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ABSTRACT

In this paper, we propose a novel Self-Supervised-

Learning scheme to train rhythm analysis systems and

instantiate it for few-shot beat tracking. Taking inspi-

ration from the Contrastive Predictive Coding paradigm,

we propose to train a Log-Mel-Spectrogram-Transformer-

encoder to contrast observations at times separated by hy-

pothesized beat intervals from those that are not. We do

this without the knowledge of ground-truth tempo or beat

positions, as we rely on the local maxima of a Predomi-

nant Local Pulse function, considered as a proxy for Tatum

positions, to define candidate anchors, candidate positives

(located at a distance of a power of two from the anchor)

and negatives (remaining time positions). We show that

a model pre-trained using this approach on the unlabeled

FMA, MTT and MTG-Jamendo datasets can successfully

be fine-tuned in the few-shot regime, i.e. with just a few

annotated examples to get a competitive beat-tracking per-

formance.

1 Introduction

Beat-tracking, i.e. locating the times in a musical audio

signal where beats are perceived or notated in the corre-

sponding score, is still one of the most challenging sub-

jects in the Music Information Retrieval (MIR) research

field. This is owing to the large use of the beat informa-

tion in many applications and to the complexity of the task:

beats belong to a hierarchy/tree of rhythmic accentuations

(hence entailing ambiguities), arise both from perceptual

and cognitive cues. It, therefore, requires knowledge of

the cultural specificities of the studied music.

To alleviate these issues, data-driven systems purely

rely on training data composed of music tracks that have

been annotated (supposedly) by experts. However, this la-

beling process remains costly and as a consequence, the

amount of data annotated into beats (at most a few thou-

sands tracks) remains extremely low in MIR, as com-

pared to other research fields (speech or computer vision).

For this reason, developing approaches that allow training
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beat-tracking systems without annotated data, a.k.a. Self-

Supervised Learning (SSL), is important. This is the goal

of this paper.

By alleviating the need of large annotated datasets, SSL,

has recently gained significant attention in the field of ma-

chine learning. The goal is to learn meaningful represen-

tations of the input data without the need for human anno-

tations. To do so, the target outputs are directly inferred

from the dataset itself, and often referred to as "pretext-

task labels". Such supervision can be obtained by mask-

ing some part of the input and asking the model to pre-

dict it [1–4] or to generate two views of the same input

and force a model to learn similar representations for the

two views [5–8]. Another popular SSL approach is con-

trastive learning [9, 10] where one trains a network to pre-

dict whether two inputs are from the same class (or not) by

forcing their trained embeddings to be more or less close

from each other. Usually, upon pre-training completion,

the model is fine-tuned in a supervised fashion for one or

more downstream tasks, where the data is smaller in size.

Our contributions are the following:

• We propose a novel contrastive SSL scheme produc-

ing representations which are useful for automatic

rhythm analysis tasks, in particular the beat-tracking

task. Its key component is the pretext-task design ex-

ploiting Predominant Local Pulse (PLP) local max-

ima to effectively sample anchor, positive, and neg-

ative time-steps for our contrastive loss function.

• We show that the pre-trained model can be fine-

tuned in a few-shot learning setting to get compet-

itive beat-tracking results. Moreover, we show that

our approach yields, in most cases, at least better

performance than Zero-Note Samba (ZeroNS) [11],

which is, to the best of our knowledge, the only al-

ternative SSL approach to this problem to date.

• Furthermore we show that our model outperforms

ZeroNS in a cross-dataset generalization setting.

• Finally we compare our model to the state of the art

in a 8-fold cross-validation setting and show that it

is competitive.

Paper organization. The paper is organized as follows.

In section 2 we present works related to our proposal. In

section 3 we present our proposed contrastive SSL training

strategy. Finally in section 4 we present the results of the

different experiments we performed. To facilitate repro-

ducibility, we make our code available. 1

1 https://github.com/antoningagnere/ssl_beat
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2 Related Work

In the following, we provide a quick overview of related

contrastive SSL techniques and review the attempts made

along this line in the field of MIR, especially for beat and

downbeat tracking. We also discuss the recent advances

made towards solving these important MIR tasks.

2.1 Self-Supervised Representation Learning

Our approach takes inspiration from contrastive methods.

In CPC (Contrastive Predicting Coding) [9], representa-

tions are learned from sequential data by predicting the fu-

ture latent representations from the (aggregated) past ones.

