.355/ 0.330 0.448/ 0.600 0.594

RWC-POP

Proposed 0.589/ 0.598 0.570/ 0.712 0.623

ST-MHSA 0.425/ 0.426 0.498/ 0.637 0.537

TE-Only 0.528/ 0.531 0.504/ 0.662 0.578

SE-Only 0.428/ 0.430 0.472/ 0.644 0.562

SALAMI-POP

Proposed 0.497/ 0.492 0.505/ 0.657 0.600

ST-MHSA 0.411/ 0.401 0.435/ 0.559 0.561

TE-Only 0.422/ 0.411 0.452/ 0.582 0.575

SE-Only 0.425/ 0.390 0.418/ 0.492 0.552

Table 1: The result of the ablation study.

ground-truth labeling sequence, C̄ ∈ {0, 1, . . . , 6}T :

ACCa =
1

T

T∑

t=1

δC̄t,Ca,t
, (11)

ACCs =
1

T

T∑

t=1

δC̄t,Cs,t
, (12)

where δa,b denotes the Kronecker delta function.

4.4 Baseline Methods

To validate the effectiveness of the spectral and temporal

self-attentions, we conducted an ablation study with the

following baseline models:

• ST-MHSA: Both the spectral and temporal encoders

used the standard MHSA as in the SpecTNT [27].

• TE-Only: The spectral encoder was removed in a

way similar to the CAMHSA work [28].

• SE-Only: The temporal encoder was removed from

the proposed model. This was a localized prediction

model taking only short-term context into account.

The ST-MHSA and TE-only are considered substitutes to

the two previous works [27, 28], and we did not make a

direct comparison to their results for a couple of reasons.

First, the data used are different due to the difficulty of

obtaining the exact audio signals: we used only the Beat-

les dataset while [27] used the Isophonics [34]; the subsets

created from the SALAMI dataset are also different (245

tracks in our experiments and 274 tracks in [27]). Sec-

ond, our model aims to predict semantic labels whereas

the model of [28] outputs semiotic representations, and ac-

cordingly the data used are different.

Figure 5: Structure analysis results of a song (“RM-

P045”) from the RWC-POP. The first row is the ground-

truth annotation, and the other rows are the estimations by

the proposed method and baseline models. The estimated

boundaries are denoted by dashed lines.

To scrutinize our model design in relation to the perfor-

mance, we also built variants of our model as follows:

• w/ Pool: The pooling operation was inserted

into the CNN frontend for the mel spectrogram

(Section 3.1). Precisely, we used a pooling layer

for X′

1 before the computation of Eqn (1). Follow-

ing [12], we reduced the spectral dimension of the

mel spectrogram using a max-pooling layer with a

kernel size of 6 (while the temporal dimension was

kept unchanged).

• w/o S-Mask: The spectral attention mask was not

used (Section 3.2 and Figure 3a). This is equivalent

to using a standard MHSA block for the SE.

• w/o T-Mask: The temporal attention mask was not

used (Section 3.2 and Figure 3b). This is equivalent

to using the CAMHSA mechanism for the TE.

5. RESULTS

We here report and discuss the results of the comparative

and ablation experiments.

5.1 Comparison with Baseline Models

The results of the cross-dataset evaluations are summarized

in Table 1. The proposed method outperformed the base-

line methods on the three corpora in most metrics (with a

comparable PWF score to the ST-MHSA and the TE-Only

on the Beatles). In comparison with the ST-MHSA, the

performance gain of the proposed method was mainly at-

tributed to the tailored MHSA blocks for spectral and tem-

poral modelings, validating the importance of the MHSA

adaptation to the task. Given that the TE-Only obtained

better ACC scores than the SE-Only, the temporal self-

attention was considered to have a greater impact on iden-

tifying structural functions than its spectral counterpart.
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Method ACCa/ ACCs HR.5F/ HR3F PWF

Beatles

Proposed 0.495/ 0.481 0.521/ 0.638 0.571

w/ Pool 0.387/ 0.370 0.446/ 0.566 0.536

w/o S-Mask 0.498/ 0.497 0.520/ 0.654 0.582

w/o T-Mask 0.538/ 0.531 0.528/ 0.643 0.614

RWC-POP

Proposed 0.589/ 0.598 0.570/ 0.712 0.623

w/ Pool 0.528/ 0.489 0.395/ 0.550 0.546

w/o S-Mask 0.571/ 0.577 0.571/ 0.715 0.621

w/o T-Mask 0.576/ 0.567 0.549/ 0.686 0.607

SALAMI-POP

Proposed 0.497/ 0.492 0.505/ 0.657 0.600

w/ Pool 0.495/ 0.454 0.418/ 0.522 0.552

w/o S-Mask 0.487/ 0.490 0.480/ 0.628 0.581

w/o T-Mask 0.471/ 0.480 0.485/ 0.635 0.586

Table 2: Evaluations of the model design choices.