For this, an encoder is trained to produce latent represen-

tations with the task of making it easy to distinguish in

the obtained latent space (positive) future latent represen-

tations from a set of negative samples. This encourages

the model to capture meaningful information. Instead of

predicting the future, in Wav2Vec2 [10] the task is to pre-

dict masked observations. In Wav2Vec2, features are ex-

tracted from an audio signal with a Convolutional Network

and fed to a transformer encoder where some frames are

masked. Additionally, the audio features are quantized and

the model is trained to contrast the masked output with the

quantized output and a set of distractors.

2.2 Self-Supervised Learning in MIR

Following the trend in speech processing research, SSL ap-

proaches have started to become popular in MIR. On the

one hand, these approaches can be used to train general-

purpose models, the so-called “foundation models” (such

as MULE [12] or MERT [13]), which are supposed to

be useful to solve a whole set of downstream tasks (see

the MARBLE benchmark [14]). On the other hand, mod-

els can be developed to learn representations that are well

aligned with a specific MIR task. Among those, learning

representations that are equivariant to a semantic distor-

tion of the audio signal has become a popular approach

(e.g., for pitch or tempo estimation using siamese networks

[15–18]).

Few works have proposed to apply SSL for rhythm

analysis tasks. Zero-Note Samba (ZeroNS) [11] leverages

the synchronization of the various instrument stems in a

music track. For this, they separate music tracks into their

percussive and non-percussive parts and train an encoder

to force the synchronization between the corresponding la-

tent representations, which are then used for beat tracking.

In [19] they used binary metric regularity to derive super-

vision for their CRF loss, enabling the network to model a

hierarchical metrical structure.

2.3 Beat and Downbeat tracking

Before the rise of deep-learning approaches, beat and

downbeat tracking systems were based on two-step sys-

tems: first audio features were extracted from the audio

signal (including an onset detection function, Predominant

Local Pulse (PLP), spectral features or a novelty function);

then those were used as “observations” to a probabilis-

tic model (such as Hidden Markov Models or Dynamic

Bayesian Network) [20–22].

The shift toward data-driven approaches started with

[23] where the authors proposed to process spectral

features with bi-directional Long Short-Term Memory

(LSTM) networks. [24] then proposed to replace the

LSTM with a Temporal Convolutional Network (TCN) to

process the spectral features. Later on, the model was im-

proved by solving jointly multiple tasks (beat and down-

beat positions, as well as tempo) [25, 26]. Currently, mod-

els based on the Transformer architecture, used in a multi-

task setting (joint beat-downbeat tracking) are the most

successful. In [27] the authors apply the Spectral-Temporal

Transformer (SpecTNT) architecture [28] to tackle this

task. This architecture combines a spectral transformer

that processes harmonic features and a temporal trans-

former that aggregates the processed features over time.

To further improve the performance, the authors combined

SpecTNT with a Temporal Convolutional Network (TCN).

Beat Transformer [29] incorporates dilated self-attention to

capture long-range dependencies. Furthermore, in the mid-

dle layers, they alternate time-wise dilated self-attention

with instrument-wise self-attention 2 .

3 Proposed Contrastive Learning SSL

scheme

In this paper, we propose a novel SSL approach to learn

representations useful for rhythm analysis tasks, and in-

stantiate it for the beat tracking downstream task. We aim

to learn a projection (an encoder) such that the resulting

projections of observations at PLP peaks whose distance

from each other is a power of 2 are close to each other, and

different otherwise. The two key insights behind this is

that: i) a significant fraction of the PLP peaks (supposedly

aligned to the tatum grid) is expected to represent beat po-

sitions, with high probability, and ii) most of the musical

recordings tend to have a binary metric structure (i.e. beats

can be musically divided by two and grouped by two). We

conjecture that despite being over-simplistic, these ingre-

dients are “good-enough” to define a pretext-task that will

be effective for training representations useful for various

rhythm analysis tasks, especially beat tracking, provided

that a downstream fine-tuning phase is anyway envisaged.

In the following we will refer to the distance between two

PLP peaks as tatum-unit and denote it by tu.

We solve this pretext-task using contrastive learning.

We learn to distinguish observations at times separated by

an interval of a power of 2 in tu units, from those that are

not. Once computed, the PLP function is used to select an

anchor, its associated positive, and a set of negative sam-

ples. We further explain the procedure in section 3.1. We

then train our encoder to attract the anchor and the posi-

tive while repelling the set of negatives in the latent space

using a contrastive loss. We describe the architecture of

2 The instrument-wise attention is conducted along the stems of a
demixed audio signal, contributing to a comprehensive analysis of the
audio data.
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Figure 1: Our proposed contrastive SSL scheme for beat

tracking. The left part displays our processed audio wave-

form to obtain the representations zt. The right part dis-

plays our mining of positive and negatives.

our encoder in section 3.2. Our approach is summarized in

Figure 1.

3.1 Mining positive and negatives

The key part of our work is to learn representations in a

contrastive way. Therefore we need to define an anchor, a

positive and multiple negative samples within each given

audio excerpt. We rely on the Predominant Local Pulse

(PLP) [30] function to extract local pulse information (see

3.1.1). Given such information, we sample positive and

negative times for a selected anchor (see 3.1.2).

3.1.1 Predominant Local Pulse

The PLP method analyzes the Onset Strength Function

(OSF) of an audio signal in the frequency domain to find

a locally stable tempo for each frame. For this, a “tem-

pogram” (a Short-Time Fourier-Transform, STFT) of the

OSF is computed. At each time position, the maximum of

the “tempogram” indicates the dominant pulse frequency.

Using the corresponding amplitude and phase of this max-

imum, one can re-synthesize the corresponding temporal

signal (a sinusoidal component). Using the usual overlap-

and-add (OLA) inverse STFT method, a smooth temporal

signal is formed by overlapping-and-adding the sinusoidal

components with various dominant pulse frequencies over

time. This temporal function is termed PLP and represents

a localized enhancement of the original novelty function’s

periodicity.

Computation. Given an audio signal, we compute the

PLP function with the same frame rate as our audio front-

end (i.e 20ms). We used the beat.plp function from Li-

brosa [31]. The function is fed with an OSF computed

from a spectrogram 3 with 2048 points and the default

minimum and maximum tempo parameters. We then es-

timate the local maxima peak yk of the PLP using the

find_peaks function from scipy.

3 In a preliminary experiment, we found that using the spectrogram to
get the OSF was working better than using the Mel-spectrogram

3.1.2 Sampling from PLP

In the following we will refer to the distance between two

PLP peaks as tatum-unit and denote it by tu. For simplifi-

cation, we do the following assumptions. We assume that

the tatums correspond to the 8-th note and that most tracks

are in a 4/4 meter. 4 Following this, we consider that the

positives have a time distance ∆ from the anchor which is

a power of two of the tatum unit: ∆ = i × α × tu with

α = 2n and i ∈ Z \ {0}. In this work we consider n = 2
(which corresponds to an inter-distance of two beats).

We define by Y = {y1, ..., yK} the set of PLP peaks

within a given audio segment. We first sample an anchor

a uniformly in [1,K]. We denote by ya the time asso-

ciated to a (blue arrow in Fig.2). Given this anchor, we

sample its associated positive time step p. This positive

must be situated i × α peaks away from the query. For

a given anchor a, we therefore sample p uniformly from

Ya = {ya±i×α, 0 ≤ a± i× α ≤ K}.

We denote by yp the time associated to p (green arrow

in Fig.2, green empty arrows are all the elements of Ya).

We then sample N negative time steps at which we de-

fine hard negative and easy negative examples. An easy

negative corresponds to a time step that is not a PLP peak.

They are sampled uniformly in [0, T ] \ Y . We also apply

a “safety window” (whose duration was empirically deter-

mined to one frame) around peak time steps to avoid sam-

pling negatives that are too close to a peak. A hard negative

corresponds to a time step that is a peak but that is not in

Ya. They are sampled uniformly in Y \ (Ya ∪ {ya}). We

sample N = 10 negatives, half of them are hard negatives,

and the other half are easy negatives.

To prevent any errors coming from the PLP function we

discard audio segments where the inter-peak distance is not

almost constant. We empirically set the allowed variation

to 20 percent of this inter-peak distance within a segment

(more details about this are given on the companion web-

site).

3.2 Architectures

Front-end. We compute Mel spectrogram features from

audio sampled at 16kHz using 128 bands, a window size

of 2048 samples, and a hop size of 320 samples (20ms

frame rate). We apply log compression and normaliza-

tion 5 . Subsequently, a linear layer projects the frames

to the embedding dimension. The resulting sequence xt

serves as the input to the encoder. We use audio segments

of 20s long to ensure the model sees a sufficiently large

context. However, we did not explore varying the length

of audio segments fed into the encoder.