Nonetheless, the differences between the SE-Only and TE-

Only were not clear in terms of the HR and the PWF

scores, implying that spectral and temporal self-attentions

both can contribute to the tasks. In addition, we found that

our inference strategy smoothed the structural labeling re-

sults while having a minor effect on the ACC score.

Figure 5 portrays the structural labeling results for one

song from the RWC-POP corpus. Regarding the segmen-

tation results, all the models were able to detect the tran-

sitions between different sections, but the finer structure

(i.e., repetitions or variants within a coarse section) was

sometimes overlooked. In particular, the SE-Only over-

segmented the musical track due to the limited contextual

information. Regarding the labeling results, the proposed

method and the TE-Only were capable of correctly esti-

mating the five function labels in the track, whereas the

ST-MHSA and SE-Only failed to identify all the chorus

and bridge sections, possibly owing to the insufficient ca-

pability of temporal modeling.

5.2 Evaluation of Design Choices

Experiments results regarding the model design are listed

in Table 2. As we expected, the severe performance degra-

dation was caused by the pooling operation (w/ Pool) on

the three corpora. Spectral components are not pixels that

are highly correlated in local regions, and therefore naive

local pooling could be detrimental to spectral features. As

for the attention masking (w/o {S, T}-MASK), the results

suggested that the imposed constraints can have a positive

impact on the performance. On the SALAMI-POP, which

is the most challenging one among the three corpora, the

MHSA mechanism without any constraints resulted in a

clear performance drop. In particular, we found that un-

constrained spectral components tended to give great atten-

tion to the extra component (H∗

t ) rather than themselves.

A similar effect was also reported by previous research in

the field of natural language processing [40,41]. This kind

of concentrated attention to a special (or artificial) compo-

nent that has distinct semantic meanings could downplay

the representation capability of the MHSA.

5.3 Evaluation of Spectro-Temporal Self-Attentions

The attention maps implicitly computed with the MHSA

mechanism often disclose illuminating relationships be-

tween input elements [42–45]. The spectral and tempo-

ral self-attentions of our model also exhibited such an

effect. As depicted in Figure 1c, the leftmost temporal

self-attention map highlighted a potential musical event at

around 66 sec, which could be associated with the variant

repeat of the first 10 sec of this chorus section (as can be

seen in Figure 1a, two triangular patterns span from 56 to

66 sec and from 66 to 76 sec, respectively). This result

echos the observation that self-attention maps can repre-

sent music structure [28]. In contrast, the spectral self-

attention, as illustrated in Figure 1b, uncovered the tonal

relationships between the 12 pitch classes with an empha-

sis on the notes comprising the tonic chord (assume in the

key of C major). Particularly, pitch class E gained persis-

tent attention over this section even though it had a low

energy level for most of the time. Through alternate self-

attention across the spectral and temporal dimensions, the

contextual information of individual aspects can be min-

gled effectively and provide insights into music structure.

6. CONCLUSION

We have presented a deep learning model for music struc-

ture analysis, especially from the perspective of the func-

tional structure representation. The core idea of this study

is to learn non-local spectral and temporal dependencies

inherent in music with clear distinction. For this pur-

pose, we adapted the multi-head self-attention mechanism

for each aspect and leveraged two types of the Trans-

former encoder to unravel the spectro-temporal relation-

ships. Compared with the ablated variants of the Trans-

former encoder, the proposed model with the specialized

self-attention mechanisms worked better on three datasets

in music segmentation and structure labeling. The learned

self-attention maps unveiled that the correlations between

separated spectral or temporal components can be effective

clues for modeling music structure.

In spite of these encouraging results, we acknowledge

the computational limitation of our approach. Apart from

an M -head temporal self-attention having the memory

footprint of M × T × T , an N -head spectral self-attention

involves intermediate attention maps with T ×N × S × S
space complexity. Given that our method aims to process

full-length audio data (hence larger T ) and leverage multi-

ple types of acoustic features (hence greater S), memory-

efficient self-attention mechanisms are critical to this kind

of dual-axis modeling. Time and frequency are intricately

interwoven to form the musical fabric, and each individual

aspect is worth considerable attention.
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