Encoder. For the encoder, we use a Transformer ar-

chitecture similar to the one used in Wav2Vec2 or Hu-

bert [10, 32]. It is composed of a stack of Transformer

4 In a preliminary experiment, we delve deeper into determining the
metrical level that the peaks of the PLP correspond to. Our findings sug-
gest that these peaks align with either the beat, the 8-th note or the 16-th
note level.

5 For normalization, we use the mean and standard deviation computed
over the training set.
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Figure 2: Proposed mining strategy of Positives and Negatives (easy and hard) given an Anchor time in the PLP function.

Positive are sampled among peaks of the PLP whose time index is distant from the Anchor by a power of two tatum units

tu (here α = 4× tu ); Negatives are the remaining times and are considered Easy if not peaks of the PLP and Hard if peaks

of the PLP. Here we sample two hard and two easy negatives.

encoder layers. Each layer is composed of a multi-head

self-attention mechanism followed by a feed-forward net-

work. We use 8 layers each of which has 8 attention heads

and apply a 0.1 dropout in the attention layer. The en-

coder outputs the embedding sequence zt. The embedding

dimension is set to 512 and the hidden dimension of the

feed-forward network is set to 1024. In total, the model

has 19.1M learnable parameters. We did not explore other

architectures as the focus of our work was to study the pro-

posed SSL scheme.

3.3 Contrastive Loss

Among the various formulations of the contrastive losses,

we have chosen to use the NT-Xent loss [5] one. We de-

fine the similarity measure between two vectors u and v as

sim(u, v) = u⊤v
∥u∥∥v∥ . Given an anchor ya, a positive yp and

a set of N negatives time-steps tneg = {tn1
, ..., tnN

}, we

compute the contrastive loss as follows:

LNT-Xent(ya, yp, tneg) = − log
exp(sim(zya

, zyp
)/τ)

∑N

i=1 exp(sim(zya
, ztni

)/τ)
.

(1)

We set the temperature to τ = 0.1. For each audio

in a batch, we use 80% of the available peaks as anchors.

For each of them, we sample their corresponding positive

and negatives. We compute the above contrastive loss over

each pair and each audio. We then average the losses to

obtain the global loss for the batch, that is if we have a

total of M pairs in the batch:

L =
1

M

∑

ya,yp,tneg

LNT-Xent(ya, yp, tneg). (2)

4 Evaluation

To evaluate our model, we performed three experiments.

In all three experiments, the model is pre-trained in a SSL

way using unlabeled data.

In Experiment 1, we test the Few-Shot Learning (FSL)

abilities of our model using only a few data for fine-tuning.

Experiment 2 tests the generalization of our model on un-

seen conditions and serves as comparison to ZeroNS. Fi-

nally, Experiment 3 compares our performance to the ones

obtained using fully-supervised beat-tracking models.

4.1 Datasets

For SSL pre-training, we use a combination of unlabeled

datasets (in terms of beat positions): the Free Music

Archive (FMA) [33], MTG-Jamendo [34], and MagnaTa-

gaTune (MTT) [35]. FMA contains 106,574 full tracks

spanning 161 genres. MTG-Jamendo contains around

55,000 full audio tracks. Finally, MTT contains approxi-

mately 26,000 excerpts of 30-s duration from 5223 unique

tracks. Overall the combined datasets offer around 165k

full audio tracks and a total of 8,000 hours.

For fine-tuning and testing, we used the following la-

beled (into beats) datasets, commonly used in previous

works: SMC [36], Ballroom [37] and Hainsworth [38],

GTZAN [39,40], RWC [41] and Harmonix [42]. The Har-

monix dataset is mainly composed of pop music tracks,

whereas the Ballroom, GTZAN, RWC, and Hainsworth

datasets offer a wider variety of musical genres.

4.2 Evaluation Metrics

We report the commonly used metrics in the literature

including the F-measure with a tolerance window of ±
70ms, continuity-based measures at the correct metrical

level (CMLt & CMLc), and at alternate metrical levels

such as double/half and offbeat (AMLt & AMLc) [43].

4.3 Implementation details

4.3.1 Pre-training

For SSL pre-training we kept 0.05% of the data for vali-

dation (9,000 tracks). Our model is pre-trained during 200

epochs (equivalent to around 270,000 steps). Training was

conducted on 4 A100 GPUs utilizing float 16 precision and

a global batch size of 96. We employed the Adam op-

timizer [44] with an initial learning rate set at 1e-4 and

Proceedings of the 25th ISMIR Conference, San Francisco, USA and Online, Nov 10-14, 2024

201



applied a polynomial decay learning rate scheduler. The

learning rate gradually increased to 5e-4 within the first

32,000 steps, then reverted to its initial value over the sub-

sequent 250k steps. Additionally, gradient clipping was

employed. We keep the model that gives the best valida-

tion loss.

4.3.2 Fine-tuning

After SSL pre-training, we need to adapt the model to the

downstream task of beat tracking. This is done by adding

a linear classification probe g(.) and fine-tuning both the

encoder and the linear probe. g(.) projects the embedding

into the scalar beat activation function. Instead of feed-

ing g(.) with the output of the encoder, we feed it with a

weighted sum of the outputs of each layer of the Trans-

former [45]. That is z =
∑8

l=1 αlz
(l), where z(l) is the

output of layer l. The weights αl are jointly learned with

the linear probe g(.).

The system is trained to minimize the binary cross-

entropy loss between the beat activations and the target.

Following the literature we widened the beat targets by a

window [0.25, 0.5, 1, 0.5,0.25] [26]. We used the Adam

optimizer [44] with an initial learning rate of 1e-5 and a

polynomial decay learning rate scheduler.

During fine-tuning, we utilized audio chunks of sizes

similar to those used during pre-training (20s). However,

during inference, to avoid potential out-of-memory errors,

we split audio excerpts exceeding 45 seconds into 20-

second chunks with 5-second overlap. Subsequently, we

overlap-add the activations to derive the beat activations

for the whole track.

These beat activations are then fed into a Dynamic

Bayesian Network (DBN) [46] to predict the beat posi-

tions. The DBN is configured to model a tempo range of

40-270 beats per minute with transition lambda set to 45,

observation lambda to 9, and a threshold of 0.15.

4.3.3 Data Augmentation

We found that both pre-training and fine-tuning could ben-

efit from data augmentation, in particular time-stretching.

We apply time-stretching in two manners: constant fac-

tor and time-varying factor. In both cases, we constrain

the time-stretching factor to lie in the interval [0.8, 1.2].
For the constant factor case, we used sox effects in Tor-

chaudio [47], and for time-varying factor we used Libtsm

[48]. When using a time-varying factor we randomly sam-

ple time instants at which the stretching factor is modi-

fied (also randomly, see the repository for details). This

was found to be particularly beneficial for the pre-training

stage. Indeed because we have filtered out tracks where the

inter-peak distance is not almost constant, the SSL training

data does not contain examples of time-varying tempo. Us-

ing time-varying time-stretching allows us to simulate this

in a controlled fashion.

We found that it was better to compute the Predominant

Local Pulse (PLP) curve before time-stretching and shift

the peaks accordingly, rather than on the time-stretched au-

dio.

4.4 Experiment 1: Few-shot learning

Protocol. The goal here is to test the ability of our

model to learn with only few examples, Few-Shot Learn-

ing (FSL). To be able to compare our results with pre-

viously published ones, we replicate the evaluation pro-

tocol proposed in ZeroNS [11]. We consider individu-

ally each dataset (both for fine-tuning and testing): T ∈
{SMC, Ballroom, Hainsworth, GTZAN}. For each dataset

T , we split it into 8 folds, we use one for testing Ttest,

one for validation Tvalid and perform FSL with the remain-

ing ones Ttrain. The FSL ability is evaluated by selecting

randomly k ∈ {1, 2, 3, 4, 6, 8, 12, 16, 24, 48, 64, 96} items

from Ttrain. For each k we sample 10 variations: T k
train,i

For each choice of k, we fine-tune our pre-trained model

on each variation T k
train,i and keep the one that performs

the best on Tvalid

Results. We give the results in Figure 3 for the Ttest

of each dataset (SMC Mirex, Ballroom, Hainsworth, and

GTZAN) and each value of k (x-axis). We report the mean

and standard deviation of the metrics over the training set

variations T k
train,i. Our model performs at least as well

as ZeroNS on almost all metrics and datasets. The excep-

tions are with AMLt on SMC and AMLc and AMLt on

GTZAN and SMC. We observe that our model performs

significantly better on Hainsworth, with up to 10% abso-

lute improvement in F1 score and almost 20% absolute im-

provement in CMLt and CMLc. Also, the performance gap

is significant on Ballroom when using very few data (less

than 10 tracks) where we can observe almost 10% abso-

lute improvement in F1 score and up to 15% improvement

in AMLc.

4.5 Experiment 2: Generalization

Protocol. The goal here is to test the generalization abil-

ity of our model, i.e. training our model on one dataset

and testing on another. For this, we replicate the protocol

proposed in ZeroNS [11]. For each choice of dataset T ∈
{SMC, Hainsworth, Ballroom}, we split it into 8 folds, we

use one for validation Tvalid, and the remaining seven for

training Ttrain. We then use the best-performing model on

Tvalid. Instead of using the linear probe described above,

we obtained better results using a MLP (two linear layers

interleaved with a ReLU), also fed by the weighted sum of

layer sequences (sec 4.3.2). Whatever the choice of T , the

test is performed on the GTZAN dataset.

Trained on Method F1 (%) AMLt (%) CMLt (%)

SMC
Ours 79.5 ± 0.5 88.0 ± 0.6 64.4 ± 0.9

ZeroNS 74.8 ± 2.1 86.3 ± 2.3 51.0 ± 2.1

Hainsworth
Ours 85.1 ± 0.8 89.9 ± 0.9 73.2 ± 1.8

ZeroNS 80.6 ± 0.9 89.4 ± 0.7 62.8 ± 2.3

Ballroom
Ours 83.9 ± 0.3 88.4 ± 0.5 72.3 ± 0.9

ZeroNS 82.6 ± 0.5 89.0 ± 0.8 67.6 ± 1.1

Table 1: Results of Experiment 2: Generalization

Results. We indicate the results in Table. 1. We report

the mean and standard deviation of F1, AMLt, and CMLt
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Figure 3: Results of Experiment 1: Few-Shot Learning. Shaded areas representation the standard deviation. (ZeroNS in

green and our method in blue)

Method F1 CMLt AMLt

Böck [26] 0.885 0.813 0.931
Hung [27] 0.887 0.812 0.920

Zhao [29] 0.885 0.800 0.922

Ours 0.876 0.802 0.918

Table 2: Results of Experiment 3: Comparison with su-

pervised baseline

scores across the different folds. Overall our model per-

forms better than ZeroNS on all datasets except when for

the AMLt metric when trained with Ballroom, but the dif-

ference is not statistically significant. This means that our

model can generalize well to unseen data. Precisely we

observe a 5% improvement in F1 score and more than

10% improvement in CMLt when training on SMC or

Hainsworth. We nearly reach the F1 score of fully super-

vised models (presented next) when training solely on 7/8
of Hainsworth (i.e 194 tracks).

4.6 Experiment 3: Comparison with supervised

baseline

Protocol. The goal here is to compare the performance of

our model to the ones provided by fully-supervised mod-

els. For this we replicate the commonly used 8-fold cross

validation set-up after [26,27,29]. GTZAN is kept as a test

set and is never seen in training. We average the metrics

over the 8 training folds to obtain the final results.

Results. We give the results in Table 2. It is clear that the

proposed beat tracking approach using our self-supervised

pre-training can be competitive with state-of-the-art meth-

ods on GTZAN, a dataset covering a wide diversity of

genres. While our method does not outperform the best-

performing method, it achieves comparable results across

all metrics, proving the quality of the learned representa-

tions.

5 Conclusion

In this paper, we proposed a novel Self-Supervised Learn-

ing approach to learn representations useful for the task of

beat tracking using contrastive learning where the selec-

tion of anchor, positive and negative peaks derives from a

Predominant Local Pulse function.

We assess our proposal positively based on a series of

experiments. In a first experiment, we showed that our pro-

posed approach was superior on some datasets to the previ-

ous SSL approach, ZeroNS, in a few-shot learning setting.

In a second experiment, we show that our model has better

generalization capabilities to unseen data. In the last ex-

periment, we show that our model also yields comparable

performances to the fully supervised baseline, indicating

that our pre-training scheme effectively learns meaningful

beat-related representations.

To further improve our method, future work will focus

on developing a more sophisticated sampling mechanism

that can handle other metrical structures than the binary

one used-here (such as 6/8, 3/4). One potential approach

is to incorporate additional audio features, such as self-

similarity matrices, to gain a deeper understanding of the

rhythmic structure within an audio segment and adaptively

select positive positions for a given anchor.
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